Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems

C. I. Morris∗

NASA Marshall Space Flight Center, Huntsville, AL, 35812, USA

Submitted to the 51st AIAA Aerospace Sciences Meeting, January 7–10, 2013, Grapevine, TX

The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of $10^7 – 10^8$ finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel flow problem.

Nomenclature

\begin{itemize}
\item \(a \): sound speed
\item \(E \): specific total energy, \(e + E_k \)
\item \(E_k \): kinetic energy, \(U^2/2 \)
\item \(e \): specific internal energy
\item \(f \): body force per unit volume vector
\item \(h \): channel half-height, reference length for channel flow problem
\item \(k \): wavenumber
\item \(l \): reference length for Taylor-Green vortex problem
\item \(M \): Mach number, \(U/a \)
\item \(\dot{m} \): mass flow rate
\item \(N \): Number of grid points in a particular direction
\item \(p \): pressure
\item \(Q \): Q-criterion, \(\left(R : R - S : S \right)/2 \)
\item \(q \): heat flux
\item \(R \): gas constant
\item \(R \): rotation-rate tensor, \(\left(\nabla \mathbf{u} - \nabla \mathbf{u}^T \right)/2 \)
\item \(S \): strain-rate tensor, \(\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)/2 \)
\item \(T \): temperature
\item \(t \): time
\item \(U \): velocity magnitude, \(\| \mathbf{u} \| \)
\item \(\mathbf{u} \): velocity vector
\end{itemize}

∗Aerospace Engineer, Fluid Dynamics Branch/ER42, Senior Member AIAA.
\(V \) volume
\(u, v, w \) components of velocity vector in the \(x-, y-, \) and \(z- \)-direction, respectively
\(x, y, z \) cartesian coordinates

Subscripts
- \(0 \) denotes an initial condition
- \(c \) denotes a flow property at the centerline
- \(i, j, k \) computational indices in the \(x-, y-, \) and \(z- \)-direction, respectively
- \(m \) denotes a mean flow property
- \(w \) denotes a flow property at the wall

Symbols
- \(\delta \) kronecker delta
- \(\gamma \) ratio of specific heats
- \(\lambda \) thermal conductivity
- \(\mu \) viscosity
- \(\Omega \) enstrophy, \(\omega \cdot \omega / 2 \)
- \(\omega \) vorticity vector
- \(\phi \) generic flowfield quantity
- \(\rho \) density
- \(\tau \) viscous stress tensor
- \(\varepsilon \) turbulent kinetic energy dissipation rate

Superscripts
- \(* \) variable normalized by a characteristic flow timescale
- \(+ \) variable normalized by inner-law variables

I. Introduction

Turbulence is a critical factor in most aero- and propulsion-related flows. For many years, the industry-standard approach to incorporating the effect of turbulence in computational fluid dynamics (CFD) calculations has been the Reynolds Averaged Navier Stokes (RANS) modeling approach. RANS implicitly time-averages turbulent motion, and models its effect on the mixing of species, momentum and energy in a flow field. The approach is economical and often allows a CFD calculation to proceed to steady-state. However, it makes several simplifying assumptions, and the results will only be as good as the RANS turbulence model. Meanwhile, the last two decades have witnessed rapid and explosive growth in computational power, the development of CFD codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. CFD engineering calculations of \(10^7 \) – \(10^8 \) finite-volume cells have become routine. Thus, large eddy simulation (LES), which attempts to directly resolve the unsteady motion of the largest scales of turbulence, is increasingly of interest for many fluids engineering problems.\(^1\)\(^-\)\(^3\) Additionally, hybrid RANS-LES approaches such as Spalart’s Detached Eddy Simulation (DES),\(^4\) which attempt to marry the best strengths of both methods, are in active use.

Because it seeks to accurately resolve the unsteady motion of the largest scales of turbulence, LES places certain requirements on the numerical method used to discretize and advance the Navier Stokes equations. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide range of length scales. A number of studies in the literature\(^5\)\(^-\)\(^10\) have investigated the suitability of various upwind-based shock-capturing schemes for LES. The purpose of this paper is to evaluate the suitability of several different central difference and upwind-biased schemes for a simple one-dimensional acoustic standing wave problem, as well as DNS and LES of the Taylor-Green vortex problem and a turbulent channel flow problem.
II. Governing Equations

The compressible Navier-Stokes equations for a single chemical species are the governing model for this study. The time-dependent differential form of these equations is written as follows:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$ \hspace{1cm} (1)

