Packaging Technologies for 500°C SiC Electronics and Sensors

Liang-Yu Chen

Ohio Aerospace Institute/NASA GRC, Cleveland, OH 44135
Outline

Background
- 500°C SiC electronics and sensors
- Packaging needs and packaging concept/functions

Review of ceramic substrates and thick-film metallization based packaging technologies for 500°C SiC devices
- Packaging systems for 500°C SiC electronics
- Packaging system for SiC capacitive pressure sensors

Summary

Acknowledgements
Packaging Technologies for 500°C SiC Electronics and Sensors

Background

500°C SiC electronics and MEMS sensors have been demonstrated

- JFETs and JFETs based circuits developed at NASA GRC
- MEMS based pressure sensors and Schottky diode based gas chemical sensors developed at NASA GRC
- Applications include aerospace engine control and long term Venus probes

Packaging technologies needed for long-term test and eventual commercialization of 500°C SiC electronics and sensors

Conventional packaging materials fail/degrade at high temperatures

- Plastic materials melt, de-polymerize, and burn at 500°C
- Alloys (solder) melt and oxidize rapidly at 500°C
- High thermal stress due to thermal expansion mismatch can cause permanent mechanical failure at structure level
Background: Packaging Concept

Packaging Technology for Electronics/Sensors

- Packaging is essential to microelectronics and sensors
 - Mechanical support
 - Electrical interconnection
 - Electromagnetic, chemical environment
- Chip-level packaging
 - Substrate and metallization
 - Die-attach
 - Wire-bonding
- Printed Circuit Board (PCB)
 - Interconnecting packaged chips and passives
- PCB edge connectors
 - Subsystem level packaging
- Capacitive pressure sensor packaging
 - Spark-plug type
 - High differential pressure environment
Performance of Ceramic Substrate Materials

Required dielectric properties of substrate materials at high temperature
- Stable and low dielectric constant at elevated temperatures
- Low dielectric loss at elevated temperatures

Dielectric Constant of 96% Al₂O₃ AC Conductivity of 96% Al₂O₃

- The challenge for 500°C packaging technologies is at the materials level
- Compared with other ceramic substrate materials tested, 96% alumina has better dielectric performance at high temperatures

Chen and Hunter, 2004 MRS
Packaging Systems for 500°C SiC Electronics

Ceramic Chip-level Packages and PCBs

- Three types of ceramics and Au thick-film metallization based chip-level packages and printed circuit boards (PCBs)
- Chip-level packages characterized between room temperature and 500°C
- An edge connector in development for PCB – PCB (subsystem-level) interconnection
Packaging Systems for 500°C SiC Electronics

96% Alumina Chip-level Packages

Parasitic Capacitance and Conductance of Neighboring I/Os

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>T_R (f) 100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>0.00nF</td>
<td>< 5</td>
</tr>
<tr>
<td>120</td>
<td>0.00</td>
</tr>
<tr>
<td>1K</td>
<td>0.00</td>
</tr>
<tr>
<td>10K</td>
<td>0.00</td>
</tr>
<tr>
<td>100K</td>
<td>0.00</td>
</tr>
<tr>
<td>1M</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Parasitic Equivalent

I/O1—"Ground"

I/O2 I/O3

Usable for packaging many envisioned low power 500°C devices/ circuits

> 50°C margin above 500°C

Chen and Hunter, 2005 HiTEN

Chen and Hunter, 2005 HiTEN

Usable for packaging many envisioned low power 500°C devices/ circuits

> 50°C margin above 500°C

Chen and Hunter, 2005 HiTEN
Packaging Systems for 500°C SiC Electronics

PCB Edge Connector for 500°C Low Power Electronics
- Subsystem Level Interconnection

- 500°C operation
- Ceramic structure
- Compatible metallization with PCBs
- 15 mil wires with fiber insulation sleeves
- High temperature alloy contacts
- Challenges
 - Fabrication of ceramic parts
 - Diffusion at high temperatures
 - Plastic deformation of spring materials
Packaging Systems for 500°C SiC Electronics

PCB Edge Connector for 500°C Low Power Electronics - Subsystem Level Interconnection

- PCB level interconnection
- For 500°C operation
- 96% alumina structure
- High temperature thick-film metallization
- 10 mil Au wires with fiber insulation sleeves
- High temperature alloy springs for electrical contacts
- Tested at 500°C, further improvement underway
Packaging Systems for 500°C SiC Electronics

Test Results of Packaged SiC JFET

- Packaged SiC JFETs and JFETs based IC characterized at 500°C
- 96% alumina packaging system
- less than 7% change in the JFET characteristics in first 6000 hours
- Tested at 500°C for over 10,000 hrs
- Demonstrated for long term operation at 500°C for the first time
- Thermal cycling tested between room temperature and 500°C
Space and Flight Test of 96% Alumina Packaging System

- MISSE7 suite exposed to Shuttle launch, atomic oxygen, space radiation, thermal cycling, and reentry
- The data acquiring circuit board in an aluminum box
- I-V curves of packaged SiC JFETs recorded every hour for eighteen months on ISS orbit
- No failure/degradation detected

