
DEVELOPMENT AND EVALUATION OF AN ORDER-N FORMULATION FOR
MULTI-FLEXIBLE BODY SPACE SYSTEMS

Tushar K. Ghosh
L-3 Communications, STRATIS
1002, Gemini Avenue, Suite 200

Houston, TX 77058, USA
E-mail: tushar.ghosh@l-3com.com

Leslie J. Quiocho
Mail Code ER7

NASA Lyndon B. Johnson Space Center
2101 NASA Parkway

 Houston, TX, 77058, USA
E-mail: leslie.j.quiocho@nasa.gov

KEYWORDS

Multibody dynamics, Rigid and flexible bodies, Tree
topology, Constraints, Closed loops, Order-N.

ABSTRACT

This paper presents development of a generic recursive
Order-N algorithm for systems with rigid and flexible
bodies, in tree or closed-loop topology, with N being the
number of bodies of the system. Simulation results are
presented for several test cases to verify and evaluate the
performance of the code compared to an existing efficient
dense mass matrix-based code. The comparison brought
out situations where Order-N or mass matrix-based
algorithms could be useful.

INTRODUCTION

The Software, Robotics and Simulation Division (SRSD)
of NASA Lyndon B. Johnson Space Center provides math
modeling and simulation in support of engineering
analyses and crew training activities for the center. The
division currently has an efficient generic multibody
dynamics code based on a dense mass-matrix formulation,
which is used for simulating systems involving on-orbit
robotic manipulators such as the Canadian Space Agency-
built Space Station Manipulator System (SSRMS). It is
generally known that Order-N (O(N)) algorithms, which
involve arithmetic operation counts of the order N, where
N is the number of bodies, perform more efficiently for
systems with large degrees of freedom, compared to mass
matrix-based with operations of order N3. It was therefore
decided to develop an O(N) simulation for SRSD to
investigate applications where they may perform better.
This development was performed in-house to allow
maximum flexibility and control in different simulations.

ALGORITHM DEVELOPMENT

There are several methods in the literature that may be
used for developing an O(N) algorithm. References may
be found in (Banerjee, 2003). The formulation presented
here is based on algebraically putting together the
following steps: (1) kinematic equations relating motions
between consecutive joints, (2) equations of motion of a
single body, rigid or flexible, (3) equations relating the
total spatial force and active forces and moments at the
joint and (4) constraint conditions.

Derivation of the Order-N algorithm is presented in the
Appendix. The effect of motion-induced stiffness
(Banerjee, 1993) in flexible bodies of the system has not
been incorporated yet. Inter-body forces may cause this
effect to be important in some cases even for slow
motions typical of space systems.

CODE VERIFICATION

The Order-N code was verified against the existing mass
matrix-based code for several test cases, which itself was
verified against other simulations in the industry,
including TREETOPS (Singh et. al.,1985).The mass-
matrix algorithm has been in use for many facilities at the
Johnson Space Center for many years. Results from the
two implementations matched with high accuracy (i.e.,
within 1.0e-10 or better).

SIMULATION TEST CASES

The test cases are based on variations of the system
shown in Figure 1. The base plate 0B is a rigid circular

plate floating in inertial space.

Leg1 (B1 to B7)
Leg 2
(B9 to B16)

Leg 3
(B17 to B24)

Base Plate, B0

Top Plate, B25

B1

B6

B9

B16

B17

Pitch

Pitch

Yaw
Roll

B2

B3

B4

B5

Legs 1 2 and 3 have identical mass properties
Manipulators 1 and 2 have identical mass properties

B7

B8

Pitch

Roll

Yaw
Pitch

Pitch

Pitch

Yaw

Roll

Manipulator 1
(B26-B33) Manipulator 2

(B34 to B41)

