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ABSTRACT

This paper presents development of a generic recursive
Order-N algorithm for systems with rigid and flexible
bodies, in tree or closed-loop topology, with N being the
number of bodies of the system. Simulation results are
presented for several test cases to verify and evaluate the
performance of the code compared to an existing efficient
dense mass matrix-based code. The comparison brought
out situations where Order-N or mass matrix-based
algorithms could be useful.

INTRODUCTION

The Software, Robotics and Simulation Division (SRSD)
of NASA Lyndon B. Johnson Space Center provides math
modeling and simulation in support of engineering
analyses and crew training activities for the center. The
division currently has an efficient generic multibody
dynamics code based on a dense mass-matrix formulation,
which is used for simulating systems involving on-orbit
robotic manipulators such as the Canadian Space Agency-
built Space Station Manipulator System (SSRMS). It is
generally known that Order-N (O(N)) algorithms, which
involve arithmetic operation counts of the order N, where
N is the number of bodies, perform more efficiently for
systems with large degrees of freedom, compared to mass
matrix-based with operations of order N°. It was therefore
decided to develop an O(N) simulation for SRSD to
investigate applications where they may perform better.
This development was performed in-house to allow
maximum flexibility and control in different simulations.

ALGORITHM DEVELOPMENT

There are several methods in the literature that may be
used for developing an O(N) algorithm. References may
be found in (Banerjee, 2003). The formulation presented
here is based on algebraically putting together the
following steps: (1) kinematic equations relating motions
between consecutive joints, (2) equations of motion of a
single body, rigid or flexible, (3) equations relating the
total spatial force and active forces and moments at the
joint and (4) constraint conditions.
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Derivation of the Order-N algorithm is presented in the
Appendix. The effect of motion-induced stiffness
(Banerjee, 1993) in flexible bodies of the system has not
been incorporated yet. Inter-body forces may cause this
effect to be important in some cases even for slow
motions typical of space systems.

CODE VERIFICATION

The Order-N code was verified against the existing mass
matrix-based code for several test cases, which itself was
verified against other simulations in the industry,
including TREETOPS (Singh et. al.,1985).The mass-
matrix algorithm has been in use for many facilities at the
Johnson Space Center for many years. Results from the
two implementations matched with high accuracy (i.e.,
within 1.0e-10 or better).

SIMULATION TEST CASES

The test cases are based on variations of the system
shown in Figure 1. The base plate By is a rigid circular

plate floating in inertial space.
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Figures 1: Test Model Description

Three identical articulating legs and two identical
manipulator arms are rigidly attached to the top plate.
The other ends of the legs are rigidly connected to the
base plate and the other ends of the manipulators hold a
test object rigidly. All links are modeled as cylindrical
rods. All joints of the legs and manipulators are single
axis rotational joints. Two configurations of the legs and
manipulators are considered, one with six joints the other
with seven. The axes of the seven jointed manipulators
and legs are in the order roll, yaw, pitch, pitch, pitch, yaw



and roll. The axes for ones with six joints are in the order
roll, yaw, pitch, pitch, yaw and roll. In several
configurations the boom elements of the legs have been
split into two parts of equal length and joined rigidly, for
adding additional bodies and flex degrees of freedom to
the system. Only the boom elements are modeled as
flexible. Each flexible rod has four bending modes (two in
each of the bending planes). The system was driven by
forces and moments on the top plate and the test object,
and moments on joints of the first leg. The forces and
moments were held constant for every 20 seconds and
then switched in sign. Table 1 shows the configurations.
Open loop cases are obtained by freeing the joints
between legs 2, 3 and top plate and between manipulator
2 and the test object. For closed loop simulations
constraint forces were determined at these same points.

