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ABSTRACT 

The application of overset grids to the computational fluid dynamics analysis of 

three-dimensional internal flow in the payloadlfairing of an expendable launch vehicle is 

described. In conjunction with the overset grid system, the flowfield in the 

payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes 

code. The solution exhibits a highly three dimensional complex flowfield with swirl, 

separation, and vortices. Some of the computed flow features are compared with the 

measured Laser-Doppler Velocimetry (LDV) data on a 115th scale model of the 

payloadlfairing configuration. The counter-rotating vortex structures and the location of 

the saddle point predicted by the CFD analysis are in general agreement with the LDV 

data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical 

lines in the LDV measurement plane in the faring nose region show reasonable 

agreement with the LDV data. 

Keywords: chimera overset grids, payload fairing, turbulence models, Navier-Stokes 

solutions, internal flow



1. INTRODUCTION 

Overset (or embedded) grids are increasingly considered in the CFD applications for 

the prediction of flowfield about complex three dimensional geometries. In the well-

known chimera overset grid scheme (Benek et al. 1986) overlapping grids are generated 

about individual (component) grids, and intergrid boundary communication is 

accomplished through interpolation. It does not require common boundaries as in the case 

of patched grids. It thus affords great geometric flexibility and independence (different 

grid topologies) and also permits different flow models (turbulence models, gas models, 

such as perfect gas and real gas, and algorithms) to be considered in the component 

subdomains constituting the overall grid system. 

Overlapping grids were mostly applied to problems of high speed aerodynamics. 

These include space shuttle external flow (Slotnik et al. 1994), and numerous aircraft and 

missile configurations. The reported applications of overset grids to low speed internal 

flows are, however, relatively few. 

The present paper reports the application of an overset grid method for the 

computation of low-speed three-dimensional internal flow past a spacecraft encapsulated 

within a payload/fairing of a Delta II expendable launch vehicle (ELY). A primary 

objective of this work is to develop CFD models for simulating prelaunch air flowfield 

within the payload fairing. The flow solution is obtained with the OVERFLOW code 

(Kandula and Buning 1994, Pulliam 1997, Buning et al. 1998) which solves the Navier-

Stokes equations with one- or two-equation turbulence models. The computed flow



features and velocity profiles are compared with the measured Laser Doppler velocimetry 

(LDV) data acquired on a 1/5 scale model on the payload fairing configuration. 

2. PAYLOAD FAIRING ANALYSIS 

2.1 Geometric Configuration 

The payload fairing (PLF) of an expendable launch vehicle encapsulates the 

spacecraft and protects the payload by shielding it from aerodynamic buffeting and 

heating while in the lower atmosphere , and also from vibroacoustic loading during the 

launch phase. A typical PLF consists of a cone/cylinder structure, biconic section, 

conditioning air diffuser, acoustic absorption blankets, and fairing separation system. The 

payload fairing is jettisoned off as soon as the launcher leaves the atmosphere. Prior to 

launch, the payload is cooled by circulating cold air delivered through an air conditioning 

(AC) pipe attached to the fairing from the outside. The conditioned air flows past a 

diffuser located at the pipe/fairing interface. After passing over the spacecraft mounted 

within the fairing, it is finally discharged. The PLF air conditioning is cut off at lift-off. 

The payloadlfairing considered here is the 1OC/ (EO-1 & SAC-C) fairing that 

encapsulates two spacecrafts, an Earth-Observation satellite (EO-l) and the Satellite de 

Applications Centificas-C (SAC-C) with a Dual Payload Attach Fitting (DPAF). It has a 

cylindrical type structure with conical ends. The EO-1 is attached on the top of the DPAF 

and the SAC-C is installed inside the cylindrical portion of the DPAF. Here only the EO-

1 spacecraft is modeled. The EO- 1 has a hexagonal base on which various components 

are mounted (figure 1). The major components include the hexagonal main structure, 

Advanced Land Imager (ALl), Hyperion, X-band boom, and solar arrays (figure 2). Some 

of the computational aspects of the internal flow of this payload/fairing pre-launch air



cooling system have been described in Kandula and Walls (2003). Detailed descriptions 

of the test model, LDV measurement system, seeding, and test procedure were presented 

in Kandula et al (2005). 