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u} + p \mathbf{f}) = \nabla \cdot \mathbf{\tau} + \mathbf{f}$$ \hspace{1cm} (2)

$$\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho \mathbf{u} (E + p)) = \nabla \cdot (\mathbf{u} \cdot \mathbf{q}) + \mathbf{f} \cdot \mathbf{u}$$ \hspace{1cm} (3)

A calorically perfect ideal gas equation of state is used: $p = \rho RT$, and $T = (\gamma - 1)e/R$. $\gamma = 1.4$ and $R = 287$ J/Kg-K for all cases studied in this work. The viscous stress tensor, $\mathbf{\tau}$, is defined as

$$\mathbf{\tau} = 2\mu \mathbf{S} - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \mathbf{\delta}$$ \hspace{1cm} (4)

and the heat flux vector as

$$\mathbf{q} = -\lambda \nabla T$$ \hspace{1cm} (5)

The transport properties μ and λ are calculated using the Sutherland formulas for air.

III. Numerical Method

The Navier-Stokes equations are solved by the finite-difference method in the conventional cartesian coordinate system. The inviscid flux (the second term on the left-hand side of Eqs. 1, 2, and 3) is the portion of the equations that deals with convection of mass, momentum and energy. Historically, the discretization of these terms has been a driving issue in CFD research since its inception. Four central difference (CD) schemes, four upwind-biased (UB) schemes, and the Fromm scheme for the inviscid flux are evaluated in this work. The stencil coefficients for these schemes are shown in Table 1 for a generic flowfield quantity, ϕ. The number in the name for each scheme denotes the formal order of accuracy. Conservative differencing was used such that, at node i,j,k, the derivative in the x-direction is given by:

$$\frac{\partial \phi_{i,j,k}}{\partial x} = \frac{\phi_{i+1/2,j,k} - \phi_{i-1/2,j,k}}{\Delta x}$$ \hspace{1cm} (6)

where $\phi_{i+1/2,j,k}$ and $\phi_{i-1/2,j,k}$ are interpolated and formed in such a way that the final difference is equivalent to one of the stencils shown in Table 1. For example, $\phi_{i+1/2,j,k} = (\phi_{i,j,k} + \phi_{i+1,j,k})/2$ and $\phi_{i-1/2,j,k} = (\phi_{i-1,j,k} + \phi_{i,j,k})/2$ yields the CD-2 formula, while $\phi_{i+1/2,j,k} = (-\phi_{i-1,j,k} + 5\phi_{i,j,k} + 2\phi_{i+1,j,k})/6$ and $\phi_{i-1/2,j,k} = (-\phi_{i-2,j,k} + 5\phi_{i-1,j,k} + 2\phi_{i+1,j,k})/6$ yields the UB-3 formula. It should be noted that the UB and Fromm schemes shown assume convection in the positive-x direction. A reflected stencil (about $\phi_{i,j,k}$) would be employed for convection in the negative-x direction.

Note that the inviscid flux terms contain combinations of several different primitive flow variables. For example, in the x-direction, the terms to be differenced are $\phi = [\rho u, \rho u^2 + p, \rho uv, \rho uw, \rho (E + p)]^T$. In divergence form central differencing, the flux values themselves are directly differenced. In skew-symmetric form central differencing, the flux is formed from a combination of central differences of the flux values and the component flow property variables themselves. The central difference schemes investigated here employ the skew-symmetric approach. This approach has been investigated by several researchers in recent years,11–16 and appears to be more accurate and stable than divergence form central differencing. In particular, the implementation of Ref. 15 for the skew-symmetric scheme of Ref. 13 was used. Additional detail will be provided in the final paper.

Upwinding can be implemented by various methods in a CFD code.17,18 In this work, first a leftward-biased interpolation for the primitive flow variables $\phi = \rho$, u, v, w, and p at the half-node is formed which is consistent with the UB and Fromm formulas from Table 1. The remaining state variables are calculated using the perfect gas law, and the inviscid flux terms are then calculated from these components. The process is then repeated for a rightward-biased interpolation for a half-node using a reflected stencil. The final value
Table 1. Coefficients for central difference and upwind-biased stencils for $\partial \phi_{i,j,k}/\partial x = (\phi_{i+1/2,j,k} - \phi_{i-1/2,j,k})/\Delta x$. The upwind-biased (UB) and Fromm stencils assume convection in the positive-x direction.

