General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Flow Regime Based Climatologies of Lightning Probabilities for Spaceports and Airports

William H. Bauman III
ENSCO, Inc./Applied Meteorology Unit
Matthew Volkmer, David Sharp, and Scott Spratt
National Weather Service, Melbourne, FL
Richard A. Lafosse
Spaceflight Meteorology Group, Houston, TX

Applied Meteorology Unit http://science.ksc.nasa.gov/amu
Outline

- Project objectives
- Data and period of record
- Flow regime definitions
- Methodology
- Taming the data for the forecaster
- Summary
Project Objectives

- Provide forecasters with "first guess" warm season climatological lightning tool
- Create climatologies of lightning probabilities based on flow regime
 - 5-, 10-, 20-, and 30-n mi circles around the Shuttle Landing Facility and seven airports within Melbourne National Weather Service (NWS) Forecast Office CWA for TAF support
 - 1-, 3-, and 6-hour increments
- Develop a forecaster tool to display the data with an easy to use GUI
Data and Period of Record (POR)

- NWS in Tallahassee provided National Lightning Detection Network (NLDN) gridded data of cloud-to-ground (CG) lightning strikes
 - Spatial resolution: 2.5 X 2.5 km
 - 24°–32.5° N and 78°–88° W
 - 405 x 377 grid boxes
 - Temporal resolution: 1 hour
- Warm season months of May through September in the 16-year period 1989–2004
Flow Regime Definitions

- Florida State University (FSU) identified large-scale flow regimes over Florida
 - Found strong relationship between regimes and spatial distribution of CG lightning
 - Average wind directions in 1000 – 700 mb layer from the 1200 UTC soundings Miami (MFL), Tampa (TBW), and Jacksonville (JAX)
 - Studies yielded 7 distinct flow regimes

<table>
<thead>
<tr>
<th>Flow Regime Name</th>
<th>Definition</th>
<th>Days in Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-1</td>
<td>Ridge from Atlantic High South of MFL</td>
<td>271</td>
</tr>
<tr>
<td>SW-2</td>
<td>Ridge from Atlantic High North of MFL and South of TBW</td>
<td>241</td>
</tr>
<tr>
<td>SE-1</td>
<td>Ridge from Atlantic High North of TBW and South of JAX</td>
<td>309</td>
</tr>
<tr>
<td>SE-2</td>
<td>Ridge from Atlantic High North of JAX</td>
<td>225</td>
</tr>
<tr>
<td>NE</td>
<td>Overall Northeast Flow</td>
<td>174</td>
</tr>
<tr>
<td>PAN</td>
<td>Ridge from Central Gulf Coast High over Panhandle</td>
<td>109</td>
</tr>
<tr>
<td>NW</td>
<td>Overall Northwest Flow</td>
<td>94</td>
</tr>
<tr>
<td>Other</td>
<td>Undefined Regime</td>
<td>827</td>
</tr>
</tbody>
</table>
Methodology

- FSU provided code which AMU modified to:
 - Output 1-, 3-, and 6-hourly grids for each day of each flow regime in the POR
 - Read the output from the first program to create files with twenty-four 1-, eight 3- and four 6-hourly climatological lightning probabilities at 5-, 10-, 20- and 30- n mi circles for each site and flow regime
- Resulting 36 new programs handled various combinations of time interval and site location
Methodology

- AMU modified code to convert the gridded data to latitude/longitude for each site
- Center point of each runway was not always in the center of a grid box or at an apex of a grid box
 - Picked closest 2.5 km X 2.5 km grid box to runway center
 - Determined corner grid boxes at 5-, 10-, 20-, and 30-n mi from center square
 - Had to use area of square instead of area of circle due to design of code
Methodology

- 529 grid boxes instead of 30-n mi circle
 - Area of purple square is 27% larger than area of purple circle
- 225 grid boxes instead of 20-n mi circle
 - Area of green square is 23% larger than area of green circle
- 49 grid boxes instead of 10-n mi circle
 - Area of red square is 13% larger than area of the red circle
- 9 grid boxes instead of 5-n mi circle
 - Area of blue square is 16% smaller than area of the blue circle