Table 1: System Test Case Configurations
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Figures 2: Displacements of Top Plate and Test Object

Plots of representative data are shown in Figures 2 and 3.
Figure 2 shows a co-plot of displacements of the center

of the top plate, and the joint between manipulator 1 and
the test object obtained from O(N) and mass matrix
simulations for Case 16. The two results match to within
1.0e-10. Figure 3 is a co-plot of angular acceleration of
the bottom pitch joint of leg 2 for Cases 12 and 16 (rigid
and flex respectively) for O(N). Distances are shown in
meters, while angles are shown in radians.
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Figures 3: Leg 2 Bottom Pitch Joint Angular Acceleration

Performance of the O(N) code is measured by the CPU
time for a 100 second simulation and comparing it with
the existing code. The results of the comparison are listed
below for rigid and flexible models separately for both
open-loop and closed-loop scenarios. Rigid cases were
run with 0.001 second and flexible cases were run with
0.0001 second integration time step. An Euler-Cromer
integration scheme was used.

Table 2: Timing Results
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5 |[F|1 |0 |24 | 24| 48 166.8 174.0
6 |F |2 10|24 48| 72| 2779 | 4236
7 |F |3 ]0]|27 | 48| 75| 2759 | 478.0
8 |F|4 10|42 |80 112 | 408.6 | 1127.9
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10 |R|2 |C |24 0] 24 48.0 18.4
11 /R |3 |C |27 0] 27 59.4 22.7
12 |R |4 | C |42 0| 42 133.8 57.4
13 |F |1 |C |24 | 24| 48| 6134 | 567.6
14 |F |2 |C |24 | 48| 72| 937.2 | 1402.0
15 |F |3 |C |27 | 48| 75| 1037.9 | 1551.2
16 |F |4 | C |42 | 80| 112 | 2257.3 | 4063.9

Cases 9, 10, 11, 13, 14 and 15 have two loops, cases 12
and 16 have three loops.

DISCUSSION AND CONCLUSIONS

The timing results confirm that the dense mass matrix
formulation is faster than the O(N) formulation for
smaller degrees of freedom (DOF’s) and O(N) is faster
otherwise. In our cases for all rigid systems mass-matrix
take less CPU time than O(N) for both open-loop and
closed-loop systems because they have fewer DOFs.
Flexible body systems have more DOF and O(N) run
faster, except for the case 13 involving two loops and
fewer DOF than the other flex cases. Loops added large
amount of computation and more so for O(N). For
systems with loops the advantage of O(N) is reduced.
With more loops the reduction is more because it requires
solution of coupled linear constraint equations which can
have a large number of unknown constraint forces and
moments, and are solved in the usual manner that requires

ng’arithmetic operations, where n.is the number of
constrained degrees of freedom.

The high degree of match between the mass-matrix and
O(N) results is expected because the two methods solve
the same set of equations using many common codes.
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APPENDIX: DERIVATION OF O(N) EQUATIONS

System Description and Definitions

Figures A2: Constrained Motion Definitions

Consider the set of rigid and/or flexible bodies, in Figure

Al, with the associated labeling of forces and points.

Ry and R are frames attached to body n (B,) at its
I

inboard and outboard joints O, and O respectively.
I

Figure A2 shows the labeling for constrained systems.
Throughout this derivation it is assumed that all the
vectors and inertia matrices are either generated in or are
converted to a single reference frame, which is the
structural reference frame ®qof the base body of the
multibody system. The conversion is performed every
time the system states are updated.

Kinematics of Motion between Op and O

Letv,,d, represent the inertial velocity and acceleration
respectively, of O,, ®,represent the inertial angular



velocity of @, and n, represent the flexible variables of
the body B,. Kinematic equations relating position,
velocity and acceleration ofOpand Op, and angular
velocity and angular acceleration of frames ®,and
R4 are given by

T=Ps +¢aNp, Via=Vp +€°p ' +0aNp,

[ = a)p + ‘Vﬁflp

ﬁ:(Bp +yat, + a)p\Vﬁhn

e

QD)

A Zép —‘ﬁ]a)p +¢ﬁﬁp +c~0p(5p?n +2€)p¢ﬁﬁp
pp is the undeformed value of T,, the vector fromO, to

Oy; . Combining the last two equations we can write

Aj =& pAp +Satin + Ajr (1.1)

3 1 _ T ~
where, Az= {?”} A ﬁ—|: r”] Sh :P”}
O S0 1 Va

and Ag, =
nre { ®p WonTin

& denotes a shift operator corresponding to an offset
between two points identified by the subscripts. In this
case the offset ist;. The tilde (~) is the usual cross

product operator on a vector.

