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Executive Summary 

Using meteorology data, focusing on precipitable water (PW), obtained during the 2000-2003 
thunderstorm seasons in Central Florida, this paper will, one, assess the skill and accuracy 
measurements of the current Mazany forecasting tool and, two, provide additional forecasting 
tools that can be used in predicting lightning. 

Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are located in 
east Central Florida. KSC and CCAFS process and launch manned (NASA Space Shuttle) and 
unmanned (NASA and Air Force Expendable Launch Vehicles) space vehicles. One of the 
biggest cost impacts is unplanned launch scrubs due to inclement weather conditions such as 
thunderstorms. Each launch delay/scrub costs over a quarter million dollars, and the need to land 
the Shuttle at another landing site and return to KSC costs approximately $ 1M. Given the 
amount of time lost and costs incurred, the ability to accurately forecast @redict) when lightning 
will occur can result in significant cost and time savings. 

All lightning prediction models were developed using binary logistic regression. Lightning is the 
dependent variable and is binary. The independent variables are the Precipitable Water (PW) 
value for a given time of the day, the change in PW up to 12 hours, the electric field mill value, 
and the K-index value. 

In comparing the Mazany model results for the 1999 period B against actual observations for the 
2000-2003 thunderstorm seasons, differences were found in the False Alarm Rate (FAR), 
Probability of Detection (POD) and Hit Rate (H). On average, the False Alarm Rate (FAR) 
increased by 58%, the Probability of Detection (POD) decreased by 31% and the Hit Rate 
decreased by 20%. In comparing the performance of the 6 hour forecast period to the 
performance of the 1.5 hour forecast period for the Mazany model, the FAR was lower by 15% 
and the Hit Rate was higher by 7%. However, the POD for the 6 hour forecast period was lower 
by 16% as compared to the POD of the 1.5 hour forecast period. Neither forecast period 
performed at the accuracy measures expected. 

A 2-Hr Forecasting Tool was developed to support a Phase I Lightning Advisory, which requires 
a 30-minute lead time for predicting lightning. This tool resulted from forward stepwise model 
selection processes and contains four independent variables, specifically the 0.5-hr and 7.5-hr 

change in PW, the K-Index, and the current PW reading. These independent variables were 
considered to be significant in predicting lightning. A Lightning Index was established for this 
model at 0.32 because it provided the highest Operational Utility Index. Establishing the 
threshold at 0.32 increased the Operational Utility Index by 52.1% to 46.3%. Independent 
testing of the model showed minimal differences in the output, therefore validating the model. 

A 9-Hr Forecasting Tool was developed to support lightning predictions for major extended 
outdoor activities, such as roll-out of the space shuttle to the launch pad. This tool resulted from 
forward stepwise model selection processes and contains five independent variables, specifically 

the 3.5-hr, 8.5-br, and 12-hr chängein PW, the K-Index, and the current PW reading. These 
independent variables were considered significant in predicting lightning. A Lightning Index 
was established for this model at 0.37 because it provided the highest Kuipers Skill Score (KSS) 
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and best performance regarding FAR and Probability of False Detection (POD f). Establishing 
the threshold at 0.37 increased the KSS by 29.2% to 36.8%. Independent testing of the model 
showed minimal differences in the output, therefore validating the model. 

The lightning indices were selected based on maximizing specific skill scores. For the 2-Hr 
Forecasting Tool, the Operational Utility Index was determined to be most important. For the 9-
Hr Forecasting Tool, the KSS was determined to be most significant. In both cases, the 
Lightning Index can be changed to adjust the mix of the amount of lightning forecasted to the 
amount of lightning not forecasted. This will adjust the various other accuracy measurements, 
including H, POD, and FAR. 

Recommend further assessment of other independent variables that may be useful in predicting 
lightning with the necessary lead time to perform the forecasts. Use the forecasting tools 
developed and continually update actual observations are made available. Increase the frequency 
at which the values of the independent variables are collected to provide more accurate forecasts. 
Reassess the lightning indices based on the other accuracy measures and skill scores. 

5



Background/Introduction 

Lightning in Central Florida 

During the months of May through September, the Central Florida area is known as the lightning 
capital of the North American Continent. During this period the density of lightning flashes per 
square kilometer per year ranges from 8 to 12. Since Central Florida encompasses 
approximately 11 counties with over 46,000 square kilometers, Central Florida experiences 
almost half a million lightning strikes a year. The period that most lightning occurs is during the 
month of July. With the amount of people and businesses now in the Central Florida area, the 
risk to people's lives and business resources is high. Kennedy Space Center (KSC) and Cape 
Canaveral Air Force Station (CCAFS) (to be referred to as Spaceport Canaveral), which are 
located in Central Florida, alone have 25,000 people, over $17 billion in facilities and flight and 
payload vehicle systems supporting the manned and unmanned Space programs. Given the high 
risk to people's lives and resources, the ability to predict when and where lightning will occur is 
extremely helpful and cost effective. 

The graph below shows the amount of lightning that occurred each year during the 2000-2003 
thunderstorm seasons in Central Florida. More lightning occurred in 2001 and 2003, with the 
least amount occurring in 2002.
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Figure 1: Lightning by Year 

The graph below shows the lightning frequency by month during the thunderstorm season in 
Florida. There is more lightning in the 20-NM within KSC, because it is a much larger area than 
the KSC/CCAFS Advisory Area, although the lightning patterns are the same. As noted above, 
July is the month with the most lightning.
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Figure 2: Lightning Distribution by Month 

The graph below shows how lightning varies throughout the day. About 93% of lightning occurs 
between 1600 and 0200. 
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Figure 3: Lightning Throughout the Day 

Lightning begins with the water molecule. The water molecule has an asymmetric distribution 
of charge that results in a permanent dipole moment. This unique structure results in a large 
latent heat associated with changes in the phase, making possible the phenomena of lightning (1). 
Specifically, lightning is a transient discharge of static electricity that serves to re-establish 
electrostatic equilibrium within a storm environment. Strong updrafts and down drafts occur 
with regularity, even within small thunderstorms. The updrafts transport water droplets up into 
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the cloud, while ice particles descend from the frozen upper regions of the cloud. As they do, 
they bump and collide with each other. Through this process, electrons shear off of the 
ascending water droplets and collect on the descending ice particles. This generates an electric 
field within the cloud, with the top having a positive charge, and the bottom having a negative 
charge. An electric field is also generated between the bottom of the cloud and the surface of the 
earth. 

In a developing storm cloud such as the example above, there is an electric attraction (i.e. electric 
field) between its top and bottom. As the charges separate, the field strength grows. The greater 
the magnitude of separation, the stronger the field, and the stronger the attraction is between the 
positively charged top and the negatively charged bottom. However, the negative charge at the 
base of the cloud induces a positive charge on the earth beneath it. When the electrical potential 
between two clouds or between a cloud and the earth reaches a sufficiently high value (about 
10,000 volts (V) per centimeter (cm), the air becomes ionized along a narrow path and lightning 
flash results (2). The electric field mills located at Spaceport Canaveral measure this potential. 

Lightning Impacts to Spaceport Canaveral 

As mentioned above, Spaceport Canaveral has many personnel and expensive flight vehicles. 
Since the flight vehicle and payload systems are not common, the majority of the facilities and 
ground support equipment (GSE) are unique and therefore expensive and not easily replaceable. 
Spaceport Canaveral is located on the eastern side of Central Florida where the average density 
of lighting strikes per year is approximately 8 strikes per square kilometer. Even though the 
lightning density is not as high as other areas of Central Florida, given the value of people and 
the many unique facilities and GSE, the risk for loss of life or damage to facilities and GSE is 
high. Because of the high risk and the high potential for lightning occurring during the day hours 
from the months of May to September, operations such as the move of the Shuttle Launch 
Vehicle from the Vertical Assembly Building (VAB) to the launch pad during this period is 
performed during the early morning hours. This requirement to perform operations of this nature 
requires personnel in during third shift hours which results in significant costs. At least this is 
planned. 