2.2 Grid generation 

2.2.1 Geometric simplifications 

Practical considerations in the construction of a reasonable grid system for CFD 

analysis of complex configurations require some essential geometric simplifications. In 

the present context, these simplifications include the identification of major spacecraft 

components that are attached to the main structure, which in our judgment have 

significant effects on the overall flowfield. Factors such as volume, surface area, and 

relative geometric orientation have obvious impacts in this consideration. Components 

having admittedly lesser influence were altogether ignored. Also, for a given component, 

some minor approximations to the surface shape were also considered. The overall 

objective in the simplification process is to balance the number of grid points 

(computational cost and grid generation time) vis-à-vis the solution accuracy. 

2.2.2 Overlapping scheme 

Overlapping grids are generated for the entrance AC pipe, fairing, and spacecraft. 

Various grid topologies are considered including 0-grid and H-grid. In the intersection 

regimes, such as pipe/fairing and spacecraft main structure component intersections, 

collar grids were considered. The collar grids provide the communication between the 

intersecting grids, as well as necessary resolution for viscous flow computation. Surface 

grids for the components are generated primarily with the Gridgen code (Steinbrenner 

and Chawner 2005). The collar surface grids are built with the well-known Chimera Grid 
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Tools, which include HYPGEN hyperbolic grid generation package (Chan et al. 1999). A 

more detailed discussion on the collar grids may be found in Parks et al (1991). Field 

(volume) grids are obtained from Gridgen and HYPGEN. Intergrid boundary 

communication is obtained with the aid of PEGASUS software (Suhs and Tramel 1991). 

2.2.3 Primary Grids 

The primary grids (excluding the collar grids) are first generated as described above. 

Figure 3 displays the surface grids for the PLF and the E0- 1. An 0-grid is employed for 

AC pipe, with an axis boundary condition, as seen in figure 4(a). An H-grid is considered 

for the PLF volume grid, as indicated in figure 4(b). A single grid is created for the E0-1 

and the DPAF, with an axis boundary condition at the hexagonal end. The surface grid 

for E0-1/DPAF is indicated in figure 4. The diffuser grid is composed of two axis 

boundary conditions. 

2.2.4 Collar Grids 

a. Fairing/pipe collar grid 

The generation of fairing/pipe collar grid for internal flow is somewhat analogous to 

that of exterior grids such as in wing/fuselage junction of an aircraft grid system. But the 

present case of internal flow leads to considerable complexity. The process of grid 

generation for the collar volume grid is summarized as follows. Starting from the 

intersection curve of the fairing/pipe surfaces, surface grids were grown on the pipe and 

the fairing. From the outer edge (boundary) of the surface grid on the fairing interior 

surface, a cylindrical type surface grid is grown normal to the wall so that it protrudes 

into the fairing interior to some distance from the wall.



Figure 5 shows the surface grid of the collar, which is composed of the surface grid 

on the pipe, surface grid on the fairing, and the flow-through extension into the fairing 

interior. From the surface grid, an interior volume grid for the collar is developed with 

the aid of GRIDGEN software. Initial volume grids were built with the algebraic 

transfinite interpolation. These grids were smoothed by running the three dimensional 

elliptic solver. To the authors' knowledge, such an internal collar grid generation has not 

been reported previously. 

b. Spacecraft collar grids 

Five collar grids are required for the EO-1 spacecraft modeling. One main 

observation is that the initial surface grid for the main spacecraft structure needs to be 

locally refined when inserting the collar grids. This crucial step is necessary for carrying 

out the PEGSUS interpolation. 

2.2.5 Intergrid Communication 

In the overlapping grid system, grids are chosen to cut holes in other grids, and to 

overlap any number of grids. The interpolation process in PEGASUS code is briefly 

described here with the aid of figure 6 in which the solid boundary of mesh 2 intersects 

mesh l(see Rogers et al. 2003). Grid points in mesh 1 that are inside the solid body of 

mesh 2 are blanked out, and are known as hole points, which are excluded from the 

computational domain. The grid points in mesh 1 surrounding the blanked points, known 

as hole-fringe points, receive flowfield information interpolated from grid points in mesh 

2. The grid points on the outer boundary of mesh 2 obtain flowfield information 

interpolated from grid points in mesh 1.



