
DEVELOPMENT AND EVALUATION OF AN ORDER-N FORMULATION FOR 
MULTI-FLEXIBLE BODY SPACE SYSTEMS

 

Tushar K. Ghosh 
L-3 Communications, STRATIS 
1002, Gemini Avenue, Suite 200 

Houston, TX 77058, USA 
E-mail: tushar.ghosh@l-3com.com 

 

 
Leslie J. Quiocho 
Mail Code ER7 

NASA Lyndon B. Johnson Space Center 
2101 NASA Parkway 

 Houston, TX, 77058, USA 
E-mail: leslie.j.quiocho@nasa.gov 

 

KEYWORDS 

Multibody dynamics, Rigid and flexible bodies, Tree 
topology, Constraints, Closed loops, Order-N. 
 
ABSTRACT 
 
This paper presents development of a generic recursive 
Order-N algorithm for systems with rigid and flexible 
bodies, in tree or closed-loop topology, with N being the 
number of bodies of the system. Simulation results are 
presented for several test cases to verify and evaluate the 
performance of the code compared to an existing efficient 
dense mass matrix-based code. The comparison brought 
out situations where Order-N or mass matrix-based 
algorithms could be useful. 
 
INTRODUCTION 
 
The Software, Robotics and Simulation Division (SRSD) 
of NASA Lyndon B. Johnson Space Center provides math 
modeling and simulation in support of engineering 
analyses and crew training activities for the center. The 
division currently has an efficient generic multibody 
dynamics code based on a dense mass-matrix formulation, 
which is used for simulating systems involving on-orbit 
robotic manipulators such as the Canadian Space Agency-
built Space Station Manipulator System (SSRMS). It is 
generally known that Order-N (O(N)) algorithms, which 
involve arithmetic operation counts of the order N, where 
N is the number of bodies, perform more efficiently for 
systems with large degrees of freedom, compared to mass 
matrix-based with operations of order N3. It was therefore 
decided to develop an O(N) simulation for SRSD to 
investigate applications where they may perform better. 
This development was performed in-house to allow 
maximum flexibility and control in different simulations. 
 
ALGORITHM DEVELOPMENT 
 
There are several methods in the literature that may be 
used for developing an O(N) algorithm. References may 
be found in (Banerjee, 2003). The formulation presented 
here is based on algebraically putting together the 
following steps: (1) kinematic equations relating motions 
between consecutive joints, (2) equations of motion of a 
single body, rigid or flexible, (3) equations relating the 
total spatial force and active forces and moments at the 
joint and (4) constraint conditions. 
 
 

 
Derivation of the Order-N algorithm is presented in the 
Appendix. The effect of motion-induced stiffness 
(Banerjee, 1993) in flexible bodies of the system has not 
been incorporated yet. Inter-body forces may cause this 
effect to be important in some cases even for slow 
motions typical of space systems.  
 
CODE VERIFICATION 
 
The Order-N code was verified against the existing mass 
matrix-based code for several test cases, which itself was 
verified against other simulations in the industry, 
including TREETOPS (Singh et. al.,1985).The mass-
matrix algorithm has been in use for many facilities at the 
Johnson Space Center for many years. Results from the 
two implementations matched with high accuracy (i.e., 
within 1.0e-10 or better).  
 
SIMULATION TEST CASES 
 
The test cases are based on variations of the system 
shown in Figure 1. The base plate 0B  is a rigid circular 

plate floating in inertial space.  
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Figures 1: Test Model Description 
 