One of the biggest cost impacts is unplanned launch scrubs due to inclement weather conditions 
such as thunderstorms. Weather is the single greatest cause for launch delays and scrubs. Since 
the Shuttle began launch operation in 1980 and until 2004, about 30 percent of weather delays 
are related to lightning avoidance rules (3). Each launch delay/scrub costs over a quarter million 
dollars, and the need to land the Shuttle at another landing site and return to KSC costs 
approximately S1M. Given the amount of time lost and costs incurred, if the weather could have 
been forecast many hours before the actual launch was initiated, a significant cost savings and 
potential undue exercise of the flight and ground systems could have been avoided. 
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Current method for forecastin2 1ihtning 

The Air Force 45th Weather Squadron operates from Range Weather Operations (RWO) at Cape 
Canaveral Air Force Station (CCAFS). The RWO is the center for the forecasting and detection 
of thunderstorms for Spaceport Canaveral. The RWO houses the Meteorological Interactive 
Data Display System (MIDDS), which analyzes data from the National Centers for 
Environmental Prediction, weather satellite imagery and local weather sensors (4). The data 
collected is applied to various tiumerical weather predictiOn models (1) to assist in putting 
Spaceport Canaveral area weather forecasts together. 

The current method of forecasting thunderstorms does not directly predict lightning. The means 
for forecasting lightning is more accurately described as an early warning system which is based 
upon the occurrence of lightning within a certain area or the electrical charge in the atmosphere 
rising to levels significant to trigger lightning. Hence, the lightning prediction is based upon 
lightning detection. The RWO current methods of collecting data for atmospheric electrical 
activity are the Launch Pad Lightning Warning System (LPLWS), Lightning Detection and 
Ranging (LDAR) system, and the LLP Lightning Detection System (4). 

The LPLWS is made up of 31 electric-field mills uniformly distributed throughout Spaceport 
Canaveral. They serve as an early warning system for electrical charges building aloft or 
approaching as part of a storm system. These instruments are ground-level electric field strength 
monitors. Information from the LPLWS gives forecasters information on trends in electric field 
potential and the locations of highly charged clouds capable of supporting natural or triggered 
lightning. The data are valuable in detecting early storm electrification and the threat of triggered 
lightning for launch vehicles (4). 

The LDAR detects and locates lightning in three dimensions using a "time of arrival" 
computation on signals received at seven antennas. Each part of the stepped leader of lightning 
sends out pulses which LDAR receives at a frequency of 66 MHz. By knowing the speed of light 
and the locations of all of the antennas, the position of individual steps of a leader can be 
calculated to within 100-meter accuracy in three dimensions. LDAR provides between 1 and 
1,500 points per flash. This is the only system currently able to provide detailed information on 
the vertical and horizontal extent of a lightning flash rather than just the location of its ground 
strike. LDAR detects all lightning including cloud-to-cloud and in-cloud as well as cloud-to-
ground (4). 

The LLP detects, locates and characterizes cloud-to-ground lightning within approximately 60 
miles of the RWO. Electromagnetic radiation emitted from lightning is first detected by the 
system's three direction finder antennas located at Melbourne, Orlando, and in the northern area 
of KSC. Lightning positions are computed using triangulation from two of the sites, and relayed 
to a color display video screen in the RWO. Once lightning-producing cells are identified and 
located, it becomes easier for the forecaster to predict just where the next lightning bolts will hit 
(4). 

These primary lightning detection systems, LPLWS, LDAR and LLP, along with other 
atmospheric condition and weather prediction systems and numerical prediction models, are the



primary Range Weather Operations thunderstorm surveillance tools for evaluating weather 
conditions that lead to the issuance of lightning warnings. 

With the lightning warnings available from the RWO, Spaceport Canaveral created a two-phase 
(Phase I and Phase II) lightning warning policy for operations performed at Spaceport Canaveral. 
Specifically, Phase I is deemed an advisory and is issued when lightning is forecast within five 
miles of the designated site and within 30 minutes from the issuance of the Advisory. The 30-
minute warning gives personnel in unprotected areas time to get to protective shelter and gives 
personnel working on lightning sensitive tasks time to secure operations in a safe and orderly 
manner. Phase II is identified as a Warning and is issued when lightning is imminent or 
occurring within five miles of the designated site. All outdoor and lightning-sensitive operations 
are terminated until the Phase II Warning is lifted. This two-phase policy provides adequate lead 
time for sensitive operations without shutting down less sensitive operations until the hazard 

becomes immediate (4). 

DescriDtion of G1oba Positioning System (GPS) Precipitable Water (P 

An important water vapor parameter currently being obtained from satellite and radiosonde 
measurements is precipitable water. Precipitable water is the total atmospheric water vapor 
contained in a vertical column of unit cross-sectional area extending from the surface of the earth 
to the top of the atmosphere. Precipitable water is commonly expressed in terms of the height to 
which that water substance would stand if completely condensed and collected in a vessel of the 
same unit cross sectiOn. In thunderstorms the amount of rain very often exceeds the total 
precipitable water vapor of the overlying atmosphere. This results from the action of 
convergence that brings into the rainstorm the water vapor from a surrounding area that is often 
quite large. Nevertheless, there is general correlation between precipitation amounts in given 
storms and the precipitable water vapor of the air masses involved in those storms. 
Climatologies of PW are currently being compiled using measurements from the Global 
Positioning System (GPS) and the operational network of radiosondes (6). 

Since the inception of space geodesy, the tropospheric delay of signals propagating through the 
atmosphere of the Earth has affected geodetic estimations of coordinates of points on the surface 
of the Earth. The amount of precipitable water vapor (PW) contained in the neutral atmosphere 
can be inferred from the propagation delay of Global Positioning System (GPS) signals passing 
through the troposphere. Recent research has shown that the estimates of the wet tropospheric 
delay from very long baseline GPS observations agree closely with estimates from radiosonde 
launches. Mathematical techniqueshave been developed to map the delay at any elevation to 
delay in the zenith (or vertical) direction, and the removal of the tropospheric delay by estimation 
has become an integral part of precise GPS analyses (7). 

The Global Positioning System consists of a constellation of satellites which transmit on two L-

band frequencies (1575.42 MHz for Li and 1227.6 M}Iz forL2). These two signals are delayed 
as they propagate through the atmosphere due to the presence of atmospheric water vapor. This 
"wet delay" is detectable in geodetic analyses of GPS phase observations and can be transformed 
into an estimate of the PW present in the troposphere. Recent studies from small-scale networks 
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(-50 km) have demonstrated that PW can be estimated from GPS observations with an accuracy 
of better than 2 mm relative to a fixed GPS station (7). 

Mazanv Model 

A study was conducted in 2000 that sought to develop a lightning prediction index that utilizes 
GPS PW. The model was developed and paper was written by representatives from the 
University of Hawaii, National Oceanic and Atmospheric Administration (NOAA), and Patrick 
Air Force Base. The paper is entitled "A Lightning Prediction Index that Utilizes GPS Integrated 

Precipitable Water Vapor" (1). 

The Mazany lightning prediction model was developed using binary logistic regression. Ideally, 
a linear regression model could have been used to model the relationship between the 
explanatory variable (PW) and the dependent variable (lightning). Furthermore, if linear 
regression was able to be applied, the amount of linear relation between the variables could have 
been additionally measured by determining the covariance, or correlation. However, since the 
observed outcome of lightning is restricted to two values (i.e., Yes Lighting did Occur, 0 or No 
Lightning Occurred, 1), the dependent variable is binary. With a binary dependent variable, it 
would be very difficult to determine the correlation coefficient since the coefficient has values 
between -1 and 1. Hence, the logistic regression model is the most viable model to use in 
predicting lightning. The graph below represents why a linear regression model does not apply 

in this case.