The PEGASUS code provides the interpolation data required by the flow solver for 

the inter-grid communication. The output typically consists in a list of the mesh points 

that are interpolated, the donor cells for each interpolated point, and a list of blanked out 

points (hole points). 

2.2.6 Overall Grid System 

The overall grid system for the 1OCIEO-1 is composed of 12 grids and 2.5x10 6 grid 

points. This grid system includes grids for fairing, AC pipe, pipe/fairing collar, diffuser, 

EO-1, solar array, ALT, Hyperion, X-band boom and collar grids for the intersections of 

ALT, Hyperion, and X-band boom with the EO- 1. 

2.3 Flow solution 

The steady flowfield solution is obtained using the OVERFLOW code (Kandula and 

Buning 1994, Jespersen et al. 1997). OVERFLOW code is a three-dimensional Navier-

Stokes code developed by NASA. It solves the governing mean flow equations in 

conservation form in generalized coordinates (, i, ) that are transformations of the 

rectangular coordinate space (x, y, z). The compressible Navier-Stokes equations that are 

solved in OVERFLOW are of the form 

(Q'J) ^E +F +Gç = Re 1 (F +G,7 +H)	 (la) 

where the solution vector Q containing conservative variables is defined by 

Q=(p,pu,pv,pw,e)IJ	 (ib) 

Here J is the geometric transformation Jacobian, F, G and H are inviscid fluxes, 

and F, G, and H are the viscous fluxes. 

The present solutions are based on the diagonalized version of the Beam-Warming 

three-factor approximate factorization scheme (Beam and Warming, 1976), with central



differencing for convective fluxes and diffusion fluxes. Although incompressible CFD 

codes are available, OVERFLOW code was chosen here because of its well tested 

Chimera grid handling capability. Low Mach number preconditioning is employed for the 

present investigation to accelerate convergence. 

2.3.1 Turbulence model 

The validity of CFD analysis is critically dependent on the choice of turbulence 

model. Two-equation models provide better flow physics than one-equation models with 

regard to adverse pressure gradients, flow separation, etc. (Kandula and Wilcox 1995). 

However, for practical application involving three-dimensional (3-D) flows, one-equation 

models are frequently considered (e.g., Space Shuttle ascent flowfield, Slotnik et al. 

1994), since two-equation models and higher-order models are cost-prohibitive despite 

their ability to include improved flow physics. 

Both one- and two-equation turbulence models are implemented in the code. The 

one-equation turbulence models include those of Spalart-Ailmaras (1992) and Baldwin 

and Barth (1980), and the two-equation models include that of k - w Shear Stress 

Transport (SST) model due to Menter (1994). However, only one equation turbulence 

models are considered here. The Spalart-Ailmaras (1992) one equation turbulence model, 

which is widely considered in external aerodynamics, is chosen as the base-line model for 

this application. In this method, a single partial differential equation for the transport of 

turbulence kinetic energy, k is solved for. This model is widely considered and validated 

for different flow regimes.
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2.3.2 Initial and boundary conditions 

The flow starts from rest at t = 0 in the entire system. Appropriate boundary 

conditions were imposed, including the solid wall, inflow and outflow boundary 

conditions. Inflow velocity profile and mass flow rate are specified at the pipe inlet. The 

static pressure at the outflow boundary was adjusted to get the necessary mass flow rate. 

Convergence is achieved using time-stepping scheme, multi-grid cycling, and low Mach 

number preconditioning. 

2.3.3 Flow conditions 

Steady state solution for this grid system was obtained for a pipe Reynolds number 

of 2.40x10 5 (based on pipe diameter) and a Mach number of 0.04. This Reynolds number 

corresponds to full scale model with an air conditioning pipe of 10 inch (25.4 cm) 

diameter. 

In the second phase of the work, a 115th scale model of the payload/faring was built 

and Laser Doppler Velocimeter (LDV) measurements were made. For dynamic 

similarity, the Reynolds number in the scale model should be the same as in the prototype 

(full-scale) model. However, due to difficulties with the particle seeding with the olive oil 

in the model test, the flow rate had to be reduced by a factor of 4. Thus the model testing 

and CFD comparisons were done at 114th of the full scale Reynolds number, i.e., 

0.593x 10. The details of the model and the experimental procedure are discussed in 

Kandula et al. (2005).



