General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
4. TITLE AND SUBTITLE

Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

5a. CONTRACT NUMBER

NNK06MA70C

5b. GRANT NUMBER

None specified.

5c. PROGRAM ELEMENT NUMBER

None specified.

6. AUTHOR(S)

Winifred Crawford
William Roeder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ENSCO, Inc.
1980 N. Atlantic Ave Suite 230
Cocoa Beach, FL 32931

8. PERFORMING ORGANIZATION REPORT NUMBER

None specified.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NASA
John F. Kennedy Space Center
Code KT-C-H
Kennedy Space Center, FL 32899

11. SPONSORING/MONITORING REPORT NUMBER

None specified.

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified, Unlimited

14. ABSTRACT

This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

15. SUBJECT TERMS

Peak winds, Gust, Launch Commit Criteria, Applied Meteorology Unit, AMU, Probability distributions, Climatology
A Peak Wind Probability Forecast Tool
for Kennedy Space Center and Cape Canaveral Air Force Station

Winifred Crawford
NASA Kennedy Space Center / Applied Meteorology Unit / ENSCO, Inc.

William Roeder
USAF 45th Weather Squadron

The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The Launch Commit Criteria (LCC) define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. In previous work, the AMU created cool season climatologies and frequency distributions for all wind sensors used in evaluating LCCs in the seven-year period 1995 – 2001. The values included climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of 5-minute mean wind speeds in 1-knot (0.514 m s⁻¹) intervals. The 45 WS requested that the AMU update these mean and peak speed statistics with more data collected since 2001, test several theoretical distributions to determine the best fit to the empirical peak wind distributions, add new time-period stratifications to the peak wind distributions.

The peak and mean wind data for this work are from the towers in the KSC/CCAFS network used in making launch decisions for the Space Shuttle, Atlas, Delta II and Delta IV vehicles. The mean wind is the average of the 1-second observations taken over 5 minutes, and the peak is the highest 1-second observation in the 5-minute period. The data for this study are from the 12 cool seasons in the period January 1995 to April 2007. Climatologies of the 5-minute mean and 5-minute peak wind speeds and directions were created to understand mean behavior and variability of the wind speeds. The data were stratified three ways: 1) by month and hour, 2) by month and direction, and 3) by month, direction, and hour. The means, standard deviations (σ), and number of observations used in the calculations for each of the stratifications were determined and plotted. The number of observations available in each category show preferred times of day by month for each direction.

The next step was to calculate how the peak winds are distributed with mean speed so that the probability of meeting and/or exceeding certain peak wind values could be determined. The peak winds were stratified by month and by observed 5-minute mean wind speed in 1-knot (0.514 m s⁻¹) intervals and empirical probability density functions (PDFs) of the stratified peak winds created. An added step in this work is to create peak wind PDFs for 2, 4, 8, and 12 hours past the time of the mean wind. This adds a predictive element to the probabilities. Fitting the PDFs with the proper theoretical distribution is necessary for calculating the appropriate probability values, especially for extreme values that are observed only occasionally. In this work, the Gumbel distribution was used to be consistent with previous studies at Marshall Space Flight Center that found this distribution an excellent fit to the peak winds in the KSC/CCAFS tower network.

The presentation will show the data and methods used in the creation of the climatologies and PDFs. It will also show the graphical user interface (GUI) developed by the AMU to be used in operations. The GUI will provide forecasters with a user-friendly way to display the climatologies and probabilities quickly and easily.