Linear Regression Line 

1.2 

0

Figure 4: Linear Regression of the Data Set 

Changing from a linear regression to a logistic regression provides a better fit of the binary data 

set.
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Logistic Regresion Line 

1.2

Figure 5: Logistic Regression of the Data Set 

The Mazany model contains four independent variables, specifically the PW value for a given 
time of the day, a 9 hr change in PW, electric field mill value, and the K-index as significant 
independent variables. The dependent variable is a binary variable, with zero indicating a 
lightning strike and a one indicating no lightning. The output of the model is a lightning index 
between zero and one that indicates conditions for lightning. The lightning index is compared to 
thresholds to determine if and when lightning will occur. The model is below: 

1 

y=

1 + exp (-6.7866 + 0.001 1359x 1 + O.06063x2 + 0.32341x 3 + 0.06728x4) 

Where, 
x i = Electric Field Mill Reading (V m') 
X2 = PW (mm) 
x3 9-h iPW (mm) 
X4 = K-index 
5i = Lightning Index 

The lightning index is then compared against established thresholds for interpretation as shown 
below:

0.7— 1.0: No lightning in the next - 6 hrs 
0.6 - 0.7: Lightning expected in the next -6 hrs 
0.0 - 0.6: Lightning expected in the next -1 .5 hrs 
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Data 

Data Sources 

Data from four thunderstorm seasons, May 1 - September 30, 2000 - 2003 was used in the 
analysis. Electric field mill values are obtained from 31 electric field mills located throughout 
Spaceport Canaveral. Electric field mills measure the electric potential of the atmosphere in 
volts per meter every 5 minutes. Precipitable water level data was obtained from a GPS receiver 
site located on the Cape Canaveral Air Force Station. 

Weather balloons carry instrument packages called radiosondes high into the atmosphere to 
gather essential upper-air data needed to forecast the weather. Typically, these 
balloons/instruments are released twice a day at the many sites around the world. Since 
Spaceport Canaveral is the "lightning capital" of the North American continent, the weather 
balloon is released three times a day during the lightning season. Temperature, humidity and air 
pressure are measured at various altitudes and transmitted via radio waves to a receiving station. 
Radio navigation supplies wind speed and direction at each altitude (5). 

These weather balloons provide the data necessary to calculate the K-index. The K-index is a 
measure of the thunderstorm potential, according to the scale and color fill scheme shown in 
Figure 6. The K-Index is determined on a skew-t thermodynamic diagram. K-index represents 
the thunderstorm potential as a function of vertical temperature lapse rate at 850mb temperature 
and 500mb temperature, low level moisture content at 850mb dew point, and the depth of the 
moist layer at 700mb dew point. With the temperatures determined at these data points the K-
index is calculated using the following linear equation: KI= (T850mb- TSOOmb) + Td8SOmb - 
(T700mb -Td700mb). The K-Index is interpreted using the chart below: 

0-15 No thunderstorms 

18-19 Thunderstorms unlikely 

20-25 Isolated thunderstorms 

26-30 Widely scattered thunderstorms 

30-35 Numerous thunderstorms 

S I Thunderstorms very likely 

________ 100% chance of thunderstorms 

Figure 6: Scale for Interpretation of K-Index 

Two sets of lightning data were used in the analysis. The first set of lightning data included 
lightning observations that fell within 20 nautical miles from the Vertical Assembly Building 
(VAB) at the Kennedy Space Center. This is the data used to validate the Mazany lightning 
prediction model as well as to develop the 9-Hour Forecasting Tool. The Mazany model was 
developed using thunder heard by the weather observer at the KSC Shuttle Landing Facility, 
which is near the VAB. Since thunder is typically heard 10-15 miles away, lightning detected 

13



within 20 NM of KSC is a close proxy to ground truth for verifying the Mazany model. This 
data is also used for the 9-Hour model, because this model will mainly be used to forecast 
lightning during shuttle roll-out from the VAB to the launch pad. A second set of lightning data 
was used which indicated lightning from within a rectangular area enclosing the 45 WS 

CCAFSIKSC lightning warning circles. This data is currently used to support the current Phase 
I/IT Lightning Advisory System, and therefore will be used to support the development of the 
new 2-Hour Forecasting Tool that will support lightning advisories in the future. 

Data Validation 

Scatter plots of the precipitable water and K-index data were developed to identify patterns and 
outliers in the data. Figure 7 below shows a sample scatter plot of precipitable water data from 
the 2003 thunderstorm season. A significant number of values at or below zero for precipitable 
water were flagged as errors in the data set and eliminated from consideration in the 
development and validation of the models. Similar scatter plots were built for the remaining 
years in the PW data set, as well as for the K-index data set, to identify outliers and errors. 

10.0

Figure 7: Sample Scatter Plot of Precipitable Water 

After initial data points were eliminated using scatter plots, Statistical Process Control (SPC) 
charts were used to identify points outside three standard deviations of the mean of the data set. 
Specifically, X-bar charts were used to identify X-bar, Upper Control Limits (UCL), and Lower 
Control Limits (LCL) for each year. SPC X-bar charts were created for both precipitable water 
and K-Index data sets for each year. Below is an SPC X-bar chart for the precipitable water data 
set from the 2003 thunderstorm season. Similar SPC charts were built for the remaining years in 
the PW data set, as well as for the K-index data.
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5Q 1 

10.0 

Figure 8: Sample SPC X-bar Chart of Precipitable Water 

Points that fell below the LCL and above the UCL were flagged as outliers and further examined 
against meteorological conditions surrounding the data points. In some cases, abnormal weather 
conditions could drive unusually low or high K-index and precipitable water data points that 
should be considered in the model. However, if no unusual meteorological conditions 
surrounded the data point, it was considered an error and eliminated from consideration in the 
development and validation of the models. In total, 34 points were eliminated from the 
precipitable water data set and none were eliminated from the K-index data set. 

The K-Index variable showed extensive variability about the mean, and therefore a substantial 
number of points fell outside of the control limits and were flagged as outliers. Upon further 
examination of the K-Index values collected between 1989 and 2003, a range of -33.8 to 44.3 
had been observed. A meteorological team at the 45th Weather Squadron reviewed the data and 
determined that the outliers were actually valid data points that should be considered in the 
development and validation of the models. The team noted the only data points to remove, or 
not consider in the model, were those data points having a value of -99.9. This value was a 
default value for times in which no data was collected. 

Data Synchronization 

Time differences in the collection of data drove the requirement to synchronize the data with the 
PW collection points. Electric field mill data is collected every five minutes; PW values are 
collected on the half hour each day; K-Index values are collected three times per day at varying 
intervals; and lightning data occurs randomly throughout the thunderstorm season. 
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The PW data point collected represented a centered time stamp, which means that the reported 
data time is the middle of the half-hour that the sensor spends looking at the atmosphere. For 
example, if the GPS-PW time stamp for a certain day is 1215, the data represents the sensor 
looking at the atmosphere and averaging the results from 1200-1230. To synchronize the 
lightning data with the PW data, the lightning was categorized into 30-minute groupings that 
aligned with the corresponding 30-minute GPS-PW interval. In our previous example, if 
lightning occurred between 1200 andl23O, it was mapped to the 1215 GPS-PW data point. 

The K-Index was synchronized with the GPS-PW data using two methods. To verify the 
existing model, the K-Index was interpolated between existing observations. Therefore, the K-
Index was assumed to climb or fall at a continuous rate between the two observations. The K-
Index was matched with the corresponding GPS-PW observation timeframe. To create the new 
predictive models, interpolation of the K-Index could not be used because the lag in data 
collection points would not provide the predictive capability necessary. In this instance, the K-
Index was assumed to be constant between data collection points. In this case again, the K-Index 
was matched with the corresponding GPS-PW observation timeframe. 

The electric field mill data was not synchronized with the PW, K-Index, or lightning data. A 
constant value of 300 V/rn for the electric field mill value was used to validate the Mazany 
model. The electric field mill value is only important less than 30-60 minutes prior to a lightning 
strike, which falls inside the forecast intervals in which the new models perform. Also, the 
Mazany model is very insensitive to the , electric fields and thus has little impact on the outcome. 
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Categorical Verification of Mazany Model 

Actual observations of the independent and dependent variables from the 2000-2003 
thunderstorm seasons were used to validate the Mazany Model. The process for verifying the 
model used the categorical forecasts of discrete predictands. The term categorical means the 
forecast consists of a flat statement that one and only one of a set of possible events occurs. In 
this model the categorical forecast "yes" lighting will occur and "no" lightning will occur. A 
discrete predictand is an observable variable that takes on one and only one of a finite set of 
possible values (8). In this model there are two discrete predictands, or possible outcomes, 
lightning did occur, "yes", and lightning did not occur, "no". 

