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Abstract.

In-Situ Resource Utilization (ISRU) seeks to make human space
exploration feasible by using available resources from a planet or the
moon to produce consumables, parts, and structures that otherwise
would be brought from Earth. Producing these in situ reduces the mass
of such that must be launched and doing so allows more payload mass
for each mission. The production of oxygen from lunar regolith, for
life support and propellant, is one of the tasks being studied under
ISRU. NASA is currently funding three processes that have shown
technical merit for the production of oxygen from regolith: Molten Salt
Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal
Reduction.

The ISRU program is currently developing system models of.the
"abovementioned processes to: (1) help NASA in the evaluation process
to select the most cost-effective and efficient process for further
prototype development, (2) identify key parameters, (3) optimize the
oxygen production process, (4) provide estimates on energy and power
requirements, mass and volume of the system, oxygen production rate,
mass of regolith required, mass of consumables, and other important
parameters, and (5) integrate into the overall énd-to-end ISRU system
model, which could be integrated with mission architecture models.
The oxygen production system model is divided into modules that
represent upit operations (e.g., reactor, water electrolyzer, heat
exchanger). Each module is modeled theoretically using Excel and
Visual Basic for Applications (VBA), and will be validated using
experimental data from on-going laboratory work. This modularity
(plug-n-play) feature of each unit operation allows the use of the same
model on different oxygen production systems simulations resulting in
comparable results. In this presentation, preliminary results for mass,
power, volume will be presented along with brief description of the -
oxygen production system model.




Outline

 Why are systems models important?

e Description of oxygen production processes
e System models: A modular approach

e System model results

* Acknowledgment



Why are system models
important?

 |dentification of technology needs:

— Source of thermal power other than electrical (i.e. solar
concentrator)

— Heat recovery from spent regolith

 Hardware design:

— Significant (~30%) mass reduction are achieved if a multi-
reactor system is used. The multi-reactor system reduces
the mass of the equipment downstream from the reactors
due to a more steady-state like operations

e Optimization:

— Models can supplement experimental work by providing
optimal operating parameters




Description of oxygen
production processes
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Description of oxygen
____production processes
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Description of oxygen
production processe
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Description of oxygen
production processes
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System Model: A Modular Approach
ISRU System Level

Mission Requirements:
*Number of missions

*Number of EVAs Mission Reqlirements

*Description of outpost

ISRU Sys Output

Inputs:
*Oxygen production rate

ISRU System
JSC

*Location of O, plant Inputs

O, production process
Outputs Outputs
O, Production

System
KSC

Outputs:

*Regolith required

*System mass
*System power
*System volume

ISRU System Output:
*System Mass
*System Volume

*System Power

Inputs:

*Regolith excavation rate
*Location of excavation site
*Location of O, plant

*Type of excavator/transporter

Inpu

Excavation

System
GRC

Outputs:

*System mass

*System power
*System volume



System Model: A Modular Approach
O, Production System Level
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System Model: A Modular Approach
O, Production System Level cont'd

The Named Ranges have a hierarchy:

¢ uts:
%bal_input: all constants and quantities that are specified at the system level:
» Lunar Environment
» Required O2 Production
» Constants

'hblnflow: all input values a component requires that come from another component
» Temperature
» Pressure
> Flow rates
'-»Design_in ut: all other input parameters required to run a component but are not
generated by other model components.
» Vessel diameter
» Material of construction

e OQutputs:
c—p%lobal_output: all calculated values pertinent to overall model’s conclusions:

» Mass
» Power
» volume

Outflow: all calculated output values that other components require
» Temperature
» Pressure
» Flow rates

Design_output: all other calculated output values that describe component specifics but

are not required by other components.
» Vessel height

Courtesy of Ariane Chepko (JSC)



System Model: A Modular Approach
O, Production Sub-System Level

* The Named Range creates a common interface for
the modules

e This common interface enables the modules to be
pl ug-n-play Global_input & Global_output

Design_input & Design_output
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System Model Results:
“Baseball Cards”

* “Baseball Cards”?

- ISFLU study to support the Lunar Architecture Team (LAT) during Phase |

study
— Provided inputs of Mass-Power-Volume for ISRU systems
* O, production from regolith

Excavation
Volatile extraction
O, production from Lunar water
And others

* Ground Rules for O, production from regolith:
— Processes: H, Reduction and Carbothermal Reduction
— Two locations: Equatorial and Polar regions
— O, production rates: 1, 10, 50 and 100 MT/yr

e Assumptions:
— Power Assumptions:
* Thermal power in provided by solar concentrator
* Electrical power is provided by photovoltaic cell

— Location Assumptions :
* Equatorial: 50% operating time (183 Earth-days/Earth-year), Mare regolith
composition
* Polar: 70% operating time (255 Earth-days/Earth-year), Highland regolith
composition
— Mass Assumptions:
* Piping and structural mass is 20% of module mass
e Growth potential of 20%



System Model Results:
“Baseball Cards” contd

7000 : * Both O, production systems
6000 - have similar mass and power
5000 consumption
3_’ 4000
§ s -  The deviation at higher
2000 production rate could have
1000 | Ty resulted from the modules
ok : . . , R running outside the validated
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02 production rate, MT/yr range
* A more realistic production P :
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*NOTE*: Assumes thermal energy to the reactor
is provided via solar concentrator
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