Three identical articulating legs and two identical 
manipulator arms are rigidly attached to the top plate.  
The other ends of the legs are rigidly connected to the 
base plate and the other ends of the manipulators hold a 
test object rigidly. All links are modeled as cylindrical 
rods. All joints of the legs and manipulators are single 
axis rotational joints. Two configurations of the legs and 
manipulators are considered, one with six joints the other 
with seven. The axes of the seven jointed manipulators 
and legs are in the order roll, yaw, pitch, pitch, pitch, yaw 



and roll. The axes for ones with six joints are in the order 
roll, yaw, pitch, pitch, yaw and roll. In several 
configurations the boom elements of the legs have been 
split into two parts of equal length and joined rigidly, for 
adding additional bodies and flex degrees of freedom to 
the system. Only the boom elements are modeled as 
flexible. Each flexible rod has four bending modes (two in 
each of the bending planes). The system was driven by 
forces and moments on the top plate and the test object, 
and moments on joints of the first leg. The forces and 
moments were held constant for every 20 seconds and 
then switched in sign.  Table 1 shows the configurations. 
Open loop cases are obtained by freeing the joints 
between legs 2, 3 and top plate and between manipulator 
2 and the test object. For closed loop simulations 
constraint forces were determined at these same points. 
 
Table 1:  System Test Case Configurations 

 
 
 RESULTS 
 

  
 
Figures 2: Displacements of Top Plate and Test Object 

Plots of representative data are shown in Figures 2 and 3. 
Figure 2 shows a co-plot of displacements of the center 
of  the top plate, and the joint between manipulator 1 and 
the test object obtained from O(N) and mass matrix 
simulations for Case 16. The two results match to within 
1.0e-10. Figure 3 is a co-plot of angular acceleration of 
the bottom pitch joint of leg 2 for Cases 12 and 16 (rigid 
and flex respectively) for O(N). Distances are shown in 
meters, while angles are shown in radians. 
 

  
 
Figures 3: Leg 2 Bottom Pitch Joint Angular Acceleration 
 
Performance of the O(N) code is measured by the CPU 
time for a 100 second simulation and comparing it with 
the existing code. The results of the comparison are listed 
below for rigid and flexible models separately for both 
open-loop and closed-loop scenarios. Rigid cases were 
run with 0.001 second and flexible cases were run with 
0.0001 second integration time step. An Euler-Cromer 
integration scheme was used. 
 
Table 2:  Timing Results 
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5 F 1 O 24 24 48   166.8 174.0 
6 F 2 O 24 48 72   277.9 423.6
7 F 3 O 27 48 75   275.9 478.0
8 F 4 O 42 80 112   408.6 1127.9 
9 R 1 C 24 0 24   40.7 17.1 
10 R 2 C 24 0 24   48.0 18.4 
11 R 3 C 27 0 27   59.4 22.7 
12 R 4 C 42 0 42 133.8 57.4
13 F 1 C 24 24 48   613.4 567.6
14 F 2 C 24 48 72   937.2 1402.0 
15 F 3 C 27 48 75 1037.9 1551.2 
16 F 4 C 42 80 112 2257.3 4063.9 

 
Cases 9, 10, 11, 13, 14 and 15 have two loops, cases 12 
and 16 have three loops. 
 
DISCUSSION AND CONCLUSIONS 
 
The timing results confirm that the dense mass matrix 
formulation is faster than the O(N) formulation for 
smaller degrees of freedom (DOF’s) and O(N) is faster 
otherwise. In our cases for all rigid systems mass-matrix 
take less CPU time than O(N) for both open-loop and 
closed-loop systems because they have fewer DOFs. 
Flexible body systems have more DOF and O(N) run 
faster, except for the  case 13 involving two loops and 
fewer DOF than the other flex cases. Loops added large 
amount of computation and more so for O(N). For 
systems with loops the advantage of O(N) is reduced. 
With more loops the reduction is more because it requires 
solution of coupled linear constraint equations which can 
have a large number of unknown constraint forces and 
moments, and are solved in the usual manner that requires 

3
cn arithmetic operations, where cn is the number of 

constrained degrees of freedom. 
 
The high degree of match between the mass-matrix and 
O(N) results is expected because the two methods solve 
the same set of equations using many common codes. 
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APPENDIX: DERIVATION OF O(N) EQUATIONS 
 
System Description and Definitions 

 
 
          Figures A1:  Multibody System Definitions 
 
 

 
 
         Figures A2: Constrained Motion Definitions 
 
Consider the set of rigid and/or flexible bodies, in Figure 
A1, with the associated labeling of forces and points. 

nR and 
ik̂

R are frames attached to body n ( nB ) at its 

inboard and outboard joints nO  and 
ik̂

O respectively. 