The categorical verification data is displayed in a 2 x 2 contingency table of the forecasts and 
observed events (8). Figure 9 shows the contingency table of counts of the possible 
combinations of the forecast and observed events pairs, or forecast/event pairs. 

Observed 
Yes	 No 

Forecast	 Yes	 a	 b 
No	 c	 d 

Figure 9: Contingency Table 

The possible forecast/event pairs a, b, c, and d are defined as follows: 

a = Event Predicted to Occur and did Occur = Lightning Predicted to Occur and did Occur 
b = Event Predicted to Occur but did Not Occur = Lightning Predicted to Occur but did Not 

Occur 
c = Event Predicted to Not Occur but did Occur = Lightning Predicted to Not Occur but did 

Occur 
d = Event Predicted to Not Occur and did Not Occur = Lightning Predicted to Not Occur and did 

Not Occur 

The total number of forecast/event pairs in the data set is n = a + b + c + d (8). 

There are several measures to determine the accuracy of the categorical forecasts. The first 
measure is the hit rate. The hit rate determines the proportion of forecasts that were correct. The 
categorical forecast correctly forecast the event ("yes" lightning did occur) or nonevent ("no" 
lightning did occur.). The hit rate is determined as follows: 

H=(a+d)/n 

The Scale of the hit rate is from zero to one. The most accurate forecast is when the hit rate, H, is 

equal to one (8).
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The second measure typically used for categorical verification data is the POD. The POD is the 
fraction of those occasions when the forecast event occurred on which the event was also 
forecast. For the event of lightning occurring, lightning was forecasted to occur and lightning 
occurred. Hence, the probability of detection is determined as follows: 

POD = aJ (a + c) 

The scale of the POD is from zero to one. The most accurate forecast is when the POD is equal 

to one (8). 

Complementary to the POD is the POD f which is the probability of false detection. This 
measures the probability that lightning did not occur given that lightning was predicted. 

PODf = b/ (b + d)


The scale of POD f is from zero to one. The most accurate forecast is when PODf is equal to zero. 

The final measure commonly used to measure the accuracy of the forecasts is the FAR. The 
FAR is the proportion of forecast events that fail to occur. For the event of lightning occurring, 
lightning was forecasted to occur but lightning did not occur. Hence, the false-alarm rate is 

determined as follows:

FAR = b/ (a + b) 

The scale of the FAR is from zero to one. The most accurate forecast is when the FAR is equal 

to zero (8). 

The means of assessing, or measuring, the performance of the forecast model is to compute 
relative accuracy measures. These types of measures are called skill scores and are scalar 
measures of the forecast model performance. One such measure of skill is the Hansen-Kuipers 
skill score (KSS) (also identified as the true skill statistic (TSS)). The KSS is based upon the 
basic accuracy measure of the hit rate obtained by random forecasts that are constrained to be 
unbiased and referenced in the denominator. Based upon these assumptions, the Hansen-Kuipers 
skill score is determined as follows: 

KSS = (ad bc)/ (a + c) (b + d) 

The most accurate forecast is a score of one, random forecasts score zero and forecasts inferior to 
the random forecasts receive negative scores (8). 
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Another means of measuring the accuracy of the forecasts is the Operational Utility Index (OUT). 
The OUT was developed by the 45th Weather Squadron to measure the skill of their forecasts. 
The Operational Utility Index is calculated as shown below: 

OUT = (3*POD + 2*KSS - FAR) /6 

The index places the most importance, and therefore weight, on POD and KSS. 

Table 1 shows the results of the predictive capability of the current statistical model for the years 
2000 through 2003 from May 1 to September 30. Based upon the Lightning Index (5) value of 
0.6 - 0.7 indicating lightning expected in the next, approximately 6 hours, and the value of 0.0 - 
0.6 indicating lightning expected in the next approximately 1.5 hours, the categorical 
verification was performed on lighting forecast to occur in the next 6 hours and lighting forecast 
to occur in the next 1.5 hours, respectively. (Note, all values ranges are between zero and one. 
For ease of review, the percentage value was used.) 

Lightning Forecasts in next 6 and 1.5 Hours 

Year: 
2000

Observed 

6 Hours Yes No Hit POD POD FAR KSS OUT 

Forecast Yes 186 232 68% 29% 56% 56% 14°/h 10% 

No 447 1281 

Observed 

1.5 Hours Yes No Hit POD PODf FAR KSS OUI 

Forecast Yes 370 946 63°/o 51% 72% 72% 17% 19% 

No 353 179J

Year: 
2001

Observed 

6 Hours	 Yes	 No	 Hit	 POD	 PODf FAR KSS OUI 

Forecast	 Yes	 344	 559	 I 69%	 35%	 62%	 62%	 15% 12% 

No	 646	 2291 

Observed 

1.5 Hours	 Yes	 No	 Hit	 POD	 POD	 FAR KSS OUI 

Forecast	 Yes r 682	 2004	 I 62%	 57%	 75%	 75%	 20% 23% 

No	 508	 3332
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T-iit	 PñI)	 POD-	 FAR	 KSS OUT 

I	 75% 58% 65% 65% 36% 30° 

Hit	 POD	 PODf	 FAR	 KSS	 OUT 

I	 64% 63% 78% 78% 28% 28% 

Hit	 POD	 PODf	 FAR	 KSS	 OUT 

69% 48% 60% 60% 24% 22% 

Hit	 POD	 PODf	 FAR	 KSS	 OUT 

59% 62% 78% 78% 20% 25% 

Year: 
2002

Observed 

6 Hours	 Yes	 No 

Forecast	 Yes	 241	 446 

No	 178	 1584 

Observed 

1.5 Hours Yes	 No 

Forecast Yes fl45 1240 

No 202 2248 _j 

Year: 
2003

Observed 

6 Hours Yes	 No 

Forecast Yes 381 582 

No 406 1773

Observed 

1.5 Hours	 Yes	 No 

Forecast	 Yes	 587	 2026 

No	 354	 2788

Table 1: Accuracy Measure and Skill Scores of Forecasts 

The results of the accuracy measures for the 1.5 hour forecast period can now be compared to the 
accuracy measures of the tests results of the Mazany Model forecasts performed for the time 
period of June 10 to September 26, 1999, which was identified as Period-B. The Period-B 
forecasts were based upon the index value falling below 0.7 and 1.5 hours prior to the first strike. 
The accuracy measures applied to the initial tests results of the Mazany Model forecasts were 
FAR, POD and H. Table 2 compares 1999 Period-B with the four thunderstorm seasons from 
the year 2000 to 2003 from May 1 to September 30. 

1.5 Hour 
Forecast 1999 
Period Period B 2000 2001 2002 2003 

FAR 16.7 % 71.9 % 74.6 % 78.2 % 77.5 % 

POD 89.3 % 51.2 % 57.3 % 63.1 % 62.4 % 

H 82.6 % 62.5 % 61.5 % 64.3 % 58.6 %

Table 2: Comparison of Accuracy Measurements of GPS Lighting Index 

The GPS lightning index accuracy measure results for all four, full period thunderstorm seasons 
yield results not well compared to the results of the 1999 Period B. On average, the FAR 
increased by 58%, the POD decreased by 31% and the Hit Rate decreased by 20%. Even though 
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the accuracy measures indicate the Mazany model for forecasting lightning events 1.5 hours 
prior to the first strike is not a reliable forecasting method, the encouraging aspect of the model 
results were the consistency of the measures. This may provide future related projects the focus 
on the types of predictands to use and the lead time period to use. 