Prokop et al, 2010 National Space & Missile Materials Symposium
Packaging Systems for 500°C SiC Electronics
- Improvement of AlN packages with Dielectric Glass Coating

Dielectric layer

\[
R' = R(\omega, T)/[1 + \omega^2 R^2(\omega, T)C^2(\omega, T)]
\]

\[
C' = \frac{1 + \omega^2 R^2(\omega, T)C^2(\omega, T)}{\omega^2 R^2(\omega, T)C(\omega, T)}
\]

Two-layer dielectric systems

\[
Z(\omega, T) = R'_1(\omega, T) + R'_2(\omega, T) + \frac{1}{j\omega} \left[\frac{1}{C'_1(\omega, T)} + \frac{1}{C'_2(\omega, T)} \right]
\]

- When \(R_2 \) is very small or \(C_2 \) is very big, the impedance of layer 1 more dominant
- AlN: At 500°C, AlN dielectric constant very high at f ~100Hz, dielectric loss very high at f ~MHz
- A dielectric glass with low and stable dielectric constant and dielectric loss may reduce the capacitance at low \(\omega \), increase resistance at high \(\omega \)
- The impact of glass layer at room temperature may be minimal

Chen, 2011 HiTEN

www.nasa.gov
Packaging Systems for 500°C SiC Electronics
- Improvement of AlN packages with Dielectric Glass Coating

Improvement of AlN Chip-level Packages by Glass Coating

- AlN has low CTE (4.5 ppm/K) which is close to CTE of SiC (4.0 ppm/K) – better thermo-mechanical reliability
- Dielectric constant and dielectric loss of some of commercial AlN materials are very high at high temperature
- A glass coating is used to reduce parasitic parameters of an 8 I/Os low power chip-level AlN package
- Both dielectric performance and thermal stability are improved significantly
Packaging system for SiC capacitive pressure sensors

Spark - Plug Type Package for High Temperature Capacitive Pressure Sensors

- 96% alumina substrate with Au thick-film metallization
- Four 10 mil diameter Au wires (I/Os) attached
- Au wires extended by four Pd wires
- Pd wires sealed in a commercial SS high temperature gland
- The gland operable up to 8000 psi
- Electrically characterized between RT and 500°C
- Low parasitic effects
- May apply to other micro-fabricated solid sensors

Chen, Beheim, and Meredith, 2010 HiTEC
Packaging system for SiC capacitive pressure sensors

Spark - Plug Type Package for High Temperature Capacitive Pressure Sensors

- Four-wire configuration, two wires connected to the substrate but not sensor chip, characterized as packaging parasitic parameters
- Low parasitic capacitance
- Parasitic capacitance not sensitive to pressure

Graphs showing capacitance (pF) vs frequency (Hz) at 0 psi and 100 psi with temperature as a parameter.
Packaging system for SiC capacitive pressure sensors

Spark - Plug Type Package for High Temperature Capacitive Pressure Sensors

- Four wire configuration, two wires connected to the substrate but not sensor chip, characterized as packaging parasitic parameters.
- Dielectric loss increases with T and f.
- Dielectric loss not pressure sensitive.
Packaging system for SiC capacitive pressure sensors

Spark - Plug Type Package for High Temperature Capacitive Pressure Sensors

- Packaging effects subtracted
- Capacitance responds to pressure monotonically between T_R and 500°C
- Temperature calibration needed for real measurement
Packaging system for SiC capacitive pressure sensors

Low Stress Die-attach Structure for MEMS Packaging

Stresses attenuate rapidly in the cantilever area

Die-attach material (for wire bond scheme) or solder bump and underfill materials for flip-chip scheme

Cantilever area for mechanical operation, cantilever area is almost stress free

Side view of lateral stress attenuation

Von Mises Stress contour plot of top and bottom of die

FEA simulation: the research group lead by Prof. McCluskey at University of Maryland
Summary

Ceramic substrates and thick-film metallization based packaging systems demonstrated at 500°C

- Alumina and aluminum nitride chip-level packages and PCBs
- A compatible 96% alumina edge-connector demonstrated
- Packaged SiC JFET circuits successfully tested for over 10,000 hours at 500°C
- Packaged SiC JFET successfully tested on LEO for 18 months

A spark-plug type sensor package for 500°C sensors

- Low parasitic effects
- Characterized and tested with SiC sensors at temperatures up to 500°C
- A low stress die-attach structure developed for high temperature MEMS
- This sensor package applies to high temperature and high differential pressure environments

Packaging for high temperature gas chemical sensors in process

Further development needed for higher density, higher power, higher frequency, and higher temperature applications
Thank You Very Much for Your Attention!

Acknowledgements

Author acknowledges contributions of Gary W. Hunter, Philip G. Neudeck, Glenn M. Beheim, David J. Spry, and Roger D. Meredith at NASA Glenn Research Center. Author thanks Drs. Lawrence G. Matus, Mary V. Zeller, and Gary T. Seng for proof-reading the presentation. The high temperature packaging research associated with this presentation is currently supported by Vehicle Systems Safety Technologies (VSST) project of NASA Aviation Safety program.