The joint n may have up to six DOFs allowing both

translation and rotation. The translation of O with
NT,

respect to Oy is given by y, =Z§i,n5i,n =G,8, where
i=1

ginare linearly independent unit vectors fixed in Op,

NT, <3is the number of translational degrees of

freedom of joint n and &;,are scalar quantities,

representing joint translations in the directions of the unit

vectors. The inertial acceleration of Oy, is:

d,=8;-y,0; +G,5, +a7 (1.2)

= ~ o~ ~ &
where, a7 =050;Y, +2®;G,3,

Inertial angular velocity of ®,, is given by
NR;, . )
—‘Dn"'zlln in = Of+L,0,

where Ii’n is the unit vector in the direction of the
rotation 6; yand NRis the number of rotational degrees
of freedom of the joint. L is a matrix whose columns are

the unit vectors ii’n and 0, is a column matrix containing

the rotations ©; , . Differentiating o, in the inertial frame

we get

o)n—(on+L 9 +are (1.3)
al® = 1,0,

Combining Equations (1.2) and (1.3),

Ay =8,3A5 +Pnin + Al (1.4)
a 5 3y

Ap=1:" L = onl A8

n {5%} Yn {en} n aae

1 -V, G, ©

i = and P, = 15

mn {0 1 } n { 0 L, (1.3)

Finally, combining Equations (1.1) and (1.4) we get

An =8, pAp +Snilp +Pain + AR (1.6)

where, using the relationship T, =T; + Y,

Fnp =Fniip Sn =535, An=8, AL +A]

Inter-Body and Joint Actuator Forces

LetF, be the spatial forces exerted by B, on Bjat
0, and 'Eﬁ be the spatial force exerted by Bjon Bat
Op . Then from equilibrium considerations,

2 T

Fa :_é}n'ﬁFn (2.1)
&n,nis given by Equation (1.5). Let pj,and vj,be
respectively, the i-th actuator force (i<3)and j-th actuator
torque (j<3)on body nat O, . They act in the directions

of the degrees of freedom §;, and ij’nof the joint.

Defining o, :{“”} as the array of actuator forces and
Vn

moments at joint n, it is straight forward to show that
On= Pr-wr Fn (2.2)
where P, is given by Equation (1.5).

Equations of Motion of Body n

A minor modification of equations of a flexible body in
Quiocho, et. al (Quiocho, 2010), produces the equations
of abody B, in rigid and flexible coordinates as

. T
Mir.nAn+Mee nln :zgi,nFe,i,n +Brn
i

Mg nAp +M +K

er,n ee,nqn ee,nqn+Deenqn

_ZS iintein

We shall write the equations of motlon of the body n after
separating the external spatial forcesF;,on B,as (i)

from the previous body acting at the inboard joint (F,),
(ii) from child bodies By acting at outboard joints ( IA:R_ ),
1

(iii) forces at constrained points (F ;) when there are

such points on the body, and (iv) external forces ( Foyt i n)

acting on the body. Because we chose the reference frame
of the body to be at the inboard joint, the shift function at
the inboard joint is an identity matrix and the shape/slope
function at the inboard joint is a null matrix. Equations for
body n are:



My nAn+Me niln =Fy +Z& ﬁA
chjFCJ*'Z("}l nFext,i,n + Brn
jeZg(n)
. T
Mer nAn +Mee ntin +Kee nln + Dee, nQn:ZS K; K

+ Zsc ]FCJ+ZSI nFext i, n""Ben
jeZ¢(n)