Regarding the lead time for forecasting, as was determined in the Mazany paper, the 
performance of the GPS lightning index lead time with regard to the timing of the first strike 
follows approximately a normal distribution. With the range of lead timebefore the first strike 
varying between 0 to 12 hours, the nominal lead time is approximately 6 hours. Based upon this 
finding, the GPS lighting index was also applied to the 6 hour forecast period. When compared 

to the 1.5 Hour forecast period the Mazany model did better overall. Table 3 compares the 
average 1.5 hour forecast period accuracy measures with the 6 hour forecast period accuracy 

measures. 

6 Hour Average 1.5 

Forecast Hour Forecast 
Period for 2000-2003 2000 2001 2002 2003 

FAR 75.6 % 55.5 % 61.9 % 64.9 % 60.4 % 

POD 58.5 % 29.4 % 34.7 % 57.5 % 48.4 % 

H 61.7 % 68.4 % 68.6 % 74.5 % 68.6 %

Table 3: Comparison of Accuracy Measurements for lead times of 1.5 and 6 hours for the


Mazany Model 

On average, the FAR decreased by 15%, the POD decreased by 16% and the Hit Rate increased 

by 7%. The decrease of the FAR and increase of the Hit Rate were encouraging results. The 
decrease of the POD was not a good indicator of the overall accuracy of the model. Even though 
the results were not as expected, the encouragement is the consistent results of the accuracy 

measures.
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2-Hr Forecasting Tool 

The 2 Hr Forecasting Tool seeks to predict the occurrence or non-occurrence of lightning to 
support Phase 1 lightning advisories. A 2- hour period was chosen to support the current process 
for issuing lightning advisories. This accounts for a 15-minute lag-time in receiving the PW 
readings, 45 minutes to process the information, and 30 minutes desired lead time to support 
Phase 1 Lightning Advisories. When the forecaster receives the PW reading, it is already 30-
minutes behind the time-stamp or 15-minutes behind the dwell time. After receiving the PW 
reading, the operator will use the model to predict the occurrence or non-occurrence of lightning. 

That information is then communicated to the 
45th Weather Squadron Weather Officer, who will 

then compare that data with other current weather information. The process allows 45 minutes 
for performing this analysis. Finally, the Weather Officer will make a decision as to whether or 
not to issue a Phase 1 Lightning Advisory with the desired 30-minute lead time. 

If, for example, the PW is time-stamped at 1215, the forecaster will receive the PW reading at 

1245. When the operator receives the PW information, the target period will be between 1400 
and 1430. The operator will process the data and communicate the information to the 45th 
Weather Squadron Weather Officer at or before 1315. The Weather Officer will compare the 
data with other current weather conditions, which will take approximately 15 minutes. At 1330, 
the Weather Officer will make the decision as to whether or not to issue a Phase 1 Lightning 
Advisory at 1400 for lightning between 1400 and 1430. Below is a timeline depicting this 

example:

Processing Time Lead Time Target Period


(45 mm)	 (30 mm)	 (30 mm) 

1215	 1245	 1330	 1400	 1430 

I	 I	 I 

PW Time-Stamp 

Receive PW Data 

Decision for Phase I 

Lightning Advisory 

Figure 10: Sample Timeline for 2-Hr Forecasting Tool 
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Data Structure 

The data set consisted of 26 candidate independent variables that are shown in the table below. 

Precipitable Water (PW) (cm) 6.5 Hr A PW (cm) 
0.5 Hr A PW (cm) 7.0 Hr A PW (cm) 
1.OHrAPW(cm) 7.5HrAPW(cm) 
1.5 Hr A PW (cm) 8.0 Hr A PW (cm) 
2.OHrAPW(cm) 8.5HrAPW(cm) 
2.5 Hr A PW (cm) 9.0 Hr A PW (cm) 
3.0 Hr A PW (cm) 9.5 Hr A PW (cm) 
3.5 Hr A PW (cm) 10.0 Hr A PW (cm) 
4.0 Hr A PW (cm) 10.5 Hr A PW.(cm) 
4.5HrAPW(cm) 11.OHrAPW(cm) 
5.0 Hr A PW (cm) 11.5 Hr A PW (cm) 
5.5 Hr A PW (cm) 12.0 Hr A PW (cm) 
6.0 Hr A PW (cm) K-Index (step)

Table 4: Candidate Independent Variables 

To assess the probability of lightning in 2 hours, the data set had to be modified. The 2-Hr 
Forecasting Tool seeks to determine the probability that lightning will occur in two hours. All 
independent variables were shifted 2 hours ahead and aligned with the value of the dependent 
variable at that point in time. The dependent variable lightning was not shifted. This associates 
the conditions for the latest observed precipitable water level, the change in precipitable water 
levels, and the latest K-Index observation with the occurrence or non-occurrence of lightning in 
2 hours. After the data was structured to properly reflect the occurrence of lightning, the data 
sets that did not have a value for each variable were removed. This meant a reduction in data 
points from 29,376 to 13,450. 

Model Selection Process 

Six methods were used for model selection: Forward Stepwise Conditional, Forward Stepwise 
Likelihood Ratio, Forward Stepwise (Wald), Backward Stepwise Conditional, Backward 
Stepwise Likelihood Ratio, and Backward Stepwise (Wald). When the initial models were 
generated, none of the models predicted the occurrence of lightning, yet it was correct 93.3% of 
the time. This occurred because out of 13,450 total data points, lightning only occurred 890 
times. Therefore, by never predicting lightning, the model was correct 93.3% of the time. This 
model produced a favorable FAR and PODf of 0%, because lightning was never predicted. 
However, PODO%, KSS =0%, and the Operational Utility Index = 0%. To account for this 
instance, the data set once again had to be modified. 

Only a subset of the data was used to include half of the data points with the value of the 
independent variable at one and the other half with the value of the independent variable at zero. 
This reduced the size of the data set from a total of 13,450 data points to a total of 1802 data 
points, of which 890 represented a one for lightning. 
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Goodness-of-Fit statistics were initially calculated to evaluate the model fit. Specifically, Cox & 
Snell R-squared, Nagelkerke R-Squared, and the Hosmer-Lemeshow goodness-of-fit x 2 were 
used as an assessment of model fit. A comparison of model outputs is shown below: 

Model Selection Method
Cox & Snell R 

Square
Nagelkerke R 

Square

Hosmer-
Lemeshow Chi-

square 

Forward Conditional 0.0773 0.103 1 19.0867 

Forward LR 0.0773 0.103 1 19.0867 

Forward Wald 0.0773 0.1031 19.0867 

Backward Conditional 0.0807 0.1076 15.1618 
BackwardLR 0.0807 0.1076 16.3335 

Backward Wald 0.0807 0.1076 15.1617

Table 5: Comparison of Goodness-Of-Fit Statistics for all models for the 2-Hr Forecasting Tool 

As you can see, there appears to be a lack of fit based on the values of Cox & Snell R-squared, 
Nagelkerke R-Squared, and the Hosmer-Lemeshow goodness-of-fit x2 However, this was not 
considered to be an issue for several reasons. First, the R-Squared values from a logistic 
regression are not the same as the R-Squared values calculated in a linear regression model. 
Therefore, they are not proven to be good measures of model fit. Second, these values are not 
relevant in measuring the model's utility, because they are evaluated against a threshold of 0.5. 
This means that outputs above 0.5 were predicted as lightning, while values below 0.5 were 
predicted as no-lightning. The utility of the model will be evaluated based on an optimized 
threshold. 

In selecting the model, the most weight was given to the values of the accuracy measurements 
and skill scores discussed above. These ratios include the Hit Rate (H), False Alarm Rate(FAR), 
Probability of Detection (POD), Probability of False Detection (PODf), Hansen Kuipers or True 
Skill Score (KSS), and an Operational Utility Index. The Operational Utility Index is considered 
to be the most critical factor, because this ratio applies more weight to the POD, which is critical 
when there are a large number of personnel that are affected. The purpose of a Phase 1 
Lightning Advisory is to ensure personnel performing outdoor operations have time to seek 
shelter. 