Test Object, B42

Roll

Yaw

Figures 1: Test Model Description

Three identical articulating legs and two identical
manipulator arms are rigidly attached to the top plate.
The other ends of the legs are rigidly connected to the
base plate and the other ends of the manipulators hold a
test object rigidly. All links are modeled as cylindrical
rods. All joints of the legs and manipulators are single
axis rotational joints. Two configurations of the legs and
manipulators are considered, one with six joints the other
with seven. The axes of the seven jointed manipulators
and legs are in the order roll, yaw, pitch, pitch, pitch, yaw

and roll. The axes for ones with six joints are in the order
roll, yaw, pitch, pitch, yaw and roll. In several
configurations the boom elements of the legs have been
split into two parts of equal length and joined rigidly, for
adding additional bodies and flex degrees of freedom to
the system. Only the boom elements are modeled as
flexible. Each flexible rod has four bending modes (two in
each of the bending planes). The system was driven by
forces and moments on the top plate and the test object,
and moments on joints of the first leg. The forces and
moments were held constant for every 20 seconds and
then switched in sign. Table 1 shows the configurations.
Open loop cases are obtained by freeing the joints
between legs 2, 3 and top plate and between manipulator
2 and the test object. For closed loop simulations
constraint forces were determined at these same points.

Table 1: System Test Case Configurations

 RESULTS

Figures 2: Displacements of Top Plate and Test Object

Plots of representative data are shown in Figures 2 and 3.
Figure 2 shows a co-plot of displacements of the center
of the top plate, and the joint between manipulator 1 and
the test object obtained from O(N) and mass matrix
simulations for Case 16. The two results match to within
1.0e-10. Figure 3 is a co-plot of angular acceleration of
the bottom pitch joint of leg 2 for Cases 12 and 16 (rigid
and flex respectively) for O(N). Distances are shown in
meters, while angles are shown in radians.

Figures 3: Leg 2 Bottom Pitch Joint Angular Acceleration

Performance of the O(N) code is measured by the CPU
time for a 100 second simulation and comparing it with
the existing code. The results of the comparison are listed
below for rigid and flexible models separately for both
open-loop and closed-loop scenarios. Rigid cases were
run with 0.001 second and flexible cases were run with
0.0001 second integration time step. An Euler-Cromer
integration scheme was used.

Table 2: Timing Results

C
as

e
N

um
be

r

R
ig

id
 (

R
)

or
 F

le
x

(F
)

S
im

ul
at

io
n

C
on

fi
gu

ra
ti

on
 (

T
ab

le
 1

)

O
pe

n
(O

)
or

 C
lo

se
d(

C
)

lo
op

Degrees of
Freedom

CPU Time
 (sec)

R
ig

id

F
le

x

T
ot

al

O
rd

er
-N

M
as

s
M

at
ri

x

1 R 1 O 24 0 24 10.1 6.7
2 R 2 O 24 0 24 12.4 7.9
3 R 3 O 27 0 27 15.0 10.1
4 R 4 O 42 0 42 22.3 18.6

Sy
st

em
 C

on
fi

gu
ra

ti
on

 Legs

 M
an

ip
ul

at
or

s

T
ot

al
 N

um
be

r
of

 B
od

ie
s

N
um

be
r

of

B
od

ie
s

N
um

be
r

of

Jo
in

ts

B
oo

m

C
on

st
ru

ct
io

n

N
um

be
r

of

 b
od

ie
s

N
um

be
r

of

 J
oi

nt
s

1 6 6 One rod 0 0 20
2 8 6 Two rods 0 0 26
3 10 7 Two rods 0 0 32
4 10 7 Two rods 8 7 49

5 F 1 O 24 24 48 166.8 174.0
6 F 2 O 24 48 72 277.9 423.6
7 F 3 O 27 48 75 275.9 478.0
8 F 4 O 42 80 112 408.6 1127.9
9 R 1 C 24 0 24 40.7 17.1
10 R 2 C 24 0 24 48.0 18.4
11 R 3 C 27 0 27 59.4 22.7
12 R 4 C 42 0 42 133.8 57.4
13 F 1 C 24 24 48 613.4 567.6
14 F 2 C 24 48 72 937.2 1402.0
15 F 3 C 27 48 75 1037.9 1551.2
16 F 4 C 42 80 112 2257.3 4063.9

Cases 9, 10, 11, 13, 14 and 15 have two loops, cases 12
and 16 have three loops.