Applied Meteorology Unit http://science.ksc.nasa.gov/amu
Taming the Data

- Generated 864 spreadsheets in Excel from the FORTRAN output which contained the climatological probabilities of lightning for:
 - 9 sites
 - 3 time intervals
 - 4 different size circles
 - 8 flow regimes
- Contained climatological probability of lightning for:
 - each hour of the day rounded to the nearest integer
 - corresponding UTC time
 - number of CG strikes for each hour
 - number of flow regime days in the POR

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>UTC Time</th>
<th># Strikes</th>
<th># Flow Regime Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>268476</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>292974</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>253788</td>
<td>271</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>175805</td>
<td>271</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>140630</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>118449</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>100309</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>86359</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>85585</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>92138</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>97960</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>103508</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>112800</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>125424</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>139956</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>148935</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>175178</td>
<td>271</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>217121</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>282131</td>
<td>271</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>348460</td>
<td>271</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>430364</td>
<td>271</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>487357</td>
<td>271</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>477868</td>
<td>271</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>429330</td>
<td>271</td>
</tr>
</tbody>
</table>
Merged the data from multiple spreadsheets into data tables grouped by time interval and flow regime

Created graphs from the tables to provide a "quick look" tool for the forecasters
Tying it all together for the Forecaster

- Built a GUI using HTML
 - Easily navigable web site
 - Platform independent
- Navigation
 - Data and Definitions
 - View helpful information about data, methodology and flow regime definitions
 - Nine sites
 - By flow regime or time interval
- Displays both tables and corresponding graphs

Applied Meteorology Unit http://science.ksc.nasa.gov/amu
Summary

- Objective: provide forecasters with a "first guess" climatological lightning probability tool
 - Focus on Space Shuttle landings and NWS TAFs
 - Four circles around sites: 5-, 10-, 20- and 30 n mi
 - Three time intervals: hourly, every 3 hr and every 6 hr
- Based on:
 - NLDN gridded data
 - Flow regime
 - Warm season months of May-Sep for years 1989-2004
- Gridded data and available code → squares, not circles
- Over 850 spreadsheets converted into manageable user-friendly web-based GUI
Flow Regime Based Climatologies of LightningProbabilities for Spaceports and Airports

William H. Bauman III,
ENSCO, Inc./Applied Meteorology Unit
Matthew Volkmer, David Sharp, and Scott Spratt
National Weather Service, Melbourne, FL
Richard A. Lafosse
Spaceflight Meteorology Group, Houston, TX

Outline

- Project objectives
- Data and period of record
- Flow regime definitions
- Issues
- Problems
- Solutions
- Taming the data for the forecaster
- Summary
Project Objectives

- Provide forecasters with a warm season climatological probability of one or more lightning strikes within a circle at a site within a specified time interval.
- Create climatologies based on Florida flow regimes for TAFs and shuttle landings for:
 - 9 sites
 - 5-, 10-, 20-, and 30-n mi circles around the sites
 - 1-, 3-, and 6-hour increments
- Develop an easy to use GUI to display data.

Data and Period of Record (POR)

- NWS in Tallahassee provided NLDN grided data of cloud-to-ground (CG) lightning strikes
 - Spatial resolution: 2.5 X 2.5 km
 - Temporal resolution: 1 hour
- Warm season months:
 - May – Sep
 - 16-year period
 - 1989–2004
Flow Regime Definitions

- Florida State University (FSU) identified large-scale flow regimes over Florida
 - Found strong relationship between regimes and spatial distribution of CG lightning
 - Average wind directions in 1000 – 700 mb layer from the 1200 UTC soundings Miami (MFL), Tampa (TBW), and Jacksonville (JAX)
 - Studies yielded 7 distinct flow regimes