These accuracy measurements were calculated based on varying the lightning index from 0.0 to 
1.0. Note that all forward methods of model development process yielded the same model, and 
all backward methods of model selection yielded the same model. They are grouped into two 
categories in the table below: forward methods and backward methods. Again, the objective is 
to maximize the Operational Utility Index.

24 



Model Selection 
Method Index

J	
Hit POD FAR KSS

Operational 
Utility Index

1
PODf 

Forward Methods 0.0 49.7% 100.0% 50.3% 0.0% 41.6% 100.0% 
Backward Methods 0.0 49.7% 100.0% 50.3% 0.0% 41.6% 100.0% 
Forward Methods 0.1 50.2% 100.0% 50.1% 0.9% 41.9% 99.1% 
Backward Methods 0.1 50.0% 100.0% 50.2% 0.5% 41.8% 99.5% 

Forward Methods 0.2 52.6% 99.5% 48.8% 5.8% 43.6% 93.7% 
Backward Methods 0.2 53.1% 99.4% 48.5% 6.8% 43.9% 92.6% 
Forward Methods 0.3 574°/ 96.9% 46.0% 15.2% 45.8% 81.7% 
Backward Methods 0.3 57.3% 96.5°/s 46.1% 15.0% 45.6% 81.5% 
Forward Methods 0.4 59.8% 87.8% 43.9% 19.9% 43.3% 67.9% 
Backward Methods 0.4 60.1% 87.2% 43.6% 20.6% 43.2% 66.7% 
Forward Methods 0,5 58.3% 64.2% 42.9% 16.6% 30.5% 47.6% 
Backward Methods 0.5 60.8% 66.5% 40.5% 21.7% 33.7% 44.9% 
ForwardMethods 0.6 55.5% 28.9% 39.1% 10.6% 11.5% 18.3% 
Backward Methods 0.6 57.4% 32.6% 35.8% 14.6% 15.2% 18.0% 
Forward Methods 0.7 51.5% 4.8% 33.3% 2.4% -2.4% 2.4% 
Backward Methods 0.7 52.6% 7.6% 28.2% 4.7% 0.7% 3.0% 
Forward Methods 0.8 50.4% 0.4% 25.0% 0.3% -3.9% 0.1% 
Backward Methods 0.8 50.5% 0.6% 28.6% 0.4% -4.3% 0.2% 
Forward Methods 0.9 50.3% 0.0% N/A 0.0% N/A 0.0% 
Backward Methods 0.9 50.3% 0.0% N/A 0.0% N/A 0.0% 
ForwardMethods 1.0 50.3% 0.0% N/A 0.0% N/A 0.0% 

Backward Methods 1.0 50.3% 0.0% N/A 0.0% N/A 0.0%

Table 6: Comparison of Accuracy Measurements and Skill Scores for the 2-Hr Forecasting Tool 

The table shows how the various accuracy measurements change as the threshold changes. 
Setting the threshold at zero means that when the model outputs the probability of lightning at 
greater than zero, the model predicts that lightning will occur. Because the output of a logistic 
regression equation is between zero and one, lightning will always be predicted at a threshold of 
zero. Conversely, setting the threshold at one means that when the model outputs the probability 
of lightning at greater than one, the model predicts that lightning will occur. The latter case is 
impossible, because the output of a logistic regression is always between zero and one. 
Therefore, lightning will never be predicted when the threshold equals one. For example, POD 
is at its highest when the threshold equals zero because lightning is predicted every time. This 
results in a very high Operational Utility Index, because the Operational Utility Index places the 
most weight on POD. A lower threshold drives a higher FAR and POD f because lightning is 
falsely predicted more often. At a threshold of 1.0, the POD and POD f become zero, because 
lightning is never detected. This also produces a 0% FAR, because lightning is never falsely 
predicted.
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Both the forward and backward model selection methods performed similarly at all levels of the 
threshold, however, the models developed using the forward selection processes produced the 
highest Operational Utility Index. The Operational Utility Index is maximized at 45.8% at a 
lightning threshold of 0.3. However, indexes of 0.2 or 0.4 both provide a good Operational 
Utility Index ranging from 43.2% - 43.9%. 

The Operational Utility Index is at its highest at thresholds of 0.2, 0.3, and 0.4, therefore, the 
threshold was further refined around these three points by adding an additional decimal place. 
Further refinement of the threshold will provide a more specific threshold. The graph below 
shows how the Operational Utility Index varies with the Lightning Index for both forward and 
backward models.

Operational Utility Index vs Lightning Index 

50%

1 

H ___ - 40% _.4— Forward Stepwise 

.....-...Backward Stepwise 
35%

0.2	 0.25	 0.3	 0.35	 0.4	 0.45	 0.5 

Lightning Index 

Figure 11: Operational Utility Index vs. Lightning Index for the 2-Hr 

Forecasting Tool 

The graph shows that the Operational Utility Index increases slightly up to a peak of 0.32 and 
then begins to fall steadily at a threshold of 0.38. The highest Operational Utility Index results 
from the forward selection model process at a Lightning Threshold of 0.32. This Operational 
Utility Index is 46.3%. The graph also shows that there is not much sensitivity in the 
Operational Utility Index in this range of thresholds. The OUT ranges between 38.5% and 46.3% 
when the threshold is varied between 0.25 and 0.45



Li2htning Index 

Lowering the lightning threshold from 0.5 to 0.32 will adjust the mix of lightning forecast/not 
forecast and lightning observedinot observed. 

Threshold = 0.5 

Observed 

Yes	 No ___________ 

0' 
I	 Yes 512 I	 384 
I

No
I 

286 423 

Threshold = 0.32 

Observed 

Yes	 No __________________ 

I	 Yes 768 I	 637 0)1 

0 1 ________________ 
No I 30

I

170 

Figure 12: Contingency Tables for the 2-Hr Forecasting Tool 

Decreasing the threshold increases the amount of forecasted lightning from 896 to 1405, and 
decreases the amount of not-forecasted lightning from 709 to 200. The number of missed 
lightning events decreases from 286 to 30, yet the amount of falsely predicted lightning events 
increases from 384 to 637. Changing from a threshold of 0.5 to 0.32 changes accuracy 
measurements as shown in the table below: 

Threshold Hit POD FAR KSS

Operational 
Utility 
Index PODf 

0.5 58.3% 64.2% 42.9% 16.6% 30.5% 47.6% 
0.32 58.4% 96.2% 45.3% 17.3% 46.3% 78.9% 

% Increase 0.3% 50.0% 5.8% 4.4% 52.1% 65.9%

Table 7: Comparison of Accuracy Measurements and Skill Scores at Thresholds 0.5 and 0.32 for

the 2-Hr Forecasting Tool 

Lowering the threshold means that more lightning is detected. This results in a higher Hit Rate, 
POD, KSS, and Operational Utility Index. However, this also increases the FAR and PODf. 
This result is acceptable, because detecting lightning is much more important that falsely 
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warning of a lightning strike when there are a large number of lives at stake. While a threshold 
of 0.32 maximizes the Operational Utility Index, other thresholds provide a higher HR and KSS 
and a lower FAR and PODf while still maintaining a relatively good Operational Utility Index. 

New Logistic Regression Eguation 

The models perform differently at different threshold levels; therefore the model selected will 
vary based on the threshold. At a threshold of 0.32, the model generated using forward model 
selection processes was selected as the new logistic regression equation for several reasons. 
First, this model maximized the Operational Utility Index. Second, this model has oniy four 
independent variables while the backward regression model has six. The logistic regression 
takes the form of

f(z) = 1 / (l+e) 
where z = a + 

and 
a=-2.366 
3=2.053 x1=A0.5HrPW 
[32 -0.538 x2=L7.5HrPW 
f3 3 = 0.031 x3 = K-Index 

13 4 = 0.3 22 x4 = Precipitable Water (PW) (cm)

This translates to:

1/ (1+e 2.366+2.053x +-0.538x +0.031 x +0.322x )) 
1	 2	 3	 4 

The most significant independent variable in the model is the 0.5 hr change in PW. A change in 
the 0.5 hr PW will have the most impact the outcome of the model. 