DISCUSSION AND CONCLUSIONS

The timing results confirm that the dense mass matrix
formulation is faster than the O(N) formulation for
smaller degrees of freedom (DOF’s) and O(N) is faster
otherwise. In our cases for all rigid systems mass-matrix
take less CPU time than O(N) for both open-loop and
closed-loop systems because they have fewer DOFs.
Flexible body systems have more DOF and O(N) run
faster, except for the case 13 involving two loops and
fewer DOF than the other flex cases. Loops added large
amount of computation and more so for O(N). For
systems with loops the advantage of O(N) is reduced.
With more loops the reduction is more because it requires
solution of coupled linear constraint equations which can
have a large number of unknown constraint forces and
moments, and are solved in the usual manner that requires

3
cn arithmetic operations, where cn is the number of

constrained degrees of freedom.

The high degree of match between the mass-matrix and
O(N) results is expected because the two methods solve
the same set of equations using many common codes.

ACKNOWLEDGMENT

The authors acknowledge the support provided by An
Huynh and Thomas Brain of METECS Corporation,
Houston Texas, USA in coding the simulation, and to
Arun Banerjee, formerly of Lockheed Martin Palo Alto
Research Laboratory, California, USA for review of the
manuscript.

REFERENCES

Banerjee, A. K, “Block-Diagonal Equations for
 Multibody Elastodynamics with Geometric
 Stiffness and Constraints”, Journal of Guidance,
 Control and Dynamics, Vol. 16, No. 6, 1993.
Banerjee, A. K., “Contributions of Multibody
 Dynamics to Space Flight: A Brief Review”,
 Journal of Guidance, Control and Dynamics, Vol.
 26, No. 3, 2003.
 Quicho, L,J.; 2010, T. Ghosh, D. frenkel, A. Huynh,

 “Mode Selection Techniques in Variable Mass
 Flexible Modeling”, In AIAA Meeting Papers
 AIAA Modeling and Simulation Technologies
 Conference, Aug 2010, Toronto, Canada, AIAA-
 2010-7606.
Singh, R.P., van der Voort, R.J., and Likins, P.W.,
 “Dynamics of Flexible Bodies in Tree Topology-A
 Computer Oriented Approach”, Journal of
 Guidance, Control and Dynamics, Vol.26, No. 3,
 1985.

APPENDIX: DERIVATION OF O(N) EQUATIONS

System Description and Definitions

 Figures A1: Multibody System Definitions

 Figures A2: Constrained Motion Definitions

Consider the set of rigid and/or flexible bodies, in Figure
A1, with the associated labeling of forces and points.

nR and
ik̂

R are frames attached to body n (nB) at its

inboard and outboard joints nO and
ik̂

O respectively.

Figure A2 shows the labeling for constrained systems.
Throughout this derivation it is assumed that all the
vectors and inertia matrices are either generated in or are
converted to a single reference frame, which is the
structural reference frame 0R of the base body of the

multibody system. The conversion is performed every
time the system states are updated.

Kinematics of Motion between pO and nO

Let nv


, na


 represent the inertial velocity and acceleration

respectively, of nO , n


represent the inertial angular

velocity of nR and p represent the flexible variables of

the body pB . Kinematic equations relating position,

velocity and acceleration of pO and n̂O , and angular

velocity and angular acceleration of frames pR and

n̂R are given by

pn̂n̂n̂r 


, pn̂nppn̂ r~vv 


,

pn̂pn̂  


nn̂pnn̂pn̂
~  

pn̂pnpppn̂pnpn̂
~2r~~r~aa  




p


 is the undeformed value of pr


, the vector from pO to

n̂O . Combining the last two equations we can write

r,n̂nn̂pp,n̂n̂ ASAA  F (1.1)

where,










n̂

n̂
n̂

a
A 



, 






 


10

r~1 n̂
n̂,nF , 












n̂

n̂
nS

 and












nn,Op

pn̂pn̂pp
r,n̂ ~

~2r~~
A






.

F denotes a shift operator corresponding to an offset
between two points identified by the subscripts. In this
case the offset is n̂r


. The tilde (~) is the usual cross

product operator on a vector.

