General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
High Energy Cutting and Stripping Utilizing Liquid Nitrogen

Dr. Howard Hume, NitroCision, LLC
Donald E. Noah, United Space Alliance, LLC
Paul W. Hayes, United Space Alliance, LLC

ABSTRACT

The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal.

The NitroJet™ is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements.

The NitroJet™ uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals.

Liquid nitrogen (LN₂) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN₂ to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN₂ is about −250°F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 – 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about −220°F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over a very wide range providing considerable flexibility for various operations.

The NitroJet™ is an advance on the nitrogen fluid jet technology initially developed at the Idaho National Engineering Laboratory in Idaho Falls, Idaho. NitroCision® first introduced the NitroJet™ into a commercial setting in 2003 and there has been considerable interest from many diverse sectors of government and industry since then. While the current system is an industrial system with the size and mass normally associated with industrial applications, a smaller system that is much more compact is being contemplated for those applications that do not need the full capabilities of the larger system.

The NitroJet™ can be deployed as a fixed or mobile system with multiple end effectors capable of cutting, stripping, cleaning, and surface profiling either in robotic or manual applications.
PART A - REQUEST

<table>
<thead>
<tr>
<th>Title</th>
<th>High Energy Cutting and Stripping Utilizing Liquid Nitrogen(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Donald E. Noah</td>
</tr>
</tbody>
</table>

This is a: ❌ Presentation ☑ Abstract of material to be disclosed/published

- In the United States: ☑
- In a foreign country: ❌

Sponsoring Group:
United Space Alliance
Materials and Processes Engineering
8550 Astronaut Blvd
Cape Canaveral, FL 32920

This Material is:
- Unclassified: ☑
- Classified: ❌

- Security Classification of Document: 🏗

- Is recipient or audience cleared to receive classified information?
 - Yes: ❌
 - No: ☑

- If presented in the U.S., will Foreign Nationals be in attendance?
 - Yes: ❌
 - No: ☑

- 1a. Does the material include or was this material derived from information developed under Government contract?
 - Yes: ☑
 - No: ❌

- 1b. Does this material include or was this material derived from any information obtained from the Government or others and identified as military critical technology or technical data controlled by DOD Directive 5320.24 and 5230.23 restricting disclosure of unclassified technical data? (If yes, complete below)
 - Yes: ❌
 - No: ☑

- 1c. Does this material relate to any Government programs being conducted at any other USA locations or by other contractors or agencies of the Government? (If yes complete below)
 - Yes: ❌
 - No: ☑

- 1d. Does this material include any technical data relating to equipment on the Munitions List and subject to export control by the Department of State?
 - Yes: ❌
 - No: ☑

- 1e. Program Name (i.e., SFOC/SSP, SFOC/SS, etc.)
- 1f. Contract Number
- 1g. Security Classification of Contract
- 1h. USA Export Administration

- Was this material developed under or does this material relate to a company-sponsored program? (If yes, then complete the following)
 - Yes: ☑
 - No: ❌

- Program Name
- 1g. Security Classification of Contract
- GO/SA No.

- Name of Material Source
- Classification
- Pages Used

- Are slides, graphs, charts, etc. to be used in connection with this material, which contain data not shown in the manuscript?
 - Yes: ❌
 - No: ☑

- 5. Does any portion of this material represent a significant advancement in the State of Art or contain speculations of future applications? If yes, identity page(s) or explain below.
 - Yes: ❌
 - No: ☑

 This is a simply an abstract, further information requests will be made when specific identification of subject matter has been made.

- 6. Does material discuss capabilities of another USA division or another company. (If yes, complete below)
 - Yes: ☑
 - No: ❌

- Division(s) Company(s)
- Mentioned Page(s)

- 7. Does material contain Proprietary, Company Restricted, or Company Official data? (If yes, explain in Remarks block 19)
 - Yes: ❌
 - No: ☑

- 8. NASA Monitor or NASA Export Control Representative (Name/Date/Time)
 - Tom Engler / Marilee Tewksbury

- 9. (To be answered by head or delegate of Functional Department, i.e., HR, Procurement, Security, etc.) Does the subject matter involve points on which:
 - Our customers may be sensitive: ❌
 - An unresolved customer policy or issue is pending: ❌
 - The company is sensitive: ❌

 If any part is answered "Yes", note briefly points and page number(s) of text involved below.

- 10. Author(s) Signature

- USA Technical Management Review (Name, Title, Date)

- 11. PUBLIC RELATIONS/COMMUNICATIONS (Name, Title, Date)

- 12. INDUSTRIAL SECURITY (Name, Title, Date)

- 13. EXPORT COMPLIANCE OFFICE (ECO) (Name, Title, Date)

- 14. LEGAL (Name, Title, Date)

- 15. To be answered by ECO upon signed completion of NASA Form 1676 or approved by USA is applicable. If any of the answers to 1a, 1b, or 1c, above are yes, has the appropriate Government agency reviewed and approved this material for publication/presentation?
 - Yes: ☑
 - No: ❌

- Date: 06-28-2004