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Abstract—NASA has been leading the Terahertz (THz) 
technology development for the sensors and instruments in 
astronomy in the past 20 years. THz technologies are 
expanding into much broader applications in recent years. Due 
to the vast available multiple gigahertz (GHz) broad 
bandwidths, THz radios offer the possibility for wireless 
transmission of high data rates. Multi-Gigabits per second 
(MGbps) broadband wireless access based on THz waves are 
closer to reality. The THz signal high atmosphere attenuation 
could significantly decrease the communication ranges and 
transmittable data rates for the ground systems. Contrary to 
the THz applications on the ground, the space applications in 
the atmosphere free environment do not suffer the atmosphere 
attenuation.  The manufacturing technologies for the THz 
electronic components are advancing and maturing.  There is 
great potential for the NASA future high data wireless 
applications in environments with difficult cabling and 
size/weight constraints. In this study, the THz wireless systems 
for potential space applications were investigated. The 
applicability of THz systems for space applications was 
analyzed. The link analysis indicates that MGbps data rates 
are achievable with compact sized high gain antennas.  

Keywords- Terahertz (THz) communications, wireless 
communication, link analysis, Multi-Gigabits data rate, 
International Space Station.  

I.  INTRODUCTION  

Previously, Terahertz (THz) technology has been driven 
by applications in astronomy. In the past 20 years, NASA 
has successfully launched and deployed scientific satellites 
with THz instruments and sensors for applications in 
astronomy [1,2]. The recent research and development 
activities in THz technologies are expanding into much 
broader applications such as security screening, medical 
imaging, and wireless sensors and communications [3-8]. 
There is no limit on the demand for the data rates and 
capacity of wireless communications for today’s 
applications. Thus, new technologies for spectral efficient 
modulations and the reduction of interference were 
developed to achieve the growth of data rates in recent years. 
To meet the demand, new technologies are needed to offer 
data capacity and to reduce energy consumption 
requirements in the future wireless networks. One possibility 
is the exploitation of new frequency spectrum for the radio 
systems. In the THz range of the frequency spectrum (from 
300 GHz to 3000 GHz), multiple gigahertz channel 
bandwidths are available, shown in Figure 1. This provides 
the possibility to transmit multi-gigabits per second (MGbps) 

data rates with less power consumption and higher channel 
capacity of the network.  

The millimeter wave (MMW) technologies have been 
successful demonstrated at 220 GHz carrier frequency with 
25 Gbps data rates [9]. The semiconductor devices and 
photodiodes for the THz frequency band between 300 and 
500 GHz have been demonstrated [10]. The manufacturing 
technologies for the THz electronic components are 
advancing and maturing.  THz-band wireless systems have 
some desired advantages over currently available wireless 
systems. Much higher bandwidths are available than the 
conventional microwave and millimeter wave systems. The 
THz system efficiency is higher than laser systems. The 
THz-band signals have smaller attenuations than the 
optical/laser signals. The capability of transmission and 
reflection off the dielectric materials could be useful in many 
non line of sight indoor applications for the THz waves. 

 
 

Figure 1. In the THz range of the frequency spectrum, multiple gigahertz 
channel bandwidths are possible.  

 

 
 

Figure 2. The current communication systems for 
human spaceflight missions at S-band, Ku-band, and Ka-band. 

 
An important advantage of the THz wireless system is 

the potential low complexity system design with the simplest 
modulation schemes coupled with the multiple GHz channel 
bandwidth to achieve the multi-gigabit throughput 
performance. This simple system architecture could have a 
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gain. The THz radio system has an advantage for compact 
sized high gain antenna design. However, technical 
challenges still exist in the practical THz antenna system 
design and fabrication. 

