GD SDR Automatic Gain Control Characterization Testing

Jennifer Nappier
NASA Glenn Research Center, Cleveland, Ohio

Co-Author: Janette Briones
NASA Glenn Research Center, Cleveland, Ohio

SDR-WInnComm
January 2013
Presentation Contents

• SCaN Testbed Overview
• GD SDR Description
• AGC Characterization Test Objectives
• Test Setup
• Test Results
• Useful Applications of the AGC Characterization Testing Data
• Recommendations
SCaN Testbed Flight System Overview

- 2 S-band SDRs
- 1 Ka-band SDR
- Ka-band TWTA
- S-band switch network
- Antennas
 - 2 - low gain S-band antennas
 - 1 - L-band GPS antenna
 - Medium gain S-band and Ka-band antenna on antenna pointing subsystem.
- Antenna pointing system
- Flight Computer/Avionics

- Launched on Japanese HTV-3 on July 20, 2012
- Installed on ISS August 7, 2012
- Checkout and Commissioning is in progress
SCaN Testbed GD SDR Description

- TDRSS S-band Transponder
 - 8 Forward link receive waveform configurations
 - 30 Return link transmit waveform configurations
- 1 Xilinx Virtex II QPro FPGA, 3 M gate
- ColdFire microprocessor with VxWorks RTOS running the Space Telecommunications Radio System (STRS) Architecture

<table>
<thead>
<tr>
<th>Waveform Number</th>
<th>Center Frequency</th>
<th>Data Rate (kbps)</th>
<th>Forward Error Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SA</td>
<td>18</td>
<td>Coded</td>
</tr>
<tr>
<td>2</td>
<td>SA</td>
<td>18</td>
<td>Uncoded</td>
</tr>
<tr>
<td>3</td>
<td>SA</td>
<td>72</td>
<td>Coded</td>
</tr>
<tr>
<td>4</td>
<td>SA</td>
<td>72</td>
<td>Uncoded</td>
</tr>
<tr>
<td>5</td>
<td>MA</td>
<td>18</td>
<td>Coded</td>
</tr>
<tr>
<td>6</td>
<td>MA</td>
<td>18</td>
<td>Uncoded</td>
</tr>
<tr>
<td>7</td>
<td>MA</td>
<td>72</td>
<td>Coded</td>
</tr>
<tr>
<td>8</td>
<td>MA</td>
<td>72</td>
<td>Uncoded</td>
</tr>
</tbody>
</table>

- CRAM (Chalcogenide RAM) Memory (4 Mb)
- Analog (10 MHz filter bandwidth) and Digital (6 MHz filter bandwidth) automatic gain controls (AGCs)
Test Objective and Plan

- Characterize the relationship between:
 - SDR input power
 - SDR baseplate temperature
 - Waveform configuration
 - The digital and analog AGC values

- Temperature range:
 - -15 to +45 °C

- SDR input power range:
 - -90 to -130 dBm

- Results will be used to estimate SDR input power in future testing

- Testing phases included:
 - GD verification testing
 - GRC thermal vacuum (TVAC) testing
 - GRC verification testing

SCaN Testbed during TVAC testing, March 2011
GRC Test Setup

- S-Band TDRSS Simulator (TSIM) was used to emulate the forward link waveform
- TSIM was connected to the SCaN Testbed using a test equipment interface circuit and RF cable
- SDR input power was measured from a coupled port in the interface circuit using a power meter
- The RF subsystem inside the SCaN Testbed was used to connect an antenna port to the GD SDR
- During TVAC, the RF cable and SCaN Testbed were located in the vacuum chamber
AGC Characterization Results at Ambient Temperature

- Analog AGC varies with center frequency (MA/SA)
- Digital AGC varies with symbol rate (coding + data rate)
AGC Characterization Results over Temperature

Both analog and digital AGCs vary over temperature. The analog AGC variation is more significant.
Sources of Error in Data Collection

- Differences in the GD and GRC test setup (+/- .5 dB)
- Compensation method for the cable loss over temperature during thermal vacuum testing (+/- .5 dB)
- Data interpolated for waveforms with incomplete data sets (+/- 1 dB)
- System loss measurement error (+/- .3 dB)
The Digital AGC characterization data was used to estimate the SDR input power during operations on ISS (note: predicted power is TBD). The E_b/N_0 was calculated from the SDR input power and used to create a BER curve.
Estimation of Interferer Signal Strength using Digital AGC

- Digital AGC shows received power is higher than expected due to an interferer.

- The purple curve was plotted with the Eb/No calculated from a measured power.
- The green curve was plotted with the Eb/No calculated from the digital AGC.
Recommendations

• Plan test phases and design a test setup that can be kept constant throughout each phase

• Balance SDR reconfigurable parameters with project test time

Forward Work

• 3 SDR input power estimation algorithms have been developed

• Characterize the SDR input power algorithms during on-orbit operations on ISS

• Utilize the engineering model (EM) characterization data to create SDR input power estimators for the EM
Questions?

jennifer.m.nappier@nasa.gov
216-433-6521