The joint n may have up to six DOFs allowing both
translation and rotation. The translation of nO with

respect to n̂O is given by nn

NT

1i
n,in,in Gĝy

n





 where

n,iĝ are linearly independent unit vectors fixed in n̂O ,

3NTn  is the number of translational degrees of

freedom of joint n and n,i are scalar quantities,

representing joint translations in the directions of the unit
vectors. The inertial acceleration of nO is:

ry
nnnn̂nn̂n aGy~aa


 (1.2)

where, nnn̂nn̂n̂
ry
n G~2y~~a  

Inertial angular velocity of nR is given by

 



nNR

1i
n,in,in̂n l̂ 

= nnn̂ L  

where n,il̂ is the unit vector in the direction of the

rotation n,i and nNR is the number of rotational degrees

of freedom of the joint. nL is a matrix whose columns are

the unit vectors n,il̂ and n is a column matrix containing

the rotations n,i . Differentiating n


in the inertial frame

we get
 r

nnnn̂n L
 (1.3)

 nn
r
n L   

Combining Equations (1.2) and (1.3),

rj
nnnn̂n̂,nn APAA  F (1.4)











n

n
n

a
A 



,












n

n
n 


 ,














 r

n

ry
nrj

n
a

A 










 


10

y~1 n
n̂,nF and 










n

n
n L0

0G
P (1.5)

Finally, combining Equations (1.1) and (1.4) we get

r
nnnpnpp,nn APSAA  F (1.6)

where, using the relationship nn̂n yrr


 ,

p,n̂n̂,np,n FFF  , n̂n̂,nn SS F , rj
n

r
n̂n̂,n

r
n AAA F

Inter-Body and Joint Actuator Forces

Let nF be the spatial forces exerted by pB on nB at

nO and n̂F̂ be the spatial force exerted by nB on pB at

n̂O . Then from equilibrium considerations,

 n
T

n̂,nn̂ FF̂ F (2.1)

n̂n,F is given by Equation (1.5). Let n,i and n,j be

respectively, the i-th actuator force)3i( and j-th actuator

torque)3j( on body n at nO . They act in the directions

of the degrees of freedom n,iĝ and n,jl̂ of the joint.

Defining 











n

n
n as the array of actuator forces and

moments at joint n, it is straight forward to show that

 n
T
nn FP (2.2)

where nP is given by Equation (1.5).

Equations of Motion of Body n

A minor modification of equations of a flexible body in
Quiocho, et. al (Quiocho, 2010), produces the equations
of a body nB in rigid and flexible coordinates as

 n,r
i

n,i,e
T
n,inn,renn,rr BFqMAM  F

 



i
n,en,i,e

T
n,i

nn,eenn,eenn,eenn,er

BFS

qDqKqMAM 

We shall write the equations of motion of the body n after
separating the external spatial forces n,i,eF on nB as (i)

from the previous body acting at the inboard joint (nF),

(ii) from child bodies
ikB acting at outboard joints (

ik̂
F̂),

(iii) forces at constrained points (j,cF) when there are

such points on the body, and (iv) external forces (n,i,extF)

acting on the body. Because we chose the reference frame
of the body to be at the inboard joint, the shift function at
the inboard joint is an identity matrix and the shape/slope
function at the inboard joint is a null matrix. Equations for
body n are:

n,r
i

n,i,ext
T
n,ij,c

)n(Zj

T
j,c

i
k̂

T
n,k̂nnn,renn,rr

BFF

F̂FqMAM

c

ii









FF

F








 i
n,en,i,ext

T
n,i

)n(Zj
j,c

T
j,c

i
k̂

T
k̂nn,eenn,eenn,eenn,er

BFSFS

F̂SqDqKqMAM

c

ii


In the above equations j,cF is the spatial force at the

j-th constrained point, j,cF is the shift function for the

offset of the constrained point from nO and j,cS is the

shape/slope function of body n at the constrained point.
Defining

n,i,ext
i

T
n,in,r FG  F + n,rB (3.1)

nn,eenn,een,en,i,ext
i

T
n,in,e qDqKBFSG  (3.2)

Using Equations (2.1) for
ik̂

F̂ and then Equations (3.1)

and (3.2) we get the equations of motion of the body n as

n,r
)n(Zj

j,c
T

j,c
i

k
T

n,knnn,renn,rr

GF

FFqMAM

c

ii









F

F

 (3.3)

n,e
)n(Zj

j,c
T

j,c
i

k
T
knn,eenn,er GFSFSqMAM

c
ii

 




 (3.4)
Here,)n(Zc is the set of indices for constrained points on

body n.