3. RESULTS AND DISCUSSIONS 

3.1 Full-scale Reynolds number solution 

3.1.1 Convergence History 

Figure 7 shows the convergence history for the solution residuals. This residual 

history serves as a qualitative measure of convergence to the steady state and suggests 

that convergence is approached in about 2000 iterations. A quantitative measure of 

convergence is provided by the convergence history of the ratio of the exit to inlet mass 

flow rate, as shown in figure 8. 

3.1.2 Flowfield solution 

An examination of the steady state flowfield suggests that the flow is highly three 

dimensional and is characterized by swirling flow, vortex flow, and separated flow. The 

streak lines (neutrally buoyant marker path lines) originating from the pipe outlet 

are displayed in figure 9(a). Figure 9(b) shows calculated streak lines from a source 

located on EO- 1. It is seen that these streak lines negotiate limited upstream movement 

and eventually exit downstream. The streak lines demonstrate complicated three-

dimensional swirling flow. 

Velocity vectors over the EO- 1 surface, shown in figure 10(a) suggest that flow 

separation is noted on the EO-1/DPAF intersection region and on downstream end of the 

DPAF. Reattachment of the flow occurs at the downstream end of the guidance section. 

Figure 10(b) exhibits the velocity vectors in the cross section of the fairing corresponding 

to an axial plane. Secondary flow, characteristics of swirl flow, is evident from this plot. 
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3.2 Test Reynolds number solution 

3.2.1 LDV Measurements 

A 115th scale model of the payloadlfairing was built, shown in figure 11, and the test 

data for the velocity field was obtained from the scale model test. Gaseous Nitrogen 

(GN2), serving as the test fluid, was supplied from a tube bank at 2400 psig and the 

pressure was reduced by pressure regulators. 

Laser Doppler Velocimetry (LDV) was used to obtain planar (two dimensional) 

velocity measurements. An Ar-Ion continuous wave laser was employed in backscatter 

mode. The laser had a 60 mW power in each wavelength of measurement 486 nm and 

514 nm. Each of the two colors is used to measure one velocity component. The Burst 

Spectrum Analyzer (BSA) can provide up to 100,000 velocity measurements per sec. 

Three dimensional laser traverse system had a range of 310 mm x 310 mm. Form a built 

in software, a Cartesian mesh with the desired resolution was defined for the plane of 

measurement. 

Olive oil was used as the seeding particle. The SCITEK seeder produced olive oil 

droplets with the mean droplet diameter of about 2 to 3 tm. Problems were encountered 

because of low particle seeding level and condensation of moist air on the outside of the 

model. At the normal flow rate of 22 lbmlmin (9.97 kg/mm), the seeding was found to be 

inadequate as the sampling rate was unacceptably low. A decision was therefore made to 

reduce the flow rate by a factor of 4 (Reynolds number is reduced by a factor of 4). This 

afforded a good sampling rate of about 1000 samples/sec. Thus the test operation is at a 

lower Reynolds number than that of the full scale Reynolds number. Hence an additional 
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CFD solution was obtained for the reduced Reynolds number of 0.593 x i05 for 

validation with the LDV data. 

The CFD and LDV data comparisons in the present paper, is limited to a 

measurement plane shown in figure 12. This measurement plane is located in the fairing 

nose region and is oriented at about 6 degrees from the pipe axis. 

3.2.2 Comparison of CFD with LDV measurements 

As mentioned above, the scale model LDV tests were conducted at a Reynolds 

number of 0.593x	 which is l/4t1 of that of the full-scale. At this low Reynolds 

number considerable convergence difficulties were experienced. From the steady state 

solutions, the velocity fields on the measurement plane were interpolated using Tecplot 

software. The velocity profiles on specified horizontal and vertical lines in the 

measurement plane were also interpolated from CFD solutions and LDV data. 

Figures 13(a) and 13(b) show the velocity vectors from CFD solution and LDV 

data respectively in the measurement plane. In these plots, the quantities x and z' 

corresponds to axial (longitudinal) and transverse coordinates respectively. The CFD 

solution is obtained at a freestream turbulence Reynolds number Re t = 0.01. The CFD 

solution predicts two vortex structures of opposite sign and one saddle point (where the 

velocity magnitude vanishes). These represent topological information of the velocity 

vector field. Measurements have captured only the saddle point, while the vortices are not 

defined clearly and entirely due to measurement difficulties. The saddle point location 

(z' = -3 inches and x = 8 inches) predicted by the CFD agrees with the LDV data. 