In the above equations F; j is the spatlal force at the
J-th constrained point, & jis the shift function for the
offset of the constrained point fromO,and S jis the

shape/slope function of body n at the constrained point.
Defining

Gr,n:zé}iLFext,i,n"'Br,n (3-1)
i

Ge,n :zsIn Fext,i,n + Be,n - Kee,nqn - Dee,nqn (3.2)
i

Using Equations (2.1) for IAZIA(_ and then Equations (3.1)
I

and (3.2) we get the equations of motion of the body n as
.. T
My nAn +Mpenln =Fy _ngi,ani

T 3.3
+ ch,i':c,j +Gy (33)
jeZ¢(n)
. T T
Mer nAn +Mee nln :—Zski Fki + ZSC,jFC,j""Ge,n
i jeze(n)
(3.4)

Here, Z_(n)is the set of indices for constrained points on
body n.

Recursive Solution of Equations of Motion

The dynamical equations of motion of the system are
solved recursively in steps as follows.

Step 1. Forward Pass Kinematics: In this step all position
and velocity states are generated starting with the base
body using equations derived in Kinematics section.

Step 2. Inward Pass Dynamics Equations:

Observing the equations of motion it is reasonable to
expect that for any n F,can be expressed as linear

functions of A, , and constraint forces on itself and on

bodies on outer branches:
Fo =DanAp+Dgnlp+dn+ X Denjfej 4.1)
jeYe(n)
Y. (n) is the set of indices of all constrained points on

body n and on all bodies of its outer branches.
We shall determine the coefficients in the above equations
recursively. In Euation (4.1) using k; in place of n and n

in place of p, and using the result in Equation (4.1) we get

n :QA,nAn +§n + Zéc,n,ch,j (4-2)

jeYc(n)

1 / v T
QA nMerns Mee n = Mge n + Zski Dq,ki

icz(n)
I\A/ler,n = Mg + ZS-I[i DA,ki
icz(n)
an ee n[Ge n— ZS-IEidki]
ieZ(n)
Qc nj = —Mee, nSk Dekj.j for iez(n), jeYc(kj)
Qc,n,j =-N ee,ns;:r,j for jeZg(n)

Z(n) is the set of indices of child bodies of B,,. In the
same manner, substituting for Fy; in Eq. (3.3) and
rearranging we get,

Mo oAy + Moty =Fy +G g+ D DeyiFe;  (4.3)

jeYe(n)
|v'rrn—Mrrn"" Z é}k nDAkI

ieZ(n)
Mre,n =Mpn+ Zf‘}ki,an,ki '
ieZ(n)
rn—Grn Z‘C’}ku dkl
ieZ(n)

Denj= éfk nDe.j foriez(n), je Yc(k;)
Dc,n,j:gc,j for JGZC(I"I)

Using Equation (4.2) for g, in Equation (4.3) we get

MioAn =Fy +Gro+ > DeniFe; (4.4)
ISA)

IVlrr,n = Mrr,n + I\/Ire,nQA,n ) Gr,n = Gr,n _mre,nan

I:)c,n,j = Bc,n,j _mre,ch,ki,j
Using Equation (1.6) for A,in Equation (4.4) and
rearranglng, we get
|Vlrr ndhn, pAQ + |Vlrr nSn,plp + |Vlrr nPn¥n
=F+Gy _Mrr,nAn,R + ch,n,ch,j
jeYe(n)
Pre-multiplying this equation by pT, using
o = PnTFn from Equation (2.2) and solving the resulting
equation for ¥, we get
0 =BanAp +Baly +by+ D B iR (4.5)
jeYe(n)
-1 pTy;
BA,n = _M P Mrr,né}n,pl

1
Bq,n __Myy nP Mrr nsnp:
T -
by =-M,, ann+P (Grn Mrr,nAn,R)Jv
1 TNy
Ben,j=—My nP DC nj» and My, o =Py My Py

Equation (4.5) for ¥, in Equation (1.6) yields for A,

A =WanAp+Wynlp +Wn+ D> Wen i (46)
jeYe(n)



Wa = pt PnBan 'Wq,n :Sn,p + Pan,n ,
W, = Pnbn +An,R , and chn’j = PnBc,n,j

Equation (4.6) for A, in Equation (4.2) gives

n =QanAp +Qqnlp +dn + ZQc,n,ch,j (4.7)
jeYe(n)

