USE OF GIOVANNI SYSTEM IN PUBLIC HEALTH APPLICATION

2012 GREGORY G. LEPTOUKH ONLINE GIOVANNI WORKSHOP

SEPTEMBER 25, 2012

Radina P. Soebiyanto¹,²
Richard Kiang²

¹Goddard Earth Sciences Technology & Research (GESTAR), Universities Space Research Association, Columbia, MD
²NASA Goddard Space Flight Center, Code 610.2, Greenbelt, MD

radina.p.soebiyanto@nasa.gov
AGENDA

- **Malaria** in Thailand and Afghanistan
- **Dengue** in Indonesia
- **Avian Influenza** in Indonesia
- **Seasonal Influenza** in New York, Arizona and Hong Kong
MALARIA

- **Cause:**
 - *Plasmodium* spp (protozoan)
 - Carried by *Anopheles* mosquito

- **Burden:**
 - 250 million cases each year
 - 1 million deaths annually
 - Every 30 seconds a child dies from malaria in Africa
 - Cost ~ 1.3% of annual economic growth in high prevalence countries

- **High Risk Group:** Pregnant women, children and HIV/AIDS co-infection

- **Treatment and Prevention:**
 - Bed nets
 - Indoor spraying
 - Vector Control
 - Artemisin-based Combination Therapy

Role of climatic and environmental determinants

<table>
<thead>
<tr>
<th>Determinants</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Parasite + Vector: development and survival</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Vector breeding habitat</td>
</tr>
<tr>
<td>Land-use, NDVI</td>
<td>Vector breeding habitat</td>
</tr>
<tr>
<td>Altitude</td>
<td>Vector survival</td>
</tr>
<tr>
<td>ENSO</td>
<td>Vector development, survival and breeding habitat</td>
</tr>
</tbody>
</table>
- Leading cause of morbidity and mortality in Thailand
- ~50% of population live in malarious area
- Most endemic provinces are bordering Myanmar & Cambodia
 - Significant immigrant population
 - Mae La Camp
 - Largest refugee camp
 - >30,000 population
Satellite-observed meteorological & Environmental Parameters for 4 Thailand seasons

- **Surface Temperature**
 - MODIS Measurements

- **Vegetation Index**
 - AVHRR & MODIS Measurements

- **Rainfall**
 - TRMM Measurements
MALARIA IN THAILAND

- Neural Network training and validation accuracy

<table>
<thead>
<tr>
<th>Input</th>
<th>Hidden Layer</th>
<th>Hidden Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 (t, T, P, P \text{ (lag 1)}, H, V)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Model 2 (t, P, P \text{ (lag 1)}, H, V)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Model 3 (t, T, P, P \text{ (lag 1)}, H, V)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Model 4 (t, T, P, P \text{ (lag 1)}, H, V)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

\(t = \text{time}, T = \text{temperature}, P = \text{precipitation}, H = \text{humidity}, V = \text{NDVI} \)
MALARIA IN THAILAND

Hindcast Incidence

Actual Malaria Incidence
Kong Mo Tha (KMT) village, Kanchanaburi
In Collaboration with AFRIMS and WRAIR
Malaria surveillance study (1999 – 2004)
- Blood films from ~450 people per month
- Larval and adult mosquito collection

A. barbirostris, A. campestris
A. dirus
A. sawadwongpori, A. maculatus
A. minimus, A. maculatus
MALARIA IN THAILAND
AGENT-BASED SIMULATION

- A small hamlet example

23 houses
2 cattle sheds
24 clusters of larval habitats
69 adults
23 children
8 cows
MALARIA IN THAILAND
AGENT-BASED SIMULATION

- **Prevalence**

- **Sporozoite Rate**

- **Entomological Inoculation Rate**
 (# infective bites/person/day)

- **Scenario analysis**

 - Sheds at original locations
 - Sheds relocated to where mosquitoes are more abundant
 - Zoonotic prophylaxis also used
Towards malaria risk prediction in Afghanistan using remote sensing

Farida Adimi1,2, Radina P Soebianto1,2, Najibullah Safi1 and Richard Kang3

Abstract

Background: Malaria is a significant public health concern in Afghanistan. Currently, approximately 60% of the population, or nearly 14 million people, live in a malaria-endemic area. Afghanistan’s diverse landscape and terrain contribute to the heterogeneous malaria prevalence across the country. Understanding the role of environmental variables on malaria transmission can further the effort for malaria control programme.

Methods: Provincial malaria epidemiological data (2004-2007) collected by the health posts in 23 provinces were used in conjunction with space-born observations from NASA’s MODIS, TRMM, and NDVI data. The environmental variables included

Adimi et al. Malaria Journal 2010, 9: 125
NDVI and temperature were a strong indicator for malaria risk

Precipitation is not a significant factor → Malaria risk is mainly due to irrigation as implied from the significant contribution from NDVI

Average R^2 is 0.845

Short malaria time series (<2 years) pose a challenge for modeling and prediction
Endemic in more than 110 countries
- Tropical, subtropical, urban, peri-urban areas
- Annually infects 50 – 100 million people worldwide
- 12,500 – 25,000 deaths annually
- Symptoms: fever, headache, muscle and joint pains, and characteristic skin rash (similar to measles)
- Primarily transmitted by Aedes mosquitoes
 - Live between 35°N - 35°S latitude, >1000m elevation
- Four serotypes exist
 - Infection from one serotype may give lifelong immunity to that serotype, but only short-term to others
 - Secondary infection increases the severity risk
Environmental variables used
- Temperature, dew point, wind speed, TRMM, NDVI