Recursive Solution of Equations of Motion

The dynamical equations of motion of the system are
solved recursively in steps as follows.

Step 1. Forward Pass Kinematics: In this step all position
and velocity states are generated starting with the base
body using equations derived in Kinematics section.

Step 2. Inward Pass Dynamics Equations:

Observing the equations of motion it is reasonable to
expect that for any n nF can be expressed as linear

functions of pA , pq and constraint forces on itself and on

bodies on outer branches:
 j,c

)n(Yj
j,n,cnpn,qpn,An FDdqDADF

c




  (4.1)

)n(Yc is the set of indices of all constrained points on

body n and on all bodies of its outer branches.
We shall determine the coefficients in the above equations
recursively. In Euation (4.1) using ik in place of n and n

in place of p, and using the result in Equation (4.1) we get





)n(Yj

j,cj,n,cnnn,An

c

FQ̂q̂AQ̂q (4.2)

n,er
1

n,een,A M̂M̂Q̂  , 



)n(Zi

k,q
T
kn,een,ee ii

DSMM̂





)n(Zi

k,A
T
kn,ern,er ii

DSMM̂




 
)n(Zi

k
T
kn,e

1
n,een]dSG[Mq̂

ii

j,k,c
T
kn,eej,n,c ii

DSM̂Q̂  for)k(Yj),n(Zi ic

T
j,cn,eej,n,c SM̂Q̂  for)n(Zj c

)n(Z is the set of indices of child bodies of nB . In the

same manner, substituting for
ikF in Eq. (3.3) and

rearranging we get,





)n(Yj

j,cj,n,cn,rnnn,renn,rr

c

FDGFqMAM  (4.3)

ii k,A
)n(Zi

T
n,kn,rrn,rr DMM 


 F ,

ii k,q
)n(Zi

T
n,kn,ren,re DMM 


 F ,

ii k
)n(Zi

T
n,kn,rn,r dGG 


 F `

j,k,c
T

n,kj,n,c ii
DD F for)k(Yj),n(Zi ic

T
j,cj,n,cD F for)n(Zj c

Using Equation (4.2) for nq in Equation (4.3) we get





)n(Yj

j,cj,n,cn,rnnn,rr

c

FD̂ĜFAM̂ (4.4)

n,An,ren,rrn,rr Q̂MMM̂  , nn,ren,rn,r q̂MGĜ 

j,k,cn,rej,n,cj,n,c i
Q̂MDD̂ 

Using Equation (1.6) for nA in Equation (4.4) and

rearranging, we get







)n(Yj
j,cj,n,cR,nn,rrn,rn

nnn,rrpp,nn,rrpp,nn,rr

c

FD̂AM̂ĜF

PM̂qSM̂AM̂ F

Pre-multiplying this equation by T
nP , using

n
T
nn FP from Equation (2.2) and solving the resulting

equation for n we get

j,c
)n(Yj

j,n,cnpn,qpn,An FBbqBAB
c




  (4.5)

p,nn,rr
T
n

1
n,n,A M̂PMB F

 ,

p,nn,rr
T
n

1
n,n,q SM̂PMB 

 ,

 )AM̂Ĝ(PMb R,nn,rrn,r
T
nn

1
n,n  

 ,

 j,n,c
T
n

1
n,j,n,c D̂PMB 

 , and nn,rr
T
nn, PM̂PM 

Equation (4.5) for n in Equation (1.6) yields for nA

j,c
)n(Yj

j,n,cnpn,qpn,An FWwqWAWA
c




  (4.6)

n,Anp,nn,A BPW  F , n,qnp,nn,q BPSW  ,

R,nnnn AbPw  , and j,n,cnj,n,c BPW 

Equation (4.6) for nA in Equation (4.2) gives

j,c
)n(Yj

j,n,cnpn,qpn,An FQqqQAQq
c




  (4.7)

n,An,An,A WQ̂Q  , n,qnn,q WQ̂Q  , nnn,An q̂wQ̂q̂  ,

and j,n,cj,n,cn,Aj,n,c Q̂WQ̂Q 

Finally, using Equation (4.6) in Equation (4.4) we get

j,c
)n(Yj

j,n,cnpn,qpn,An FDdqDADF
c




  (4.8)