The velocity profiles at constant x stations (x= 7, 8.5, 9 and 11 inches) are shown 

in figure 14. Only for a limited range of z' values, the computed velocity profiles for 
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both u and u' agree with the LDV data. This is primarily attributed to the difficulty of 

measurements near the curved walls of the fairing nose. The velocity profiles at constant 

z' planes (z' = -5, -3, -2, and 0 inches) are shown in figure 15. In these profiles it is seen 

that the velocity component u agrees satisfactorily with the LDV data while the u' 

component shows substantial differences. 

4. CONCLUSIONS 

Overlapping grid technology is shown to predict the low speed three-dimensional 

internal flow characteristics of the payloadlfairing. Complex flow patters were observed. 

The flow is highly three dimensional, and is characterized by swirling flow, vortex flow, 

and separated flow. 

The solution corresponding to the model test Reynolds number predicts the vortex 

system indicated by the LDV measurements. The predicted location of the saddle point 

agrees with that of the LDV data. The velocity profiles in the measurement plane show 

reasonable agreement with the experimental data for the axial velocity component, but 

discrepancies exist for the transverse velocity component... 
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FIGURE CAPTIONS 

Fig. 1 Schematic of the payload fairing geometry 

Fig. 2 Payload components description 

Fig. 3 Surface grids for a) fairing and b) EU-i 

Fig. 4 Volume grids for a) pipe, b) fairing 

Fig. 5 Pipe/fairing collar grid development 

Fig. 6 Illustration of intergrid communication and interpolation in the 
PEGASUS code (adapted from Rogers et al. 2003) 

Fig. 7 Residual convergence history 

Fig. 8 Mass flow rate convergence history 

Fig. 9(a) Streak lines emanating from the pipe/fairing collar 

Fig. 9(b) Typical source streak lines 

Fig. 10(a) Velocity vectors on the EO-1 

Fig. 10(b) Velocity vectors in the cross sectional plane of the fairing downstream of the 
hexagonal structure 

Fig. 11 Schematic of the payloadlfairing test section (1/5 scale model) 

Fig. 12 LDV Measurement plane locations: two views 

Fig. 13 Velocity vectors in the measurement plane (a) CFD (b) LDV data 

Fig. 14 Velocity profiles at constant x 

Fig. 15 Velocity profiles at constant z'
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Fig. 3 Surface grids for a) fairing and b) EO-1 
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Fig. 4 Volume grids for a) pipe, b) fairing 
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Fig. 6 Illustration of intergrid communication and interpolation in the 
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19



10'

tairiii	 • E()- I	 h	 perion 

-- \U pipe	 solar ana\	 "*	 Ii\ perion collar 

- l.tIIlult! pi i	 collar	 --	 \li	 ---' x-l'and 

-	 iIuI1usi	 - .\l_I collar	 -	 xhand collar 

1(1 

(	 I
--	 ••-	 . r-.' •. -	 •--&	 '	 /	 .	 r 

4	

- .- I I I -._:. —	 . 
Ills	 II	 I 

10
-

:	 \	 :	 : 

• 

loll

•_%••_•_•______	 '..-..._.__;	 N_,_J 

(1 I 0(H)	 200u	 300(1	 4000	 50(10	 6001) 

iteration

Fig. 7 Residual convergence history 

o	 TrT1T 

-Os 

'fl our / 'I'm	 1 

	

1s _.__)__	
t ___ - ___ ___ ___ 

_____ __li	 ;;Ii ____ 

- 0	 1000	 2000	 3000	 4000	 5000	 6000
iteration 

Fig. 8 Mass flow rate convergence history 

20 



Fig. 9a Streak lines emanating from the pipe/fairing collar 

Fig.9b Typical source streak lines 
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Fig. lOa Velocity vectors on EO-1 

Fig. lOb Velocity vectors in the cross sectional plane of the fairing just downstream of 
the hexagonal structure
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Fig. 11 Schematic of the payload/fairing test section (1/5 scale model) 
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Measurement Plane 

(a) 

Measurement Plane

(b) 

Fig. 12 LDV Measurement plane Location: a)side view and b) plan view 
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