planning purposes.

While other software for this task exists, each at the time of this reporting has been contained within a much more complicated package. This tool allows science and mission operations to view the estimates with a few clicks of the mouse.

This work was done by Michael N. Wallick, Daniel A. Allard, Roy E. Gladden, and Corey L. Peterson of Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1).

This software is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@caltech.edu. Refer to NPO-47722.

Extended Testability Analysis Tool

The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system.

The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files.

The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system’s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system’s ability to discriminate between failure modes related to the components containing the failure modes, (5) the Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

The ETA Tool provides iterative assessment analyses for conducting sensor sensitivity studies, as well as a command-line option that allows the user to specify the component isolation level. The tool accesses system design information from the diagnostic model to generate detailed diagnostic assessment reports, and command-line processing enables potential batch mode processing of TEAMS Designer models. The tool also features user-specified report options that include internal source calls and access to system environmental variables – features that enable automation of the previously labor-intensive manipulation of input files. The software generates detailed, readable diagnostic assessment reports that can be viewed in an Internet browser or imported into either Microsoft Word or Excel programs. Procedural C code provides fast, consistent, and efficient processing of the diagnostic model information.

This work was done by Kevin Melcher of Glenn Research Center, and William A. Maul and Christopher Fulton of QinetiQ North America. Further information is contained in a TSP (see page 1).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steven Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18795-1.

Rapid Diagnostics of Onboard Sequences

Keeping track of sequences onboard a spacecraft is a challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators’ diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft.

This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Com