n,An,rrn,A WM̂D  , n,qn,rrn,q WM̂D 

n,rnn,rrn ĜwM̂d  , and

j,n,cj,n,cn,rrj,n,c D̂WM̂D 

We can see that Equation (4.8) is in the same form as
Equation (4.1) we started with, confirming that if the
latter is true for child bodies, it would be true for the
current body also. Following the same steps as above for
any outermost body for which 0F

ik̂
 it is easy to show

that Equation (5.1) is true for such bodies. Using the
induction logic it therefore follows that Equation (4.1) is
true for all bodies of the system.

Computations for systems with multiple branches need to
start from an outermost body, move inward till a body
with multiple child bodies is reached. Inward computation
from a body with multiple child bodies should continue
only after computations for all of its child bodies are
completed.

0A and 0F for the Base Body 0B in terms of the

constraint forces are obtained from Equation (4.4). When

0B is fixed in inertial frame 0A0  and we then have





)0(Yj

j,cj.0,c0,r0

c

FD̂ĜF

When 0B is free in the inertial frame 0F0  and




 
)0(Yj

j,cj.0,c0,r
1
0,rr0

c

]FD̂Ĝ[M̂A (4.9)

The flexible coordinate acceleration 0q for the base body

is obtained from Equation (4.2)

j,c
)n(Yj

j,n,c000,A0 FQ̂q̂AQ̂q

c




 (4.10)

For systems without closed loops the j,cF term drops out

and the equations obtained above are sufficient for
determining 0A and 0q , and then the system

accelerations, by successive computation of n , nq and

nA in an outward sweep.

Step 3. Accelerations of Constrained Points in terms of
Forces at Constrained Points:

For the determination of acceleration of constrained
points in terms of forces at these points we seek to
express the accelerations nA and nq for bodies in the path

from base body to the constrained points in the form

 j,c
A

j,n
A
nn FHhA  and j,c

q
j,n

q
nn FHhq 

 (4.11)
Here the summation index j covers all constrained points.
It follows from Equations (4.9) and (4.11) that when the
base is free in inertial frame

0,r
1
0,rr

A
0 ĜM̂h  , j,0,c

1
0,rr

A
j,0 D̂M̂H  , 0

A
00,A

q
0 q̂hQ̂h 

and j,0,c
q
0 Q̂H  .

When the base is fixed, 0hA
0  , 0HA

j,0  , 0
q
0 q̂h  and

j,0,c
q
0 Q̂H  .

Using Equations (4.7) and (4.11) we get the recursive

equations for q
nh and q

j,nH :

n
q
pn,q

A
pn,A

q
n qhQhQh  and

j,n,c
q

j,pn,q
A

j,pn,A
q

j,n QHQHQH 

Using Equation (4.6) and (4.11) we get the recursive

equations for A
nh and A

j,nH :

n
q
pn,q

A
pn,A

A
n whWhWh  , and

 j,n,c
q

j,pn,q
A

j,pn,A
q

j,n WHWHWH  .

Let iE be the point in constraint i located on body n and

'iE be the mating point of the same constraint, located on

body  . The spatial acceleration of iE is

 r,Enn,Enn,EE iiii
AqSAA  F (4.12)

where n,Ei
F is the standard shift operator for the offset

iEr


of iE with respect to nO 











i

i
i

E

E
n,ES is the

shape/slope function of nB at iE and,














nEn

nEEnn
r,E q~

)q2r~(~
A

i

ii
i 




.

For each constraint k (k = 1, 2, …, cn) the constraint

forces k,cF and 'k,cF at the two constrained points kE

and 'kE respectively are equal and opposite, i.e,

k,c'k,c FF  . Using this and Equation (4.11) for nA and

nq in Equation (4.12) we get,

k,c
q

'k,n
q

k,nn,E
A

'k,n

n

1k

A
k,nn,E

r,E
q
nn,E

A
nn,EE

F)]HH(S)HH([

AhShA

i

c

i

iiii








F

F

 (4.13)

Similarly, spatial acceleration of 'iE is given by

k,c
q

'k,
q

k,,E
A

'k,

n

1k

A
k,,E

r,E
q

,E
A

n,EE

F)]HH(S)HH([

AhShA

'i

c

'i

'i'i'i'i












F

F

 (4.14)