Qan=QanWan, Qq,n :Qan,n: an =Qa nWn +0n,
and Qcn,j =QanWen,j+Qcn,j

Finally, using Equation (4.6) in Equation (4.4) we get

Fy =DanAp+Dgnlp+dn+ > Denjfej (4.8)
jeYe(n)

DA,n = I\’)lrr,nVVA,n ’ Dq,n = I\’\/lrr,an,n

d, = I\A/I”'nwn —é,vn , and

I:)c,n,j = Mrr,an,n,j - Dc,n,j

We can see that Equation (4.8) is in the same form as
Equation (4.1) we started with, confirming that if the
latter is true for child bodies, it would be true for the
current body also. Following the same steps as above for
any outermost body for which F; =0it is easy to show

that Equation (5.1) is true for such bodies. Using the
induction logic it therefore follows that Equation (4.1) is
true for all bodies of the system.

Computations for systems with multiple branches need to
start from an outermost body, move inward till a body
with multiple child bodies is reached. Inward computation
from a body with multiple child bodies should continue
only after computations for all of its child bodies are
completed.

Agand Fy for the Base Body Bgin terms of the

constraint forces are obtained from Equation (4.4). When
By is fixed in inertial frame Ag = 0and we then have

Fo=-Gro+ 2.Dcojfe

jeYc(0)
When By is free in the inertial frame Fy =0 and
Ag=MoGro+ D I5«:,0.1":«:,]] (4.9
jeYc(0)

The flexible coordinate acceleration g for the base body

is obtained from Equation (4.2)

Go=Qap0Ao+Go+ > Qcnjfej (4.10)
jeYe(n)

For systems without closed loops the F; jterm drops out

and the equations obtained above are sufficient for

determining A, and §g, and then the system

accelerations, by successive computation of ¥, , ¢, and

A, in an outward sweep.

Step 3. Accelerations of Constrained Points in terms of
Forces at Constrained Points:

For the determination of acceleration of constrained
points in terms of forces at these points we seek to
express the accelerations A, and §,, for bodies in the path

from base body to the constrained points in the form
Ap=hp + > HoFej and Gy =hi+> HY R ;

(4.12)
Here the summation index j covers all constrained points.
It follows from Equations (4.9) and (4.11) that when the
base is free in inertial frame

A _ -1 A o1 A A LA LA
ho' =MiroGro. Hoj=MioDco . hg=Qaohd +do
and Hg = QC,O,j .

When the base is fixed, hg' =0, Hg;=0, h§ =8 and
Hg = Qc,O,j-

Using Equations (4.7) and (4.11) we get the recursive
equations for hiand H} ;-

hd = QA’nhé‘ +Qq.nhj +0, and
A

Hﬁyj =QanHpj +Qq,an,j +Qc,n,j

Using Equation (4.6) and (4.11) we get the recursive
equations for hﬁ‘ and Hﬁ,j :

hit =Wanhp +Wq nh +w, , and

q _ A q

Hn,j =WanHyp)j +Wq,an,j+Wc,n,j-

Let E;be the point in constraint i located on body n and
E; be the mating point of the same constraint, located on
body ¢ . The spatial acceleration of E; is

Ag; = 9;,nAn +Sg; nln +Ag; r (4.12)
where &, is the standard shift operator for the offset

fg, of Ejwith respect to O, SEi’n:BEi}is the
I

shape/slope function of By at E; and,
{E)n (63nFEi + 2¢EiQn)}

Ag = ~ .
ol OnYE;Un

For each constraint k (k = 1, 2, ...,N.) the constraint
forces F;and F; . at the two constrained points Ejy
and Ej. respectively are equal and opposite, i.e,
Fe k' = —F k- Using this and Equation (4.11) for A and
4, in Equation (4.12) we get,