Figure A2 shows the labeling for constrained systems. 
Throughout this derivation it is assumed that all the 
vectors and inertia matrices are either generated in or are 
converted to a single reference frame, which is the 
structural reference frame 0R of the base body of the 

multibody system. The conversion is performed every 
time the system states are updated. 
  
Kinematics of Motion between pO and nO  

Let nv


, na


 represent the inertial velocity and acceleration 

respectively, of nO , n


represent the inertial angular 



velocity of nR  and p represent the flexible variables of 

the body pB . Kinematic equations relating position, 

velocity and acceleration of pO and n̂O , and angular 

velocity and angular acceleration of frames pR and 

n̂R are given by 

pn̂n̂n̂r 


, pn̂nppn̂ r~vv 


, 

pn̂pn̂  


  

nn̂pnn̂pn̂
~    

pn̂pnpppn̂pnpn̂
~2r~~r~aa  




 

p


 is the undeformed value of pr


, the vector from pO to 

n̂O . Combining the last two equations we can write 

r,n̂nn̂pp,n̂n̂ ASAA  F            (1.1) 

 

where, 
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
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F denotes a shift operator corresponding to an offset 
between two points identified by the subscripts. In this 
case the offset is n̂r


. The tilde (~) is the usual cross 

product operator on a vector.  

 
The joint n may have up to six DOFs allowing both 
translation and rotation. The translation of nO with 

respect to n̂O is given by nn

NT

1i
n,in,in Gĝy

n





  where 

n,iĝ are linearly independent unit vectors fixed in n̂O , 

3NTn  is the number of translational degrees of 

freedom of joint n  and n,i are scalar quantities, 

representing joint translations in the directions of the unit 
vectors.  The inertial acceleration of nO is: 

ry
nnnn̂nn̂n aGy~aa


               (1.2) 

where, nnn̂nn̂n̂
ry
n G~2y~~a  

 

 
Inertial angular velocity of nR is given by 

 



nNR

1i
n,in,in̂n l̂ 

= nnn̂ L  
 

where n,il̂  is the unit vector in the direction of the 

rotation n,i and nNR is the number of rotational degrees 

of freedom of the joint. nL is a matrix whose columns are 

the unit vectors n,il̂ and n is a column matrix containing 

the rotations n,i . Differentiating n


in the inertial frame 

we get 
 r

nnnn̂n L
               (1.3) 

 nn
r
n L   

 

Combining Equations (1.2) and (1.3), 

rj
nnnn̂n̂,nn APAA  F              (1.4) 
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Finally, combining Equations (1.1) and (1.4) we get 

r
nnnpnpp,nn APSAA  F              (1.6) 

where, using the relationship nn̂n yrr


 , 

p,n̂n̂,np,n FFF  , n̂n̂,nn SS F , rj
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r
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r
n AAA F  

 
 
Inter-Body and Joint Actuator Forces 
 
Let nF be the spatial forces exerted by pB  on nB at 

nO and n̂F̂ be the spatial force exerted by nB on pB at 

n̂O . Then from equilibrium considerations, 

 n
T

n̂,nn̂ FF̂ F              (2.1) 

n̂n,F is given by Equation (1.5). Let n,i and n,j be 

respectively, the i-th actuator force )3i(  and j-th actuator 

torque )3j(  on body n at nO . They act in the directions 

of the degrees of freedom n,iĝ  and n,jl̂ of the joint. 

Defining 











n

n
n  as the array of actuator forces and 

moments at joint n, it is straight forward to show that  

       n
T
nn FP                       (2.2) 

where nP is given by Equation (1.5). 