<table>
<thead>
<tr>
<th>Name</th>
<th>ϕ_{i-4}</th>
<th>ϕ_{i-3}</th>
<th>ϕ_{i-2}</th>
<th>ϕ_{i-1}</th>
<th>ϕ_{i}</th>
<th>ϕ_{i+1}</th>
<th>ϕ_{i+2}</th>
<th>ϕ_{i+3}</th>
<th>ϕ_{i+4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-2</td>
<td></td>
<td>-1/2</td>
<td></td>
<td></td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-4</td>
<td></td>
<td>1/12</td>
<td>-2/3</td>
<td>2/3</td>
<td>-1/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-6</td>
<td>-1/60</td>
<td>3/20</td>
<td>-3/4</td>
<td>3/4</td>
<td>-3/20</td>
<td>1/60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD-8</td>
<td>1/280</td>
<td>-4/105</td>
<td>1/5</td>
<td>-4/5</td>
<td>4/5</td>
<td>-1/5</td>
<td>4/105</td>
<td>-1/280</td>
<td></td>
</tr>
<tr>
<td>UB-1</td>
<td></td>
<td>-1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UB-3</td>
<td></td>
<td>1/6</td>
<td>-1</td>
<td>1/2</td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UB-5</td>
<td>-1/30</td>
<td>1/4</td>
<td>-1</td>
<td>1/3</td>
<td>1/2</td>
<td>-1/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UB-7</td>
<td>1/140</td>
<td>-7/105</td>
<td>3/10</td>
<td>-1</td>
<td>1/4</td>
<td>3/5</td>
<td>-1/10</td>
<td>1/105</td>
<td></td>
</tr>
<tr>
<td>Fromm-2</td>
<td></td>
<td>1/4</td>
<td>-5/4</td>
<td>3/4</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Fourier analysis of spatial discretization schemes studied in this work.

The viscous terms were discretized using 2nd order central differences. All schemes were advanced using a low-storage 4-stage, 2nd order accurate Runge-Kutta time advancement algorithm.
IV. Results and Discussion

IV.A. One-Dimensional Acoustic Standing Wave Problem

As a simple means of evaluating the ability of the various inviscid flux schemes to resolve high-frequency acoustics or flowfield variations, they were tested on a one-dimensional acoustic standing wave problem. This problem assumes a one-dimensional computational domain with periodic boundary conditions. 128 grid points are used. The domain is initialized with air at \(p = 0.25 \text{atm}, \ T = 298.15 \text{K}, \) and a small sinusoidal velocity variation as a function of axial distance, \(x, \) and specified wavenumber, \(k: u(x,t=0) = (0.1 \text{m/s}) \cos(kx). \) Under the assumption of isentropic, small disturbance inviscid flow, the Navier-Stokes equations can be simplified to the linearized equations of gas dynamics, and an exact solution derived: \(u(x,t) = (0.05 \text{m/s})(\cos(k(x-\alpha t)) + \cos(k(x+\alpha t))) = (0.1 \text{m/s}) \cos(kx) \cos(k\alpha t), \) where \(t \) is time and \(\alpha \) is the sound speed (346.117 m/s). Due to space limitations in this abstract, the results from this analysis cannot be shown. However, in summary, the results clearly demonstrate the fourier characteristics shown in figure 1. The exact solution can even be modified to account for the dispersion and dissipation error of a particular scheme, and the resulting equation has excellent agreement with the numerical results. The complete results from this analysis will be presented in the final paper.

IV.B. Taylor-Green Vortex Problem

The Taylor-Green vortex problem is a benchmark case which, from a smooth initial condition, simulates vortex stretching and transition to turbulence. It was used as a test case for the 1st International Workshop on High-Order CFD Methods, held at the 50th AIAA Aerospace Sciences Meeting, January 7–8, 2012, in Nashville, Tennessee. DNS results have been calculated by Brachet et al.\(^\text{21}\) and, more recently by van Rees et al.\(^\text{22}\) The latter results are used as the basis for comparison in this paper.

The solution is computed on a periodic cube domain, \(-\pi l \leq x, y, z \leq \pi l.\) The flowfield is initialized with:

\[
\begin{align*}
u &= U_0 \sin \left(\frac{x}{l} \right) \cos \left(\frac{y}{l} \right) \cos \left(\frac{z}{l} \right), \\
v &= -U_0 \cos \left(\frac{x}{l} \right) \sin \left(\frac{y}{l} \right) \cos \left(\frac{z}{l} \right), \\
w &= 0, \\
p &= p_0 + \frac{\rho_0 U_0^2}{16} \left[\cos \left(\frac{2x}{l} \right) + \cos \left(\frac{2y}{l} \right) \right] \left[\cos \left(\frac{2z}{l} \right) + 2 \right]
\end{align*}
\]

where here \(l = 0.01 \text{m}, \ p_0 = 7271 \text{Pa}, \ T_0 = 298.15 \text{K} \) and \(U_0 = 34.612 \text{m/s}. \) The flow is effectively incompressible, \(M_0 = U_0/\alpha_0 = 0.1. \) The initial condition for \(\rho \) is calculated by the perfect gas law, assuming fixed \(T = T_0. \) The transport properties are fixed at their values at \(T_0 \) throughout the calculation. The resultant Reynolds number is \(Re = \rho_0 U_0 l/\mu_0 = 1600. \)