Step 4. Determination of Constraint Forces:

Using equations (4.13) and (4.14) the difference in the
accelerations at the constraint i may be written as

k,c
k

k,EEEEE FHhAAA
ii'iii  (4.15)

r,E
q
nn,E

A
nn,E

r,E
q

,E
A

,EE

iii

'i'i'ii

AhSh

AhShh





F

F 

)HH(S)HH(S
)HH()HH(H

q
'k,n

q
k,nn,E

q
'k,

q
k,,E

A
'k,n

A
k,nn,E

A
'k,

A
k,,Ek,E

i'i

i'ii






 FF

The summation range for k is all the constraints.

The linear and angular constraints at iE are

 0)vv(ĝ
i'i EEj,i,c 


 for i,tnj0 

0)(ˆ
i'i EEj,i,c 


 for i,rnj0 

where v


and 


 represent the inertial velocity and angular
velocity of points corresponding to the subscripts,

j,i,cĝ and j,i,c̂ are unit vectors in the direction of

translational and rotational constraints respectively, and
)3(n i,t  and)3(n i,r  are the number of these

constraints, respectively.
iEv


,

'iEv


,
iE


and

iE


 are

determined in the manner used for the point n̂O in the

Kinematics section,. Defining

 












i'i

i'i
i

EE

EE
E

vv
V 



 and 









i,c

i,c
i,c L0

0G
P where

i,cG is a i,tn3 matrix whose columns are the unit

vectors j,i,cĝ and i,cL is a i,rn3 matrix whose columns

are the unit vectors j,i,c̂ , the difference in the spatial

velocities of the constrained points at constraint i may be

written as
iE

T
i,c VP  . The difference in the spatial

acceleration in the constraint directions at the constraint
point should be zero, giving

 0VPAP
ii E

T
i,cE

T
i,c  

Using Baumgarte’s stabilization scheme to limit
constraint violation caused by numerical errors, this
equation is modified to

0VPCXPKVPAP
iiii E

T
i,ciE

T
i,ciE

T
i,cE

T
i,c  

iK and iC are positive constants to provide constraint

stabilization. Using Equation (4.15) for
iEA we have

ii

iii

E
T

i,ciE
T

i,ci

E
T

i,cE
T

i,c
k

k,ck,E
T

i,c

VPCXPK

VPhPFHP



 
 (4.16)

Let us define j,k,cf to be the constraint force in the

direction j,k,cĝ and j,k,c the constraint torque in the

direction j,k,c̂ and 










k,c

k,c
k,c

f
F̂ . The force k,cF at the

constraint point kE due to forces and moments in the

constraint directions is then given by k,ck,c F̂P . Let











k,f

k,f
k,f L0

0G
P where k,fG and k,fL are made of

the unit vectors normal to the constraint directions for

translation and rotation and k,fF̂ be the array of forces and

moments in these directions. Net spatial force at kE is

 k,fk,fk,ck,ck,c F̂PF̂PF  (4.17)

Restricting to cases where k,fF̂ is fully known, we use

k,fk,fk,ck,ck,c F̂PF̂PF  in Equation (4.17) to get

i,c
k

k,ck,ck,E
T

i,c ZF̂PHP
i

 (4.18)

iii

ii

E
T

i,ciE
T

i,ciE
T

i,c

E
k

k,fk,fk,E
T

i,ci,c

VPCXPKVP

]hF̂PH[PZ



 


 (4.19)

Stacking Equation (4.18) for all constraints we get

 ccc ZF̂M  (4.20)

where the]k,i[submatrix of matrix cM is given by

 k,ck,E
T

i,ck,i,c PHPM
i



and cZ is made of arrays i,cZ given by Equation (4.19).

Equation (4.20) is solved for cF̂ and the spatial forces

k,cF at constraint points are found using Equation (4.17).

Step 5. Computation of System Accelerations:

After determination of forces at the constrained
points, 0A and 0 are determined using Equations (4.9)

and (4.10). n , nq , and nA are determined recursively in

a forward pass using Equations (4.5), (4.7) and (1.6)
respectively.