 
 
Equations of Motion of Body n 
 
A minor modification of equations of a flexible body in 
Quiocho, et. al (Quiocho, 2010), produces the equations 
of a body nB in rigid and flexible coordinates as 

 n,r
i

n,i,e
T
n,inn,renn,rr BFqMAM  F  

 



i
n,en,i,e

T
n,i

nn,eenn,eenn,eenn,er

BFS

qDqKqMAM 

 

We shall write the equations of motion of the body n after 
separating the external spatial forces n,i,eF on nB as (i) 

from the previous body acting at the inboard joint ( nF ), 

(ii) from child bodies 
ikB acting at outboard joints (

ik̂
F̂ ), 

(iii)  forces at constrained points ( j,cF ) when there are 

such points on the body, and (iv) external forces ( n,i,extF ) 

acting on the body. Because we chose the reference frame 
of the body to be at the inboard joint, the shift function at 
the inboard joint is an identity matrix and the shape/slope 
function at the inboard joint is a null matrix. Equations for 
body n are: 
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In the above equations j,cF  is the spatial force at the 

j-th constrained point, j,cF is the shift function for the 

offset of the constrained point from nO and j,cS is the 

shape/slope function of body n at the constrained point. 
Defining 

n,i,ext
i

T
n,in,r FG  F + n,rB               (3.1) 

nn,eenn,een,en,i,ext
i

T
n,in,e qDqKBFSG       (3.2) 

Using Equations (2.1) for 
ik̂

F̂ and then Equations (3.1) 

and (3.2) we get the equations of motion of the body n as 

n,r
)n(Zj

j,c
T
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c
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                (3.4) 
Here, )n(Zc is the set of indices for constrained points on 

body n. 
   
 
Recursive Solution of Equations of Motion 
 
The dynamical equations of motion of the system are 
solved recursively in steps as follows. 
 
Step 1. Forward Pass Kinematics: In this step all position 
and velocity states are generated starting with the base 
body using equations derived in Kinematics section. 
 
Step 2. Inward Pass Dynamics Equations: 
 
Observing the equations of motion it is reasonable to 
expect that for any n nF can be expressed as linear 

functions of pA , pq and constraint forces on itself and on 

bodies on  outer branches:  
 j,c

)n(Yj
j,n,cnpn,qpn,An FDdqDADF

c




           (4.1) 

)n(Yc  is the set of indices of all constrained points on 

body n and on all bodies of its outer branches. 
We shall determine the coefficients in the above equations 
recursively. In Euation (4.1) using ik  in place of n and n 

in place of p, and using the result in Equation (4.1) we get 
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)n(Z is the set of indices of child bodies of nB . In the 

same manner, substituting for 
ikF  in Eq. (3.3) and 

rearranging we get, 
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Using Equation (4.2) for nq in Equation (4.3) we get 
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Using Equation (1.6) for nA in Equation (4.4) and 

rearranging, we get 
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Pre-multiplying this equation by T
nP , using 

n
T
nn FP from Equation (2.2) and solving the resulting 

equation for n we get 
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p,nn,rr
T
n

1
n,n,A M̂PMB F

 ,  

p,nn,rr
T
n

1
n,n,q SM̂PMB 

 ,  

 )AM̂Ĝ(PMb R,nn,rrn,r
T
nn

1
n,n  

 , 

 j,n,c
T
n

1
n,j,n,c D̂PMB 

 ,  and  nn,rr
T
nn, PM̂PM   

 
Equation (4.5) for n in Equation (1.6) yields for nA  

j,c
)n(Yj

j,n,cnpn,qpn,An FWwqWAWA
c




        (4.6) 



n,Anp,nn,A BPW  F , n,qnp,nn,q BPSW  , 

R,nnnn AbPw  ,  and  j,n,cnj,n,c BPW   

 
Equation (4.6) for nA in Equation (4.2) gives 

j,c
)n(Yj

j,n,cnpn,qpn,An FQqqQAQq
c




           (4.7) 

n,An,An,A WQ̂Q  , n,qnn,q WQ̂Q  , nnn,An q̂wQ̂q̂  , 

and j,n,cj,n,cn,Aj,n,c Q̂WQ̂Q   

  
Finally, using Equation (4.6) in Equation (4.4) we get 

j,c
)n(Yj

j,n,cnpn,qpn,An FDdqDADF
c




          (4.8) 