The time evolution of the Taylor-Green vortex flowfield can be visualized by showing iso-surfaces of zero Q-criterion \((Q = 0) \) at various times (figure 2). \(Q > 0 \) indicates regions of a flowfield in which vorticity dominates over strain. This calculation was performed using the CD-4 scheme on a 192\(^3\) point grid, with uniform grid spacing throughout the domain. Time is normalized by a characteristic timescale, \(t^* = t U_0/l, \) and the iso-surfaces are colored with the normalized velocity magnitude, \(U/U_0. \) It is evident from the figure that the initial large-scale \((k = 1) \) vortex structure at \(t^* = 0 \) steadily evolves toward smaller vortex structures \((t^* = 4). \) By \(t^* = 8, \) the flow has transitioned to turbulence, and proceeds steadily to a more isotropic state. The symmetries in the flowfield, discussed by Ref. 21, are evident from figure 2. Also note that the reduction in overall kinetic energy as the simulation progresses is visible in the velocity color scale.

Time histories for the mean kinetic energy, kinetic energy dissipation rate, and enstrophy for the CD-4 and UB-3 schemes on a 192\(^3\) point grid are compared with the spectral DNS (on a 512\(^3\) point grid) of Ref. 22 in figures 3, 4, and 5, respectively. The mean kinetic energy for the domain is given by

\[
E_{k,m} = \frac{1}{\rho_0 V} \int \rho \frac{U^2}{2} dV
\]

and the mean kinetic energy dissipation rate is \(\varepsilon = -\partial E_{k,m}/\partial t. \) The mean enstrophy for the domain is given
Figure 2. Iso-surfaces of zero Q-criterion showing the time evolution of the Taylor-Green vortex problem at $Re = 1600$, computed with the CD-4 scheme on a 192^3 grid. Iso-surfaces are colored with the normalized velocity magnitude, U/U_0. t^* is a normalized timescale, tU_0/t.

Figure 3. Plots showing the time evolution of the normalized mean kinetic energy, $E_{k,m}/V_0^2$ for the reference spectral DNS on a 512^3 point grid, and the CD-4 and UB-3 schemes on 192^3 point grids.

by

$$\Omega_m = \frac{1}{\rho_0 V} \int \frac{\omega \cdot \omega}{2} dV$$

(9)
It is evident from figures 3, 4, and 5 that the CD-4 scheme at this grid resolution is in very good agreement with the reference DNS results for all three mean flow properties. The UB-3 scheme follows the mean kinetic energy history reasonably well, although it consistently dissipates the kinetic energy faster than the DNS through $t^* = 8.6$. The mean enstrophy history for the UB-3 scheme begins to diverge below the DNS at $t^* = 3.5$, and remains significantly smaller throughout the remainder of the simulation. This is likely due to the dissipative nature of the UB-3 scheme at higher wavenumbers, which become more and more significant as the simulation progresses.

Thus far, simulations for all schemes have been completed on a 128^3 point grid, the CD-4, CD-6 and UB-3 schemes on a 192^3 point grid, and the CD-6 scheme on a 256^3 point grid. In the final paper, the schemes will be compared on grids ranging from $64^3 - 256^3$ points to assess the suitability of the schemes for both DNS and LES of the Taylor-Green vortex.

IV.C. Turbulent Channel Flow Problem

Turbulent channel flow has been extensively studied by experiments\(^2^3\) and DNS studies,\(^2^4,2^5\) and the mean flow profile and statistics have been very well characterized. Therefore, it is an excellent benchmark case for
evaluating various inviscid flux schemes for DNS or LES of wall-bounded shear flows. Here, turbulent channel flow of air at $p = 0.25\,\text{atm}$, $T = 298.15\,\text{K}$ and a mean streamwise velocity $u_m = 44.44\,\text{m/s}$ is simulated. The flow is essentially incompressible ($M_m = 0.127$). The computational domain is $0 \leq x \leq 2\pi h$ in the streamwise (x-) direction, $-h \leq y \leq h$ in the vertical (y-) direction, and $0 \leq z \leq \pi h$ in the spanwise (z-) direction. The channel half-width, h, is 0.01 m. The Reynolds number based on the full channel width, $2h$, is $Re = \rho u_m u_m^2 / \mu = 14300$.

