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Abstract—Deployable subsystems are essential to mission 1. INTRODUCTION

success of most spacecraft. These subsystems enable critical
functions iIncluding power, communications and thermal
control. The loss of any of these functions will generally result
in loss of the mission. These sibsystems and thelr components
often consist of unique designs and applications, for which
various standardized data sources are mot applicable for
estimating reliability and for assessing risks. In this study, a
Bayesian approach for reliability estimation of spacecraft
deployment was developed for this purpose. This approach was
then applied to the James Webb Space Telescope (JWST)
Sunshield subsystem, a umique design intended for thermal
control of the observatory’s telescope and science instruments.
In order to collect the prior information on deployable systems,
detailed studles of “heritage informatien®”, were conducted,
extending over 45 years of spacecraft launches. The NASA
Goddard Space Flight Center (GSFC) Spacecraft Operational
Anomaly and Reporting System (SOARS) data were then used
to estimate the parameters of the comjugative beta prior
distribution for anomaly and fallure occurrence, as the most
consistent set of avallable data and that could be matched to
launch histories. This allows for an empirical Bayesian
prediction for the risk of an anomaly occurrence of the complex
Sunshield deployment, with credibility limits, using prier
deployment data and test information. '
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Deployable subsystems are essential to mission success of
most spacecraft. These subsystems enable critical functions
including power, communications and thermal control. The
loss of any of these functions will generally result in loss or
significant degradation of the mission [Freeman 1993, Saleh
and Castet 2011, de Selding 2012], These subsystems and
their components often consist of unique designs and
applications, for which various standardized data sources are
not applicable for estimating reliability and for assessing
risks,

From the reliability standpoint, deployable subsystems are
best modeled as one-shot systems, for which probability of a
failure/success event is governed by the binomial
distribution. =The mathematically correct classical
(frequentist) maximum likelikood (ML) estimate of the
probability of deployment failure p; is the simple common
sense estimate which is given by _
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where N is the total rilitnber-of trials (deployments), n is the
number of unsuccessful trials, and P, is the estimate of the
Pr
As a rule, one is interesied in the upper (1 — o) confidence
limit on the probability of deployment failure, which is
given as a solution with respect to p of the following
equation

I.o(N-n,n+1)<a (2)

where the incomplete beta function is given by [Lawless,
2003]
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and I'(x) is the gamma function given by:
I'(a) = f x% g~ *dx 4)
(]

2. BAYESIAN APPROACH TO RELIABILITY
ESTIMATION DEPLOYABLE SUBSYSTEMS

In the given Bayesian approach, the standard beta
distribution is applied as the prior distribution of the
probability of deployment failure. Its probability density
function (PDF) is defined over the interval [0, 1], and it is
given by

Ta+f)
flua, B)= W‘H“_‘w' 0<rsla>05>0 (s)

0, otherwise

Note that depending on its parameters, the beta distribution
has very different shapes as illustrated by the Figure 1,
thereby allowing flexibility in characterizing uncertainty.
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Figure 1. Probability density functions of beta distribution

It is interesting that the standard uniform (flat) distribution is
a particular case of the beta distribution witha=1and 8=1.

It should be noted that the beta distribution as a prior
distribution in binomial probability estimation is the
conjugative distribution, which means that the posterior
estimate of interest is alsp beta distributed. This allows for
by- passing complex numerical integrations.

In this study, the prior distribution is estimated based on
some appropriate data. This approach is known as the
empirical Bayesian as opposed to Bayesian estimation based
on elicitation of expert opinion.

In the framework of the empirical Bayesian approach, the
prior information might be a set of one-shot system
failure/success data based on historical performance. Lct’s
assume we have ny trials out which x, are failures. In this
case, the conjugate prior distribution is the beta distribution
with parameters o = xp and £ = np - xp. At this point, it is
important to note that the mean of the prior beta distribution
Prpior i given by

s prior = _:_o 6
0

which coincides with classical estimate (1) of the probability
of deployment failure, Thus, if there are available data on
success/failure deployment related to some similar (from
engineering standpoint) subsystems, these data can be used
to estimate the paramsters of the beta prior distribution. Note
that in this case, the beta distribution parameters are integer.
In the general case, e.g., when the prior distribution is
estimated based on expert knowledge, the parameters can
take on any positive values

Next, let’s assume that we have the test deployment results
(data) related to the subsystem of interest, which are x
failures out of n deployments (trials). Based on the Bayes’
theorem, the posterior PDF of the probability of deployment
failure can be written as

%)= T(n+ny) renH {1 _ -x-mH
f(PI ) r(x+xn)r(n+no_x_xn)!’( H 1 P)(‘m' @

which is obviously the PDF of the beta distribution.

The corresponding posterior mean (which is the Bayesian
point estimate of the failure probability) is given by

x+%,
n+n° ®)

It should be noted that when n >> ny and x >> xp, the
Bayesian estimate (8) is getting closer to the classical
estimate (1) based on the test data. In other words, the
classical statistical inference tends to dominate over the
Bayesian one. Likewise, if ny >> n and x, >> x, the
Bayesian inference tends to dominate,

Pp=

Based on the posterior PDF (7), the (1 — ) upper limit pg ,,
of Bayes' probability interval (the Bayesian analog of the
classical upper confidence limit) is a solution of the
following equation with respect to p

Lx+x,n+ny-x-x)=a ©)

Consider the following numerical example, Let the collected
prior information be summarized as 100 deployments with,
say, 2 failures, i.€., #y = 100 and x, = 2. The test data for a
given deployable subsystem is limited to 10 failure-free
deployments i.e., n= 10 and x= 0.