n,An,rrn,A WM̂D  , n,qn,rrn,q WM̂D   

n,rnn,rrn ĜwM̂d  , and 

j,n,cj,n,cn,rrj,n,c D̂WM̂D   

 
We can see that Equation (4.8) is in the same form as 
Equation (4.1) we started with, confirming that if the 
latter is true for child bodies, it would be true for the 
current body also. Following the same steps as above for 
any outermost body for which 0F

ik̂
 it is easy to show 

that Equation (5.1) is true for such bodies. Using the 
induction logic it therefore follows that Equation (4.1) is 
true for all bodies of the system. 
 
Computations for systems with multiple branches need to 
start from an outermost body, move inward till a body 
with multiple child bodies is reached. Inward computation 
from a body with multiple child bodies should continue 
only after computations for all of its child bodies are 
completed.  
 

0A and 0F  for the Base Body 0B in terms of the 

constraint forces are obtained from Equation (4.4). When 

0B is fixed in inertial frame 0A0  and we then have 





)0(Yj

j,cj.0,c0,r0

c

FD̂ĜF  

When 0B is free in the inertial frame 0F0   and 




 
)0(Yj

j,cj.0,c0,r
1
0,rr0

c

]FD̂Ĝ[M̂A              (4.9) 

The flexible coordinate acceleration 0q for the base body 

is obtained from Equation (4.2)  

j,c
)n(Yj

j,n,c000,A0 FQ̂q̂AQ̂q

c




            (4.10) 

For systems without closed loops the j,cF term drops out 

and the equations obtained above are sufficient for 
determining 0A  and 0q , and then the system 

accelerations, by successive computation of n , nq  and 

nA in an outward sweep. 

 
Step 3. Accelerations of Constrained Points in terms of 
Forces at Constrained Points: 
 

For the determination of acceleration of constrained 
points in terms of forces at these points we seek to 
express the accelerations nA and nq for bodies in the path 

from base body to the constrained points in the form 

 j,c
A

j,n
A
nn FHhA    and   j,c

q
j,n

q
nn FHhq   

                                                       (4.11) 
Here the summation index j covers all constrained points. 
It follows from Equations (4.9) and (4.11) that when the 
base is free in inertial frame 

0,r
1
0,rr

A
0 ĜM̂h  , j,0,c

1
0,rr

A
j,0 D̂M̂H  , 0

A
00,A

q
0 q̂hQ̂h   

and j,0,c
q
0 Q̂H  . 

When the base is fixed, 0hA
0  , 0HA

j,0  , 0
q
0 q̂h   and 

j,0,c
q
0 Q̂H  . 

Using Equations (4.7) and (4.11) we get the recursive 

equations for q
nh and q

j,nH : 

n
q
pn,q

A
pn,A

q
n qhQhQh   and 

j,n,c
q

j,pn,q
A

j,pn,A
q

j,n QHQHQH    

Using Equation (4.6) and (4.11) we get the recursive 

equations for A
nh and A

j,nH : 

n
q
pn,q

A
pn,A

A
n whWhWh  , and 

 j,n,c
q

j,pn,q
A

j,pn,A
q

j,n WHWHWH  . 

Let iE be the point in constraint i located on body n and 

'iE be the mating point of the same constraint, located on 

body  . The spatial acceleration of iE  is 

 r,Enn,Enn,EE iiii
AqSAA  F            (4.12) 

where n,Ei
F is the standard shift operator for the offset 

iEr
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of iE with respect to nO  



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


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E

E
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shape/slope function of nB at iE  and,  
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.  

