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The last two decades have witnessed tremendous growth in computational power, the
development of computational fluid dynamics (CFD) codes which scale well over thousands
of processors, and the refinement of unstructured grid-generation tools which facilitate
rapid surface and volume gridding of complex geometries. Thus, engineering calculations
of 107 – 108 finite-volume cells have become routine for some types of problems. Although
the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in
extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES
approaches are being applied to resolve the largest scales of turbulence in many engineering
problems. However, it has also become evident that LES places different requirements on
the numerical approaches for both the spatial and temporal discretization of the Navier
Stokes equations than does RANS. In particular, LES requires high time accuracy and
minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this
paper, the performance of both central-difference and upwind-biased spatial discretizations
is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex
problem, and the turbulent channel flow problem.

Nomenclature

a sound speed
E specific total energy, e+ Ek
Ek kinetic energy, U2/2
e specific internal energy
f body force per unit volume vector
h channel half-height, reference length for channel flow problem
k wavenumber
l reference length for Taylor-Green vortex problem
M Mach number, U/a
ṁ mass flow rate
N Number of grid points in a particular direction
p pressure
Q Q-criterion, (R : R− S : S)/2
q heat flux
R gas constant
R rotation-rate tensor, (∇u−∇uT )/2
S strain-rate tensor, (∇u +∇uT )/2
T temperature
t time
U velocity magnitude, ‖u‖
u velocity vector
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V volume
u, v, w components of velocity vector in the x-, y-, and z-direction, respectively
x, y, z cartesian coordinates

Subscripts

0 denotes an initial condition
c denotes a flow property at the centerline
i, j, k computational indices in the x-, y-, and z-direction, respectively
m denotes a mean flow property
w denotes a flow property at the wall

Symbols

δ kronecker delta
γ ratio of specific heats
λ thermal conductivity
µ viscosity
Ω enstrophy, ω · ω/2
ω vorticity vector
φ generic flowfield quantity
ρ density
τ viscous stress tensor
ε turbulent kinetic energy dissipation rate

Superscripts

∗ variable normalized by a characteristic flow timescale
+ variable normalized by inner-law variables

I. Introduction

Turbulence is a critical factor in most aero- and propulsion-related flows. For many years, the industry-
standard approach to incorporating the effect of turbulence in computational fluid dynamics (CFD)

calculations has been the Reynolds Averaged Navier Stokes (RANS) modeling approach. RANS implicitly
time-averages turbulent motion, and models its effect on the mixing of species, momentum and energy
in a flow field. The approach is economical and often allows a CFD calculation to proceed to steady-
state. However, it makes several simplifying assumptions, and the results will only be as good as the
RANS turbulence model. Meanwhile, the last two decades have witnessed rapid and explosive growth in
computational power, the development of CFD codes which scale well over thousands of processors, and
the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of
complex geometries. CFD engineering calculations of 107 – 108 finite-volume cells have become routine.
Thus, large eddy simulation (LES), which attempts to directly resolve the unsteady motion of the largest
scales of turbulence, is increasingly of interest for many fluids engineering problems.1–3 Additionally, hybrid
RANS-LES approaches such as Spalart’s Detached Eddy Simulation (DES),4 which attempt to marry the
best strengths of both methods, are in active use.

Because it seeks to accurately resolve the unsteady motion of the largest scales of turbulence, LES places
certain requirements on the numerical method used to discretize and advance the Navier Stokes equations.
In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation
over a wide range of length scales. A number of studies in the literature5–10 have investigated the suitability
of various upwind-based shock-capturing schemes for LES. The purpose of this paper is to evaluate the
suitability of several different central difference and upwind-biased schemes for a simple one-dimensional
acoustic standing wave problem, as well as DNS and LES of the Taylor-Green vortex problem and a turbulent
channel flow problem.
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II. Governing Equations

The compressible Navier-Stokes equations for a single chemical species are the governing model for this
study. The time-dependent differential form of these equations is written as follows:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu

