General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Oxygen Production System Models for Lunar ISRU

Edgardo Santiago-Maldonado
John F. Kennedy Space Center
Applied Technology Directorate
Oxygen Production System Models for Lunar ISRU

Edgardo Santiago-Maldonado

1NASA KSC, Mail Code: KT-D Kennedy Space Center FL 32899
Ph: 321.867.8794, Edgardo.Santiago-Maldonado-1@nasa.gov

Abstract.

In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction.

The ISRU program is currently developing system models of the abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.
Outline

• Why are systems models important?
• Description of oxygen production processes
• System models: A modular approach
• System model results
• Acknowledgment
Why are system models important?

- Identification of technology needs:
 - Source of thermal power other than electrical (i.e. solar concentrator)
 - Heat recovery from spent regolith

- Hardware design:
 - Significant (~30%) mass reduction are achieved if a multi-reactor system is used. The multi-reactor system reduces the mass of the equipment downstream from the reactors due to a more steady-state like operations

- Optimization:
 - Models can supplement experimental work by providing optimal operating parameters
Description of oxygen production processes

Legend:
- Process Flow
- Inputs/Outputs
- User Inputs
- Interface with regolith excavation/transportation

[Diagram showing the processes involved in oxygen production, including regolith scoops, transport to processor, species separator, liquefaction, power, molten salt reaction bed, salt recovery system, and clean-out, transport away reacted/spent solids.]
Description of oxygen production processes

Legend:
- Process Flow (mass, heat, etc.)
- System Data, Model Input/Output
- User Inputs

Courtesy of Diane Linne (GRC)
Description of oxygen production processes

- **Solid-Oxide**
 - Water electrolyzer
 - Species separator
 - Outputs: O₂, H₂

- **Cathode-fed PEM**
 - Heat exchanger
 - Water electrolyzer
 - Species separator
 - Outputs: O₂, H₂

- **Anode-fed PEM**
 - Heat exchanger
 - Water electrolyzer
 - Dryer
 - Outputs: H₂O, O₂

H₂O, H₂ In (~900°C)
H₂O, H₂ In (~250°C)
H₂O, H₂ In (~250°C)
H₂O, H₂ In (~900°C)

Courtesy of Diane Linne (GRC)
System Model: A Modular Approach
ISRU System Level

Mission Requirements:
- Number of missions
- Number of EVAs
- Description of outpost

ISRU System Output:
- System mass
- System volume
- System power

Inputs:
- Oxygen production rate
- Location of O_2 plant
- O_2 production process

O$_2$ Production System
KSC

Outputs:
- Regolith required
- System mass
- System power
- System volume

ISRU System
JSC

Excavation System
GRC

Inputs:
- Regolith excavation rate
- Location of excavation site
- Location of O_2 plant
- Type of excavator/transporter

Outputs:
- System mass
- System power
- System volume
System Model: A Modular Approach
O₂ Production System Level

- Each oxygen production process is divided into modules or unit operations
- Each module is modeled in a stand-alone Excel workbook using Visual Basics for Application (VBA)
- An Excel worksheet functions as the Input/Output interface (Databus)
- A VBA module is used to build a 'master' equation where the calculations are performed
- Modules are linked using Phoenix Integration ModelCenter
- Each link represents information passed from one module to the other
 - The information is passed in the form of
 - individual cell
 - array of cells
 - Each cell or groups of cells is given a specific name (aka: Named Range)
The Named Ranges have a hierarchy:

- **Inputs:**
 - Global_input: all constants and quantities that are specified at the system level:
 - Lunar Environment
 - Required O2 Production
 - Constants
 - Inflow: all input values a component requires that come from another component
 - Temperature
 - Pressure
 - Flow rates
 - Design_input: all other input parameters required to run a component but are not generated by other model components.
 - Vessel diameter
 - Material of construction

- **Outputs:**
 - Global_output: all calculated values pertinent to overall model’s conclusions:
 - Mass
 - Power
 - Volume
 - Outflow: all calculated output values that other components require
 - Temperature
 - Pressure
 - Flow rates
 - Design_output: all other calculated output values that describe component specifics but are not required by other components.
 - Vessel height

Courtesy of Ariane Chepko (JSC)
System Model: A Modular Approach
O₂ Production Sub-System Level

- The Named Range creates a common interface for the modules
- This common interface enables the modules to be plug-n-play
System Model Results: “Baseball Cards”

- "Baseball Cards"?
 - ISRU study to support the Lunar Architecture Team (LAT) during Phase I study
 - Provided inputs of Mass-Power-Volume for ISRU systems
 - O_2 production from regolith
 - Excavation
 - Volatile extraction
 - O_2 production from Lunar water
 - And others
- Ground Rules for O_2 production from regolith:
 - Processes: H_2 Reduction and Carbothermal Reduction
 - Two locations: Equatorial and Polar regions
 - O_2 production rates: 1, 10, 50 and 100 MT/yr
- Assumptions:
 - Power Assumptions:
 - Thermal power in provided by solar concentrator
 - Electrical power is provided by photovoltaic cell
 - Location Assumptions:
 - Equatorial: 50% operating time (183 Earth-days/Earth-year), Mare regolith composition
 - Polar: 70% operating time (255 Earth-days/Earth-year), Highland regolith composition
 - Mass Assumptions:
 - Piping and structural mass is 20% of module mass
 - Growth potential of 20%
System Model Results: "Baseball Cards" cont'd

- Both O₂ production systems have similar mass and power consumption.
- The deviation at higher production rate could have resulted from the modules running outside the validated range.

- A more realistic production rate is probably <10 MT/yr:
 - 8 MT/yr for propulsion
 - 2 landers per year
 - 2 MT for life support
 - Outpost of 4 crew members
 - EVA’s

NOTE: Assumes thermal energy to the reactor is provided via solar concentrator.
Acknowledgements

• This work was funded under ISRU, thanks to Jerry Sanders, ISRU project manager.

• To the entire model development team:
 – Glenn Research Center:
 • Dianne Linne, Josh Freeh, Chris Steffen, Juan Agui, Allen Wilkinson, Vedha Nayagam, Suleyman Gokoglu, Uday Hegde, Eric Faykus
 – Florida Institute of Technology:
 • Dr. Jonathan Whitlow
 – Kennedy Space Center:
 • Dale Lueck, Jacqueline Quinn, Orlando Melendez
 – Johnson Space Center
 • Kris Lee, Ariane Chepko