Periodic boundary conditions are used in both the x- and z-directions. Adiabatic, no-slip wall boundary conditions are imposed on the bottom and top (y-) surfaces. In order to prevent the viscous losses at both walls from slowly “wearing down” the flow, the integrated area-sum of these forces is computed at each time step, and added in as a body force term, f, over the entire computational volume. This term effectively reproduces the effect of the pressure gradient needed to sustain a real turbulent channel flow, and maintains a constant mass flow rate in the simulation.

The flow is initialized using a power law mean velocity profile, along with unit wavenumber ($k = 1$) oscillations in y and z, and $k = 2$ wavenumber oscillations in x. This divergence-free initial condition was borrowed from Moin and Kim.\cite{MoinKim}

\begin{align*}
u & = u_{c,0} \left[1 - \frac{y}{h} \right]^8 + U_0 \pi \cos \left(\frac{2x}{h} \right) \sin \left(\frac{\pi y}{h} \right) \sin \left(\frac{2z}{h} \right), \\
v & = -U_0 \sin \left(\frac{2x}{h} \right) \left[1 + \cos \left(\frac{\pi y}{h} \right) \right] \sin \left(\frac{2z}{h} \right), \\
w & = -U_0 \frac{\pi}{2} \sin \left(\frac{2x}{h} \right) \sin \left(\frac{\pi y}{h} \right) \cos \left(\frac{2z}{h} \right), \quad (10)\end{align*}

where here the initial centerline streamwise velocity, $u_{c,0} = 50\,\text{m/s}$ and $U_0 = 5\,\text{m/s}$.

This initial condition, as well as a fully developed turbulent channel flow, can be visualized by showing iso-surfaces of zero Q-criterion ($Q = 0$) at $t^* = 0$ and $t^* = 30$ (figure 6). t^* is a normalized timescale, $t^* = u_m / 2\pi h$, representing the number of streamwise flowthrough times. The iso-surfaces are colored with the normalized velocity magnitude, U/u_m. This calculation was performed using the CD-2 scheme on a $128 \times 129 \times 128$ point grid. The grid spacing is uniform in x and z, and stretched by the hyperbolic tangent function in y. The wall-normal grid spacing at the walls is 0.001h. Grid spacings normalized by the wall friction lengths are: $\Delta x^+ = \Delta x \sqrt{\tau_w / \rho_w} / \mu_w = 20.1$, $\Delta y^+_w = 0.426$, $\Delta y^+_c = 16.4$, $\Delta z^+ = 10.0$.

Skin friction coefficient histories for the various inviscid flux schemes are shown in figure 7. The CD schemes were started from the initial condition, and it is evident from the skin friction history that the flow rapidly transitions to turbulence within the first few flowthrough times. The solutions were time-averaged from $t^* = 15–30$, as well as space-averaged in the periodic directions x and z. The time- and space-averaged
skin friction coefficient for all three CD schemes is in excellent agreement (within 3%) with the predictions from the reference Dean23 correlation at this Reynolds number. The UB and Fromm schemes were started from the CD-2 solution at $t^* = 10$. As might be expected, the UB-1 scheme rapidly begins to laminarize the flow, but has not achieved a steady state condition even by $t^* = 30$. The UB-3, UB-5 and UB-7 schemes do achieve a stationary state by $t^* = 15$, and their time- and space-averaged coefficient values are in progressively closer agreement with the CD-2 results and the prediction from the Dean correlation. The average skin friction for the Fromm-2 scheme is slightly lower than the UB-3 scheme.

The time- and space-averaged streamwise velocity profiles for the schemes (except UB-1 which is only space-averaged at $t^* = 30$) are compared with the laminar sublayer profile, the log-law profile, and the DNS results of Moser et al.25 in figure 8. The velocity profiles are normalized by the characteristic wall friction velocity, $u^+ = u/\sqrt{\tau_w/\rho_w}$, and the distance from the wall is normalized by the wall friction lengthscale, $y^+ = \left| y - y_w \right| \sqrt{\tau_w \rho_w}/\mu_w$. The results are consistent with the observations from the skin friction history.

Thus far, simulations for all of the schemes have been completed on a $128 \times 129 \times 128$ point grid, the CD-2 scheme on a $192 \times 193 \times 192$ point grid, and the CD-2, CD-4 and CD-6 schemes on progressively coarser $96 \times 129 \times 96, 64 \times 129 \times 64$, and $48 \times 129 \times 48$ point grids. In the final paper, the suitability of all of the schemes for DNS and LES of turbulent channel flow will be assessed. The effect of the Smagorinsky and Dynamic Smagorinsky subgrid models on the results will also be determined.
References