∂t
+∇ · (ρuu + pδ) = ∇ · τ + f (2)

∂ρE

∂t
+∇ · (ρu(E + p)) = ∇ · (u · τ − q) + f · u (3)

A calorically perfect ideal gas equation of state is used: p = ρRT , and T = (γ − 1)e/R. γ = 1.4 and
R = 287 J/Kg-K for all cases studied in this work. The viscous stress tensor, τ is defined as

τ = 2µS− 2

3
µ(∇ · u)δ (4)

and the heat flux vector as
q = −λ∇T (5)

The transport properties µ and λ are calculated using the Sutherland formulas for air.

III. Numerical Method

The Navier-Stokes equations are solved by the finite-difference method in the conventional cartesian
coordinate system. The inviscid flux (the second term on the left-hand side of Eqs. 1, 2, and 3) is the portion
of the equations that deals with convection of mass, momentum and energy. Historically, the discretization
of these terms has been a driving issue in CFD research since its inception. Four central difference (CD)
schemes, four upwind-biased (UB) schemes, and the Fromm scheme for the inviscid flux are evaluated in
this work. The stencil coefficients for these schemes are shown in table 1 for a generic flowfield quantity, φ.
The number in the name for each scheme denotes the formal order of accuracy. Conservative differencing
was used such that, at node i,j,k, the derivative in the x-direction is given by:

∂φi,j,k
∂x

=
φi+1/2,j,k − φi−1/2,j,k

∆x
(6)

where φi+1/2,j,k and φi−1/2,j,k are interpolated and formed in such a way that the final difference is
equivalent to one of the stencils shown in Table 1. For example, φi+1/2,j,k = (φi,j,k + φi+1,j,k)/2 and
φi−1/2,j,k = (φi−1,j,k +φi,j,k)/2 yields the CD-2 formula, while φi+1/2,j,k = (−φi−1,j,k + 5φi,j,k + 2φi+1,j,k)/6
and φi−1/2,j,k = (−φi−2,j,k + 5φi−1,j,k + 2φi,j,k)/6 yields the UB-3 formula. It should be noted that the UB
and Fromm schemes shown assume convection in the positive-x direction. A reflected stencil (about φi,j,k)
would be employed for convection in the negative-x direction.

Note that the inviscid flux terms contain combinations of several different primitive flow variables. For
example, in the x-direction, the terms to be differenced are φ = [ρu, ρu2 + p, ρuv, ρuw, ρu(E + p)]T . In
divergence form central differencing, the flux values themselves are directly differenced. In skew-symmetric
form central differencing, the flux is formed from a combination of central differences of the flux values and the
component flow property variables themselves. The central difference schemes investigated here employ the
skew-symmetric approach. This approach has been investigated by several researchers in recent years,11–16

and appears to be more accurate and stable than divergence form central differencing. In particular, the
implementation of Ref. 15 for the skew-symmetric scheme of Ref. 13 was used. Additional detail will be
provided in the final paper.

Upwinding can be implemented by various methods in a CFD code.17,18 In this work, first a leftward-
biased interpolation for the primitive flow variables φ = ρ, u, v, w, and p at the half-node is formed which
is consistent with the UB and Fromm formulas from Table 1. The remaining state variables are calculated
using the perfect gas law, and the inviscid flux terms are then calculated from these components. The process
is then repeated for a rightward-biased interpolation for a half-node using a reflected stencil. The final value
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Table 1. Coefficients for central difference and upwind-biased stencils for ∂φi,j,k/∂x = (φi+1/2,j,k − φi−1/2,j,k)/∆x. The
upwind-biased (UB) and Fromm stencils assume convection in the positive-x direction.