Modeling method
- ARIMA – Auto Regressive Integrated Moving Average
- Classical time series regression
- Accounts for seasonality

Result
- Best-fit model uses TRMM and Dew Point as inputs
- Peak timing can be modeled accurately up to year 2004
- Vector control effort by the local government started in the early 2005
The problem

- First appeared in Hong Kong in 1996-1997, HPAI has spread to approximately 60 countries. More than 250 million poultry were lost.
- 35% of the human cases are in Indonesia. Worldwide the mortality rate is 53%, but 81% in Indonesia. In Indonesia, 80% of all fatal cases occurred in 3 adjacent provinces.
- Co-infection of human and avian influenza in humans may produce deadly strains of viruses through genetic reassortment.
- HPAI H5N1 was found in Delaware in 2004.
- The risk of an H5, H7 or H9 pandemic is not reduced or replaced by the 2009 H1N1 pandemic.
Indonesia has 35% of the world’s human cases with 81% mortality. For the rest of the world, mortality is 53%.
AVIAN INFLUENZA

- Poultry and human outbreaks in Greater Jakarta

- Cases vs Meteorological factors

- Distance from outbreaks
SEASONAL INFLUENZA

- **Worldwide annual epidemic**
 - Infects 5 – 20% of population with 500,000 deaths

- **Economic burden in the US**
 - ~US$87.1 billion

- **Spatio-temporal pattern of epidemics vary with latitude**
 - Role of environmental and climatic factors

- **Temperate regions: distinct annual oscillation with winter peak**

- **Tropics: less distinct seasonality and often peak more than once a year**

Source: Viboud et al., 2006
Seasonal Influenza

Factors Implicated in Influenza

<table>
<thead>
<tr>
<th>Influenza Process</th>
<th>Factors</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Survivorship</td>
<td>Temperature, Humidity, Solar irradiance</td>
<td>Inverse</td>
</tr>
<tr>
<td>Transmission Efficiency</td>
<td>Temperature, Humidity, Vapor pressure, Rainfall, ENSO, Air travels and holidays</td>
<td>Inverse, Proportional</td>
</tr>
<tr>
<td>Host susceptibility</td>
<td>Sunlight, Nutrition</td>
<td>Inverse, Varies</td>
</tr>
</tbody>
</table>

Ex Vivo study showing efficient transmission at dry and cold condition [Lowens et al., 2007]

High temperature (30°C) blocks aerosol transmission *but not contact transmission*
SEASONAL INFLUENZA

<table>
<thead>
<tr>
<th></th>
<th>Hong Kong, China</th>
<th>Maricopa County, AZ</th>
<th>New York City, NY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Lat.</td>
<td>22° N</td>
<td>33° N</td>
<td>40° N</td>
</tr>
<tr>
<td>Climate</td>
<td>Sub-Tropical</td>
<td>Sub-Tropical</td>
<td>Temperate</td>
</tr>
<tr>
<td>General Condition</td>
<td>Hot & humid during summer. Mild winter, average low of 6°C</td>
<td>Dry condition. Mean winter low is 5°C, and summer high is 41°C</td>
<td>Cold winter, average low of -2°C. Mean summer high is 29°C</td>
</tr>
</tbody>
</table>

![Maps showing weather conditions in different locations](image-url)
SEASONAL INFLUENZA

DATA

- Weekly lab-confirmed influenza positive
- Daily meteorological data were aggregated into weekly

Satellite-derived data
- TRMM 3B42
- LST - MODIS
- Ground station data
Several techniques were employed, including:

ARIMA (AutoRegressive Integrated Moving Average)
- Classical time series regression
 Accounts for autocorrelation and seasonality properties
- Climatic variables as covariates
- Previous week(s) count of influenza is included in the inputs
- Results published in PLoS ONE 5(3): 9450, 2010

Neural Network (NN)
- Artificial intelligence technique
- Widely applied for
 - approximating functions,
 - Classification, and
 - pattern recognition
- Takes into account nonlinear relationship
- Radial Basis Function NN with 3 nodes in the hidden layer
- Only climatic variables and their lags as inputs/predictors
SEASONAL INFLUENZA

- NN models show that ~60% of influenza variability in the US regions can be accounted by meteorological factors
- ARIMA model performs better for Hong Kong and Maricopa
 - Previous cases are needed
 - Suggests the role of contact transmission
- Temperature seems to be the common determinants for influenza in all regions
ACKNOWLEDGMENT

- NAMRU-2
- Wetlands International Indonesia Programme
- Cobbs Indonesia
- USDA APHIS
- WHO SEARO
- WRAIR
- AFRIMS
- Thailand Ministry of Public Health
- NDVECC
- Mahidol University, Faculty of Tropical Medicine
- Safi Najibullah – Formerly at National Malaria and Leishmaniasis Control Programme, Afghan Ministry of Public Health
- CDC Influenza Division
THANK YOU