In this case, based on the test data classical point estimate
(1) of probability of deployment failure is 0, which is not



very informative. The classical upper 90% confidence limit
on the failure probability calculated using Equation (2) is
0.206.

Based on the prior and test data, the respective Bayesian
upper 90% limit is 0.035, which looks consistent with the
data it is based on.

3. PRIOR DATA SOURCES FOR DEPLOYABLE
SUBSYSTEMS RELIABILITY ESTIMATION

In analyzing deployments, several sources of information
may be used for the construction of a prior distribution, In
this study, sources of data analyzed, included the NASA
Glenn Research Center’s (GRC) Spacecraft Mechanism
Handbook [Fusare, 1998] and the GSFC SOARS. SOARS is
a demonstrated consistent source of historical data for
NASA GSFC projects [Robertson and Stoneking 2003]. This
provided a look at 45 years of deployment history. The total
number of failures reviewed included 53 known failures.
Figures 2 and 3 show a classification of all 53 failures by
subsystems and assignable causes. Failures on the same
spacecraft, appearing in both data sets, are treated as only
one failure.

Deployment Fallures by Type of Deployed Component
1964-2009
$OARS and GRC Handbook
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Figure 2. Classification of Failures by Deployed Component
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Figure 3. Classification of Failures by Assignable Causes.

Studies to support documentation of lessons learned for the
Spacecraft Mechanism Handbook reflect failures occurring
on military and civil spacecraft launched between 1964 and
1997. These data showed 34 failures. The exact population
of spacecraft is not known for these data. However, there
were approximately 1262 civil and military missions
launched by the United States in this period. With a few
exceptions, the data reflect largely mission ending failures,
which were not overcome by operational workarounds and
may not represent a complete anomaly record. The failure
records can be examined in [Fusaro, 1998].

The SOARS records reflect NASA GSFC civil spacecraft
developed and launched from 1978 to 2009. The data
reflected 19 failures including both mission ending and
failares which were overcome by operational workarounds.
During this period, 123 spacecraft were successfully
launched into orbit by NASA GSFC. This provides the most
consistent data set for the construction of a prior distribution.
Note that data were not segregated by severity for this
cxample. This is of course an option in applying this
methodology to test design.

4. CASE STUDY — JWST SUNSHIELD
DEPLOYMENT

The James Webb Space Telescope is the next generation
space telescope, which will view deep space in the infrared,
beginning with its launch in 2018. JWST will be one of the
most complex deployable structures ever launched and will
enable NASA to peer to the epoch of the formation of the
very first luminous objects after the primordial Big Bang.
The JWST is shown in Figure 4, as it will be deployed in the
Sun-Earth L2 orbit, in which it will conduct its mission.

4.1 The JWST Sunshield and its Deployment

Central to the success of the mission is the sunshield
structure, a tennis court size, multi-layer, gossamer film
structure, which enables the telescope and science
instruments to cool to cryogenic temperatures, while
blocking light from the sun.

Figure 4. The James nes Webb Space Telescope in Iis Depioyed
Configuration Showing the Optical Telescope Element and
Sunshield.

The sunshield deployment from the stowed launch
configuration consists of several key steps. Figure 5 shows
how the deployment progresses from the launch to
operational configurations. The deployment steps can be
classified into 3 major stages. This includes deployment of
the structural supports (1), membrane release (2) and
tensioning of the 5 membrane layers (3).
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Figure 5, Deployment of the Sunshieid from Launch to
Operational Configuration.

The SOARS records from 1978 through 2009 were analyzed
to generate a prior distribution for this analysis. Out of these
records, 123 missions were sclected as having the
deployable subsystems, which can be used as the prior data
for the JWST sunshield Bayesian reliability analysis. In 19
of these missions, deployable subsystem anomalies
occurred, ending the mission, degrading the mission or
creating an operational contingency.

In this case study, we are considering application of the
Bayesian approach to test design. Let’s assume that a test
sequence of 10 deployments has been run and the test results
are failure free. Based on the prior data, the prior PDF is
depicted in Figure 6.
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Figure 6. Probability Density Functions of Prior and
Posterior Distributions of Probability of Deployment Failure.

The prior meen coinciding with the classical maximum
likelihood (ML) estimate (1) is = 0.154. Using Equation
(8), the Bayesian point estimate is evaluated as
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Based on the prior and test data, the respective Bayesian
upper 90% limit is 0.182. Clearly, the minimum test
sequences to run for the system can be targeted based upon
the desired risk reduction using this approach.

Now, we assume that the test result is one failure out of 10
deployment sequences. In this case, the Bayesian point
estimate is 0.154 and the Bayesian upper 90% limit is 0.191.
If our analysis was limited to the classical approach, we
could only compare the 90% upper confidence limit on
failure probability for O out of 10 test result with the test
having one failure out of 10, which are 0.205 and 0.337
respectively. We can see that using the prior data in the
Bayesian approach for reliability estimation is rather robust

with respect to the test results. It can be cxplained by the
dominance of the prior information over the test data, which
is, to an extent, typical for the deployable systems of
interest.

It should be noted that the Bayesian estimate of
probability of deployment failure can be updated not only as
a result of additional test runs, but also through updating the
prior information, as soon as new empirical data become
available.

5. CONCLUSION

In this paper we have presented an empirical Bayesian
approach to analysis of deployment risk and reliability. The
deployable system is modeled as a one-shot system
governed by the binomial distribution. This allowed for the
use of conjugate beta distributions to explicitly treat the
uncertainties in the probability of success. The application is
demonstrated by an example test case using 10 deployment
sequences for a deployable system. This methodology can
also be used to establish test cycles needed to achieve a
particular risk or reliability target. The methodology uses
data explicitly. However, the historical or other prior data
can be expected to dominate the results of the posterior
estimates.
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