Recently, a breakthrough on nano phased array (NPA) 
design was reported [13]. It demonstrated a large-scale two-
dimensional array antenna in which 64 × 64 (4,096) elements 
are densely integrated on a silicon chip with all of the 
nanoantennas precisely balanced in power and aligned in 
phase to generate a designed, sophisticated radiation pattern 
in the far field. A phased array antenna could electronically 
steer the antenna beam at the target with high precision, 
which is an advantage over the conventional reflector 
antenna. This technology breakthrough could greatly 
increase the THz system applications in the future for non 
point to point fixed wireless network. 

II. SPACECRAFT LINK ANALYSIS  

Wireless communication is an enabling technology for 
both manned and unmanned spacecraft; it enables un-
tethered mobility of crew and instruments, increasing safety 
and science return, and decreasing mass and maintenance 
costs by eliminating cabling. 

Terahertz wireless system links for potential space 
applications are theoretically analyzed in this section. The 
wireless link is assumed to have an additive white Gaussian 
noise (AWGN) channel. In such an AWGN channel the 
theoretical maximum data rate is defined by its capacity 
which can be calculated with the Shannon formula  

 
C=B log2(1+SNR)                       (1) 

 
where SNR is the signal-to-noise ratio and B is the 

available bandwidth in the channel. The noise power can be 
calculated from the thermal motion of the charges in the 
receiver. The additional noise due to the non ideal receiver 
is defined by the noise figure F. Hence, the signal-to-noise-
ratio is 

 
SNR=Pr/(FkTB)                           (2) 

 
where Pr is the received power, k is the Boltzmann 

constant, and T is the ambient temperature. According to the 
Farri free-space path-loss model, the received power is 

 
Pr = Pt Gt Gr Ls                             (3) 

 
where Pt is the transmitted power, Gt and Gr are antenna 

gain for transmitter and receiver, and Ls is the space loss. 
Therefore, with (2) and (3) in (1) we can calculate the 
maximum achievable data rate for the proposed wireless 
THz links. Note that this maximum data rate is the 
theoretical upper limit. The following parameters were 
assumed in the following data rate calculations. The 
frequency is 0.5 THz (500 GHz); the bandwidth is 10 GHz 
or 50 GHz; the transmit power is 10 mW or 1 W; the noise 
figure is 10 dB; the ambient temperature is 300 K. 

A. Interior WLAN 

Due to the atmospheric attenuation of THz signals, the 
practical THz indoor communication distances are limited to 
50 meters. Since the diffracted fields or creeping wave at 
THz frequency are insignificant compared to microwave 
signals, THz signals could not overcome the structure 
blockage. THz systems would require line of sight operations 
between transmitter and receiver. Crews moving in the 
module could block and disrupt the communication links.  

A THz wireless system could provide Gbps high data rate 
WLAN services to the crew modules of the Space Station, as 
shown in Figure 6 [14]. A 10 dB additional path loss due to 
the atmospheric attenuation is assumed for the 0.5 THz 
signals traveling a 10 m distance. 

 

 
 

Figure 6. Interior WLAN applications inside a module. 
 

Figure 7 shows the achievable data rate versus required 
antenna gain for 10 m range interior WLAN applications. A 
30 dB gain antenna is needed to compensate for the free 
space path loss and atmospheric attenuation. The data rate 
increases with the allocated bandwidth as well as the noise. 
From (1) the receiver power and the maximum achievable 
data rate can be calculated. A maximum data rate of 55 Gbps 
is achieved with a moderate 30 dB gain antenna and 10 mW 
transmit power, as shown in Figure 7. The rate could be 
higher with higher channel bandwidth and higher gain 
antenna, as shown in Figure 8. 

 

 
 

Figure 7. The maximum achievable data rates for the interior WLAN 
applications with 10mW or 1W transmit power. 

 
This high gain antenna requirement for the THz system is 

quite different from the conventional 2.4 GHz and 5.8 GHz 
indoor WLAN systems on the ground. The microwave 
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overcome the high space loss at THz band. High gain 
antenna could be compact size at THz band. It’s a technical 
challenge for long range applications at THz band. In 
addition to high gain antenna, high power transmitters would 
be required for long range communications to be feasible.  
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