Independent Test 

A random sample of 10% of the data set was selected to validate the 2-Hr Forecasting Tool. The 
sample was selected based on a random number generator that assigned a value between 0 and 1 
to each data point. After the random number was assigned, all values that fell below .10 were 
selected arid removed from the model data set. The test data set consisting of 197 data points 
was used to validate the 2- Hr Forecasting Tool. The model data set consisted of 1,605 data 
points. 

The values for the independent variables were plugged into the new regression equation, and 
new predictions were made. At all levels of the threshold, the independent data closely matched 
the model performance. This independent verification of the model indicates that the model 
generated is valid. The table below provides a comparison of the model and test data sets at a 
threshold of 0.32 that maximizes the Operational Utility Index, and at the original threshold of 
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0.5. The test data set performed very closely to the model data set at both thresholds, indicating 
that the logistic regression equation is valid. 

Threshold Hit POD FAR KSS
Operational 
Utility Index PODf ______________ 

Model 0.32 58.4% 96.2% 45.3% 17.3% 46.3% 78.9% 

Test 0.32 56.9°c 94.6% 47 . 9 0 0 18.40	 45.4°o	 76.2% 

Delta 1	 .016	 .017 .026	 j .011 .009 .027 

N'o0e 0.5 5S.3	 04.2% 42.0o 16.60o 30.5% 47.6% 

Test 0.5 62.9% 64.1% 40.4% 26.0O/o 

_

34.0% 38.l% 

Delta .047 .001 .025	 ] .095 .035 .095

Table 8: Comparison of Model Data and Test Data for the 2-Hr Forecasting Tool 
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9-Hr Forecasting Tool 

The 9-Hr Forecasting Tool seeks to predict the probability of lightning in the next nine hours to 
support major outdoor operations, such as shuttle roll-out from the VAB to the launch pad. Prior 
to beginning an extended outdoor activity, it is essential to know the probability of lightning. If 
lightning has a high probability of occurrence, the outdoor operations will be postponed until 
weather conditions are more favorable. 

Data Structure 

The same candidate independent variables were to develop in the 9-Hr Forecasting Tool as were 
used in the 2-Hr Forecasting Tool as shown in Table 4. To assess the probability of lightning in 
the next nine hours, the data set had to be modified. If lightning occurred at any time within nine 
hours of a precipitable water data point, a value of one was assigned to the dependent variable. 
Likewise, if lightning did not occur within nine hours of a precipitable water data point, a value 
of zero was assigned to the dependent variable. After the data was structured to properly reflect 
the occurrence of lightning, the data sets that did not have a value for each variable were 
removed. This meant a reduction in data points from 29,309 to 13,426. 

Model Selection Process 

Six methods were used for model selection: Forward Stepwise Conditional, Forward Stepwise 
Likelihood Ratio, Forward Stepwise (Wald), Backward Stepwise Conditional, Backward 
Stepwise Likelihood Ratio, and Backward Stepwise (Wald). 

Goodness-of-Fit statistics were initially calculated to evaluate the model fit. Specifically, Cox & 
Snell R-squared, Nagelkerke R-Squared, and the Hosmer-Lemeshow goodness-of-fit x 2 were 
used as an assessment of model fit. A comparison of model outputs is shown below: 

Model Selection Method
Cox & Snell R 

Square
Nagelkerke R 

Square
Hosmer —Lemeshow 

Chi-square 

Forward Conditional 0.181 0.246 99.416 

ForwardLR	 - 0.181 0.246 99.416 

Forward Wald 0.181 0.246 99.416 

Backward Conditional 0.181 0.246 98.296 

BackwardLR 0.181 0.246 90.723 

Backward Wald 0.181 0.246 98.296

Table 9: Comparison of Goodness-Of-Fit Statistics for all models for the 9-Hr Forecasting Tool 

While these values show an improvement over the 2-Hr Forecasting Tool, they still do not 
represent a good model fit. However, for the same reasons as described earlier, these values 
were determined not to be good indicators of model fit. 
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In selecting the model, the most weight was given to the value of several accuracy measurements 
and skill scores. These ratios include the Hit Rate (H), False Alarm Rate(FAR), Probability of 
Detection (POD), Probability of False Detection (POD f), Hansen Kuipers or True Skill Score 
(KSS), and an Operational Utility Index. The KSS is considered to be the most critical factor in 
the 9-Hr Forecasting Tool. In the case of the 9-Hr Forecasting Tool, fewer personnel will be 
impacted because there are fewer employees outside for the space shuttle roll-out. Therefore, 
while POD is still critical, it is also important not to falsely detect lightning and cause a launch 
delay costing millions of dollars. 

The accuracy measurements and skill scores were calculated based on varying the lightning 
index from 0.0 to 1.0. Note that all forward methods of model development process yielded the 
same model, and all backward methods of model selection yielded the same model. They are 
grouped into two categories in the table below: forward methods and backward methods. Again, 
the objective is to maximize the KSS.
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Model Selection 
Method Threshold Hit POD FAR

Operational 
KSS	 Utility Index PODf 

Forward Methods 0 38.4% 100.0% 61.6% 0.0%	 39.7% 100.0% 

BackwardMethods 0 38.4% 100.0% 61.6% 0.0%	 39.7% 100.0% 

Forward Methods 0.1 51.8% 98.8% 55.7% 21.3°/o 36.6% 77.5% 

Backward Methods 0.1 51.9% 98.8% 55.7% 21.4% 36.5% 77.4% 

ForwardMethods 0.2 59.2% 95.8% 51.5% 32.2% 34.0% 63.6% 

Backward Methods 0.2 59.3% 95.7% 51.5% 32.4% 1	 33.9% 63.3% 

Forward Methods 0.3 63.l% 89.1% 48.9% 35.9% 30.4% 53.2% 

Backward Methods 0.3 63.100 88.9% 48.9% 35.8% 30.3% 53.1% 

Forward Methods 0.4 66.2% 75.6% 45.7% 35.9% 24.2% 39.7% 
Backward Methods 0.4 66.2% 75.4% 45.7% 35.9% 24.1% 39.5% 

Forward Methods 0.5 67.1 0 51.8% 41.9% 28.5% 14.2% 23.3% 
Backward Methods 0.5 67.2% 51.5% 41.8% 28.5% 14.1% 23.1% 

Forward Methods 0.6 64.9% 24.8% 39.5% 14.7% 3.4% 10.1% 
Backward Methods 0.6 64.8% 24.5% 39.5% 14.5% 3.3% 10.0% 
Forward Methods 0.7 62.7° 5.9% 33.7% 4.0% -3.3% 1.9% 
Backward Methods 0.7 62.7% 6.0% 33.7% 4.1% -3.3% 1.9% 
ForwardMethods 0.8 61.6% 0.1% 44.4% 0.1% -7.4% 0.1% 
Backward Methods 0.8 61.6% 0.1% 57.1% 0.0%	

1
-9.5% 0.1% 

ForwardMethods 0.9 6 1.6% 0.0% N/A 0.0% N/A 0.0% 

Backward Methods 0.9 61.6°4 0.0% N'A 0.0% N/A 0.0% 
ForwardMethods 1 6 1.6% 0.0% N/A 1_0.0% N/A 0.0% 

BackwardMethods 1 61.6% 0.0% N/A _0.0% N/A 0.0%

Table 10: Comparison of Accuracy Measurements and Skill Scores for the 9-Hr Forecasting

Tool 

The KSS varies significantly with changes in the threshold, although the values at thresholds of 
0.3 and 0.4 are similar. As you can see, the KSS is maximized at 35.9% at a lightning threshold 
of 0.3 for the forward methods and 0.4 for both the forward and backward methods. Both 
forward and backward selection models performed similarly at all levels of the threshold. 