A
Ag =8 qhy +SEi’nhﬂ +Ag  +

nC
D [, (Hik = Hiwe) +Sg o (H, = HI TR«
k=1

(4.13)
Similarly, spatial acceleration of E; is given by

AEi- :gEi.,nhl:A +SEiv,/jh? +AEM +

nC
Z[gei‘,a (HP —H2) +Se,. (HY, —H] IR«
ket



(4.14)
Step 4. Determination of Constraint Forces:

Using equations (4.13) and (4.14) the difference in the
accelerations at the constraint i may be written as

AAEi =AEi _AEi' :AhEi +ZAHEi,kFC,k (415)
k

Ahg =8 NP +Sg hi+Ag
A
_gEi,nhn _SEi,nh‘rq\ _AEi,r

AHE, k =8, ((HPx —HP) =8, o (HRk —HAk)
+Sg o (H) ) —HT ) =Sg n(Hy  —HY )

The summation range for k is all the constraints.

The linear and angular constraints at E; are

Oc,ij®(VE, —Vg;) =0 for 0<j<ny;

%C’i’j *(0g;, —0g)=0 for 0<j<ny;

where Vand o represent the inertial velocity and angular
velocity ot points corresponding to the subscripts,
gcijand fc;jare unit vectors in the direction of

translational and rotational constraints respectively, and
ngi(£3) and n,j(<3)are the number of these

constraints, respectively. Vg, , Vg, , og and og, are
determined in the manner used for the point Oy in the

Kinematics section,. Defining
Ve, —VE. Gei O
AVg, =| " “Fi | and Py =] o where
! O‘)Ei' _O)Ei ' 0 LC,i
Geils a 3xngiymatrix whose columns are the unit
vectors §c;jand Lcjisa 3xn.;matrix whose columns

are the unit vectors ?C’i'j, the difference in the spatial
velocities of the constrained points at constraint i may be
written as PCT,iAVEi . The difference in the spatial

acceleration in the constraint directions at the constraint
point should be zero, giving

PLAAE, +PLiAVE, =0
Using Baumgarte’s stabilization scheme to limit

constraint violation caused by numerical errors, this
equation is modified to

PLIAAE, +PliAVE, +KiPliAXE, +CiPiAVE, =0
Kjand Cjare positive constants to provide constraint
stabilization. Using Equation (4.15) for AAE, we have
T 5T 5T
Pei > AHE. kFok =—PciAhg, —PgiAVE,
k

: . (4.16)
—KiPe iAXE; —CiP jAVE,

Let us define f; ) jto be the constraint force in the
direction gcy jand t¢y jthe constraint torque in the

fc,k

direction %ckjand IA:ck :{
w ' Te,k

}. The force Fyat the

constraint point Ej due to forces and moments in the

constraint directions is then given by PclklA:C,k. Let

Gtk
Pr=| =
f,k |: 0 Lf’k

the unit vectors normal to the constraint directions for
translation and rotation and F; | be the array of forces and

}Where Gt kand Lgare made of

moments in these directions. Net spatial force at Ey is
Feok = PeiFe + PrcFr i (4.17)
Restricting to cases where IA:f,kis fully known, we use
Fek = Pc,klA:C’k + Pf’kf:f’k in Equation (4.17) to get

N .
Pei > AHE, 1P kFok = Zei (4.18)
k

Z.; =—P¢; [z AHg, 1Ptk 'Ef,k +Ahg, ]
k (4.19)
~PJiAVe K PJiAXg —CiPiAVE
Stacking Equation (4.18) for all constraints we get
MF, = Z, (4.20)
where the [i, k] submatrix of matrix M is given by
Mg,k = PeiAH E; .kPe.k
and Z.is made of arrays Z ; given by Equation (4.19).

Equation (4.20) is solved for IA:C and the spatial forces
Fe k at constraint points are found using Equation (4.17).

Step 5. Computation of System Accelerations:

After determination of forces at the constrained
points, Agand gare determined using Equations (4.9)
and (4.10). ¥, Gy, and A, are determined recursively in

a forward pass using Equations (4.5), (4.7) and (1.6)
respectively.