For each constraint k (k = 1, 2, …, cn ) the constraint 

forces k,cF and 'k,cF  at the two constrained points kE  

and 'kE  respectively are equal and opposite, i.e, 

k,c'k,c FF  . Using this and Equation (4.11) for nA and 

nq  in Equation (4.12) we get, 
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                                                                                 (4.13) 

Similarly, spatial acceleration of 'iE is given by 
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                                  (4.14)  
 
Step 4. Determination of Constraint Forces: 
 
Using equations (4.13) and (4.14) the difference in the 
accelerations at the constraint i may be written as 

k,c
k

k,EEEEE FHhAAA
ii'iii          (4.15) 

r,E
q
nn,E

A
nn,E

r,E
q

,E
A

,EE

iii

'i'i'ii

AhSh

AhShh





F

F 
 

)HH(S)HH(S
)HH()HH(H

q
'k,n

q
k,nn,E

q
'k,

q
k,,E

A
'k,n

A
k,nn,E

A
'k,

A
k,,Ek,E

i'i

i'ii






 FF
  

       
The summation range for k is all the constraints. 
 
The linear and angular constraints at iE are 

 0)vv(ĝ
i'i EEj,i,c 


 for i,tnj0   

0)(ˆ
i'i EEj,i,c 


  for i,rnj0   

where v


and 


 represent the inertial velocity and angular 
velocity of points corresponding to the subscripts, 

j,i,cĝ and j,i,c̂ are unit vectors in the direction of 

translational and rotational constraints respectively, and 
)3(n i,t   and )3(n i,r  are the number of these 

constraints, respectively.   
iEv


, 

'iEv


, 
iE


and 

iE


  are 

determined in the manner used for the point n̂O  in the 

Kinematics section,. Defining 

 












i'i

i'i
i

EE

EE
E

vv
V 



 and 









i,c

i,c
i,c L0

0G
P  where 

i,cG is a i,tn3 matrix whose columns are the unit 

vectors j,i,cĝ and i,cL is a i,rn3 matrix whose columns 

are the unit vectors j,i,c̂ , the difference in the spatial 

velocities of the constrained points at constraint i may be 

written as
iE

T
i,c VP  . The difference in the spatial 

acceleration in the constraint directions at the constraint 
point should be zero, giving 

 0VPAP
ii E

T
i,cE

T
i,c    

Using Baumgarte’s stabilization scheme to limit 
constraint violation caused by numerical errors, this 
equation is modified to 

0VPCXPKVPAP
iiii E

T
i,ciE

T
i,ciE

T
i,cE

T
i,c    

iK and iC are positive constants to provide constraint 

stabilization. Using Equation (4.15) for 
iEA we have 
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Let us define j,k,cf to be the constraint force in the 

direction j,k,cĝ and j,k,c the constraint torque in the 

direction j,k,c̂ and 










k,c

k,c
k,c

f
F̂ . The force k,cF at the 

constraint point kE due to forces and moments in the 

constraint directions is then given by k,ck,c F̂P . Let 









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k,f

k,f
k,f L0

0G
P where k,fG and k,fL are made of 

the unit vectors normal to the constraint directions for 

translation and rotation and k,fF̂ be the array of forces and 

moments in these directions. Net spatial force at kE is  

 k,fk,fk,ck,ck,c F̂PF̂PF              (4.17) 

Restricting to cases where k,fF̂ is fully known, we use  

k,fk,fk,ck,ck,c F̂PF̂PF  in Equation (4.17) to get 
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i,c ZF̂PHP
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            (4.18) 
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          (4.19) 

Stacking Equation (4.18) for all constraints we get  

  ccc ZF̂M                    (4.20) 

where the ]k,i[ submatrix of matrix cM is given by  

 k,ck,E
T

i,ck,i,c PHPM
i

  

and cZ is made of arrays i,cZ given by Equation (4.19). 

Equation (4.20) is solved for cF̂ and the spatial forces 

k,cF at constraint points are found using Equation (4.17). 

 
 
Step 5. Computation of System Accelerations: 
 
After determination of forces at the constrained 
points, 0A and 0 are determined using Equations (4.9) 

and (4.10). n , nq , and nA are determined recursively in 

a forward pass using Equations (4.5), (4.7) and (1.6) 
respectively. 
 



 


