General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

Joseph Dreher and Winifred Crawford
NASA Applied Meteorology Unit / ENSCO, Inc. / Cape Canaveral Air Force Station, Florida

Richard Lafosse and Brian Hoeth
NOAA/NWS Spaceflight Meteorology Group / Houston, Texas

Kerry Burns
Marshall Space Flight Center / Huntsville, Alabama

The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB.

Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997-2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUI was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUI will be presented.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

5a. CONTRACT NUMBER
NNK06MA70C
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Joseph Dreher
Winifred Crawford
Richard Lafose
Brian Hoeth
Kerry Burns

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ENSCO, Inc,
1980 N. Atlantic Ave Suite 230
Cocoa Beach, FL 32931

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
NASA
John F. Kennedy Space Center
Code KT-C-H

10. SPONSORING/MONITOR’S ACRONYM(S)

11. SPONSORING/MONITORING REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified, Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The abstract describes work done by the Applied Meteorology Unit (AMU) to develop a graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for Edwards Air Force Base (EAFB). Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997-2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUI was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment.

15. SUBJECT TERMS
Meteorology, weather, climatology, Space Shuttle landings, Edwards Air Force Base (EAFB), wind tower network, Graphical User Interface (GUI), peak winds, forecasts, Marshall Space Flight Center (MSFC), Microsoft, Visual Basic, PivotTables, macro, probability

16. SECURITY CLASSIFICATION OF:
a. REPORT
U
b. ABSTRACT
U
c. THIS PAGE
UU

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
1

19a. NAME OF RESPONSIBLE PERSON
Dr. Frances J. Merceret

19b. TELEPHONE NUMBER (Include area code)
(321) 867-0818

Standard Form 298 (Rev. 8-98)
Pursuant by ANSI Std. 239-18