The KSS is at its highest at thresholds of 0.3 and 0.4, therefore the threshold was further refined 
around these two points by adding an additional decimal place. Further refinement of the 
threshold will provide a more specific threshold. The graph below shows how the KSS varies 
with the Lightning Index for both forward and backward models between 0.25 - 0.45. 
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KSS vs. Lightning Index 

40%-

35% -
• Forward Stepwise 1 -t-- Backward Stepwise 

30% -	 I	 I 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Lightning Index 

Figure 13: KSS vs. Lightning Index for the 9-Hr Forecasting Tool 

The graph shows that KSS increases slightly up to a maximum of 0.35 and begins to fall steadily 
at a threshold of 0.38. The maximum KSS of 36.8% results from the forward selection model 
processes at lightning thresholds of 0.35 and 0.37. In this range of the Lightning Index, the KSS 
changes minimally, with the largest value being 36.8% and the smallest being 33.4%. 

Lightning index 

The KSS was maximized at thresholds of both 0.35 and 0.37. Further comparison of accuracy 
measurements and skill scores is required to select the optimal threshold. The table below 
compares all accuracy measurements and skill scores of the forward selection models at 
thresholds of 0.35 and 0.37. 

Operational 
Utility 

Threshold Hit POD FAR KSS Index PODf 

0.35 64.9% 83.5% 47.3% 36.8% 27.7% 46.7% 

0.37 65.5% 80.9% 46.6% 36.8% 26.6% 44.1%

Table 11: Comparison of Accuracy Measurements and Skill Scores at Thresholds of 0.35 and 

0.37 for the 9-Hr Forecasting Tool 
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Increasing the threshold from 0.35 to 0.37 results a lower POD and Operational Utility Index. 
However, a higher FIR, lower FAR and lower POD f result from increasing the threshold. Over 
long periods of time, such as the 9-Hr Forecasting Tool, more weight is given to FAR and PODf. 
Therefore, a threshold of 0.37 is superior to a threshold of 0.35. 

The output of the logistic regression model, or the lightning index, is the probability that the 
outcome is equal to one. In this case, that is interpreted as the probability of lightning. The 
model is set up to predict lightning when the probability of lightning is greater than 50%. 
Lowering the lightning index from 0.5 to 0.37 will increase the amount of lightning that is 
detected, which will adjust the mix of lightning forecast/not forecast and lightning observed/not 
observed.

Threshold = 0.5 

Observed 

Yes	 No ___________ 

I	 Yes 
0I _________ 2393 1727 

No 2227 5677 

Threshold = 0.37 

Observed 

Yes	 No ____________ 

Yes 
0I __________ 3738 3268 

No 882 4136

Figure 13: Contingency Tables for the 9-Hr Forecasting Tool 

Decreasing the threshold increases the amount of forecasted lightning from 4,120 to 7,006, and 
decreases the amount of not-forecasted lightning from 7,904 to 5,018. The number of missed 
lightning events decreases from 2,227 to 882, yet the amount of falsely predicted lightning 
events increases from 1,727 to 3,268. Changing from a threshold of 0.5 to 0.37 changes the skill 
and accuracy measurements of the model as shown in the table below: 
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Operational 
Utility 

Threshold Hit POD FAR KSS Index PODf 
0.5 67.1% 51.8% 41.9% 28.5% 14.2% 23.3% 

0.37 65.5% 80.9% 46.6% 36.8% 26.6% 44.1% 
% Increase! 

Decrease -2.4% 56.2% 11.3% 29.2% 87.4% 89.2% 

Table 12: Comparison of Accuracy Measurements and Skill Scores at Thresholds of 0.5 and

0.37 for the 9-Hr Forecasting Tool 

Lowering the threshold means that more lightning is detected. This results in a higher POD, 
KSS, and Operational Utility Index. However, this also increases the FAR and POD f. While a 
threshold of 0.37 maximizes the KSS, other thresholds provide improvements to FAR and PODf 
while still providing good KSS. 

New Logistic Re2ression Equation 

The model generated using forward model selection processes was selected as the new logistic 
regression equation for several reasons. First, this model produced the highest KSS. Second, 
this model has only five variables while the backward regression model has six. The logistic 
regression takes the form of

f(z)= 1 /(1+e) 
where z = a + 

and 
a = -4.885 
13 ' = 0.54 1 x1 = Precipitable Water (PW) (cm) 
132 = 0.346 x2 = 3.5 Hr PW 
f3 3 =-0.446 x3=L8.5HrPW 
134 =0.235 x4=LiI2HrPW 

= 0.07 1 x5 = K-Index

This translates to: 

1/ (1+e+4885 + O.541x + O.346x + -0.446 x + 0.235x + 0.071x ) 
1	 2	 3	 4	 5) 

The most significant independent variable in predicting lightning is the current PW level. The 
second most significant variable is the 8.5-hr change in the PW level in the atmosphere. This is 
similar to the Mazany model that determined that the 9-hr change in PW was most significant in 
predicting lightning.
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Independent Test 

A random sample of 10% of the data set was selected to validate the 9-Hr Forecasting Tool. The 
sample was selected based on a random number generator that assigned a value between 0 and 1 
to each data point. After the random number was assigned, all values that fell below .10 were 
selected and removed from the model data set. The test data set consisting of 1,402 data points 
was used to validate the 9- Hr Model. The model data set consisted of 12,024 data points. 

The values for the independent variables were plugged into the new regression equation, and 
new predictions were made. At all levels of the threshold, the independent data closely matched 
the model performance. This independent verification of the model indicates that the model 
generated is valid. The table below provides a comparison of the model and test data sets at the 
threshold of 0.37 that maximizes KSS, and at a threshold of 0.5 which was the default threshold. 
The test data set performed very closely to the model data set, indicating that the logistic 
regression equation is valid. 

Model vs. Test 
Data Threshold Hit POD FAR KSS

Operational 
Utility 
Ilidex POD1 

Model 0.37 65.5% 80.9% 46.6% 36.8% 26.6% 44.1% 

Test 0.37 64.8% S0.2% 47.7% 35.6% 29.3% 44.7% 

Delta .007 .007 .011 .012 .027 .005 

Model
________ 

0.5 67.1% 51.8% 41.9% 28.5% 14.2% 23.3% 

Test 0.5 65.8% 49.9% 44.6% 

_

25.5% 13.0% 24.5% 

Delta ________ .013 .019 1.026 .030 .012 .011

Table 13: Comparison of Model and Test Data for the 9-Hr Forecasting Tool 

36 



Recommendations 

The forecasting tools developed show promise in improving on the daunting task of 
trying to predict lightning. As the validation of the Mazany model shows, these tools sometimes 
do not prove to be as useful when put into practice. Therefore, these two new forecasting tools 
should be used; however validation of these models should be done on a regular basis to ensure 
that they are effective. As more data becomes available, the models should be consistently tested 
and updated when necessary. This research focused on PW, the change in PWover a 12 hour 
period, and the K-Index. Other factors should be tested for significance in forecasting lightning 
that could improve the effectiveness of the models. These models could be improved by 
increasing the frequency at which data is collected. Several assumptions had to be made 
regarding the K-Index and PW because of the data collection intervals. For example, the average 
PW over a 30 minute timeframe was used to represent the latest PW observation. Also, the latest 
K-Index value was used, which could sometimes be hours from the current time. Increasing the 
frequency of PW and K-Index data collection will improve the model's ability to accurately 
forecast lightning. 

The lightning index for both models was established based on maximizing the OUT for 
the 2-Hr Forecasting Tool and the KSS for the 9-Hr Forecasting Tool. These lightning indices 
can be established at any level, and the various accuracy measures and skill scores will change. 
Establishing the threshold at 0.32 for the 2-Hr Forecasting Tool causes the POD f to be almost 
80%. This level may be unacceptable and therefore the threshold would need to be increased. 
Therefore, the lightning indices should be established such that all accuracy measures and skill 
scores are at an acceptable level.
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Appendix 

Applied Statistics and Probability for Engineers contributed most in the research for this 
project. Specifically, scatter plots, Statistical Process Control (SPC) charts, regression methods, 
and model selection processes were applied throughout the project. Deterministic Method in 
Operations Research contributed to the project in understanding maximization of the lightning 
indices. Quality Management and Engineering also provided the background for supporting the 
process that would be used to develop both the 2-Hr and 9-Hr Forecasting Tool. 
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