<table>
<thead>
<tr>
<th>Flow Regime Name</th>
<th>Definition</th>
<th>Days in Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-1</td>
<td>Ridge from Atlantic High South of MFL</td>
<td>271</td>
</tr>
<tr>
<td>SW-2</td>
<td>Ridge from Atlantic High North of MFL and South of TBW</td>
<td>241</td>
</tr>
<tr>
<td>SE-1</td>
<td>Ridge from Atlantic High North of TBW and South of JAX</td>
<td>309</td>
</tr>
<tr>
<td>SE-2</td>
<td>Ridge from Atlantic High North of JAX</td>
<td>225</td>
</tr>
<tr>
<td>NE</td>
<td>Overall Northeast Flow</td>
<td>174</td>
</tr>
<tr>
<td>PAN</td>
<td>Ridge from Central Gulf Coast High over Panhandle</td>
<td>109</td>
</tr>
<tr>
<td>NW</td>
<td>Overall Northwest Flow</td>
<td>94</td>
</tr>
<tr>
<td>Other</td>
<td>Undefined Regime</td>
<td>827</td>
</tr>
</tbody>
</table>

Flow Regime Definitions - Example

- Southwest (SW-1)
 - Atlantic high pressure ridge south of MFL
 - 1000-700 mb layer average wind direction is from the southwest across peninsula
 - CG lightning maximum along the east coast of Florida
Issues

• Needed to know:
 – Number of CG strikes in given period of time and distance from site

• Had to work with:
 – Code provided by FSU to read NLDN data in gridded format

• Needed to generate:
 – 1-, 3-, and 6-hourly grids for each day and each flow regime
 – 5-, 10-, 20- and 30- n mi circles for each site and each flow regime

Problems

• Data
 – Gridded format not individual CG’s

• Code designed for:
 – 24 hr intervals
 – Entire (rectangular) domain (343,000 n mi²)
 – Not lat/lon based
Solutions

- **Data**
 - No change
- **Changed code**
 - Multiple time intervals and smaller, multiple domains by lat/lon
- **Used area of square instead of circle**
 - 30-n mi circle:
 - 529 grid boxes: area of square is 27% larger than area of circle
 - 20-n mi circle
 - 225 grid boxes: area of square is 23% larger than area of circle
 - 10-n mi circle
 - 49 grid boxes: area of square is 13% larger than area of the circle
 - 5-n mi circle
 - 9 grid boxes: area of square is 16% smaller than area of the circle

Taming the Data

- Generated 864 spreadsheets in Excel® containing climatological probabilities of lightning for:
 - 9 sites
 - 3 time intervals
 - 4 different size circles
 - 8 flow regimes
- **Tables contained:**
 - Climatological probability of lightning
 - UTC time
 - Number of CG strikes for each hour
 - Number of flow regime days in the POR

<table>
<thead>
<tr>
<th>Probability (%)</th>
<th>UTC Time</th>
<th># Strikes</th>
<th># Flow Regime Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>268676</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>292974</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>253788</td>
<td>271</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>173683</td>
<td>271</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>180630</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>118649</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>160369</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>86399</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>35185</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>92118</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>97960</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>109068</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>113800</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>134418</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>139956</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>149935</td>
<td>271</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>175178</td>
<td>271</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>217211</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>283133</td>
<td>271</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>388460</td>
<td>271</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>420084</td>
<td>271</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>427575</td>
<td>271</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>475068</td>
<td>271</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>429330</td>
<td>271</td>
</tr>
</tbody>
</table>
User Friendly Format

- Merged the data from multiple spreadsheets into data tables grouped by time interval and flow regime
- Created graphs from the tables to provide a "quick look" tool for the forecasters

![Graph of 1-Hour Intermittent SLF Southwest 5 Flow Regimes]

Tying It All Together for the Forecaster

- Built a GUI using HTML
 - Easily navigable web site
 - Platform independent
- Navigation
 - Data and Definitions
 - Nine sites
 - Flow regime or time interval
- Displays both tables and corresponding graphs

[Demo]
Summary

- Objective: provide warm season climatological probability of one or more lightning strikes within a circle at a site within a specified time interval
 - Focus on Space Shuttle landings and NWS TAFs
 - Four circles around sites: 5, 10, 20 and 30 n mi
 - Three time intervals: 1 hr, 3 hr and 6 hr
- Based on:
 - NLDN gridded data
 - Flow regime
 - Warm season months of May-Sep for years 1989-2004
- Gridded data and available code → squares, not circles
- Over 850 spreadsheets converted into manageable user-friendly web-based GUI

http://science.ksc.nasa.gov/amu