General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

Joseph Dreher and Winifred Crawford
NASA Applied Meteorology Unit / ENSCO, Inc. / Cape Canaveral Air Force Station, Florida

Richard Lafosse and Brian Hoeth
NOAA/NWS Spaceflight Meteorology Group / Houston, Texas

Kerry Burns
Marshall Space Flight Center / Huntsville, Alabama

The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB.

Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997-2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUI was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUI will be presented.
TITLE AND SUBTITLE

Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

ABSTRACT

The abstract describes work done by the Applied Meteorology Unit (AMU) to develop a graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for Edwards Air Force Base (EAFB). Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997-2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUI was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment.

SUBJECT TERMS

Meteorology, weather, climatology, Space Shuttle landings, Edwards Air Force Base (EAFB), wind tower network, Graphical User Interface (GUI), peak winds, forecasts, Marshall Space Flight Center (MSFC), Microsoft, Visual Basic, PivotTables, macro, probability