Name φi−4 φi−3 φi−2 φi−1 φi φi+1 φi+2 φi+3 φi+4

CD-2 -1/2 1/2

CD-4 1/12 -2/3 2/3 -1/12

CD-6 -1/60 3/20 -3/4 3/4 -3/20 1/60

CD-8 1/280 -4/105 1/5 -4/5 4/5 -1/5 4/105 -1/280

UB-1 -1 1

UB-3 1/6 -1 1/2 1/3

UB-5 -1/30 1/4 -1 1/3 1/2 -1/20

UB-7 1/140 -7/105 3/10 -1 1/4 3/5 -1/10 1/105

Fromm-2 1/4 -5/4 3/4 1/4

(a) Dispersion Error (b) Dissipation Error

Figure 1. Fourier analysis of spatial discretization schemes studied in this work.

of the inviscid flux at the half-node is provided by the Roe approximate Riemann solver,19 using these two
separate left and right states. Again, additional detail on the method will be provided in the final paper.

Plots of the dispersion error and dissipation error from a fourier analysis of the various schemes are shown
in figure 1. The scaled wavenumber is equal to 2πk/N , such that it is equal to π at the spatial Nyquist
frequency. As discussed by Li,20 the dispersion error of each of the UB schemes is equal to that of the CD
scheme of the next higher order of accuracy. All of the CD schemes are free of dissipation error, while the
UB and Fromm schemes experience an increasing dissipation error at higher wavenumbers. The higher-order
UB schemes have a significantly smaller dissipation error than the lower-order ones.

The viscous terms were discretized using 2nd order central differences. All schemes were advanced using
a low-storage 4-stage, 2nd order accurate Runge-Kutta time advancement algorithm.
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IV. Results and Discussion

IV.A. One-Dimensional Acoustic Standing Wave Problem

As a simple means of evaluating the ability of the various inviscid flux schemes to resolve high-frequency
acoustics or flowfield variations, they were tested on a one-dimensional acoustic standing wave problem.
This problem assumes a one-dimensional computational domain with periodic boundary conditions. 128
grid points are used. The domain is initialized with air at p = 0.25 atm, T = 298.15 K, and a small
sinusoidal velocity variation as a function of axial distance, x, and specified wavenumber, k: u(x, t = 0) =
(0.1 m/s) cos(kx). Under the assumption of isentropic, small disturbance inviscid flow, the Navier-Stokes
equations can be simplified to the linearized equations of gas dynamics, and an exact solution derived:
u(x, t) = (0.05 m/s)(cos(k(x−at))+cos(k(x+at))) = (0.1 m/s) cos(kx) cos(kat), where t is time and a is the
sound speed (346.117 m/s). Due to space limitations in this abstract, the results from this analysis cannot
be shown. However, in summary, the results clearly demonstrate the fourier characteristics shown in figure 1.
The exact solution can even be modified to account for the dispersion and dissipation error of a particular
scheme, and the resulting equation has excellent agreement with the numerical results. The complete results
from this analysis will be presented in the final paper.

IV.B. Taylor-Green Vortex Problem

The Taylor-Green vortex problem is a benchmark case which, from a smooth initial condition, simulates
vortex stretching and transition to turbulence. It was used as a test case for the 1st International Workshop
on High-Order CFD Methods, held at the 50th AIAA Aerospace Sciences Meeting, January 7–8, 2012, in
Nashville, Tennessee. DNS results have been calculated by Brachet et al.21 and, more recently by van Rees
et al.22 The latter results are used as the basis for comparison in this paper.

The solution is computed on a periodic cube domain, −πl ≤ x, y, z ≤ πl. The flowfield is initialized with:

u = U0 sin
(x
l

)
cos
(y
l

)
cos
(z
l

)
,

v = −U0 cos
(x
l

)
sin
(y
l

)
cos
(z
l

)
,

w = 0,

p = p0 +
ρ0U

2
0

16

[
cos

(
2x

l

)
+ cos

(
2y

l

)][
cos

(
2z

l

)
+ 2

]
(7)

where here l = 0.01 m, p0 = 7271 Pa, T0 = 298.15 K and U0 = 34.612 m/s. The flow is effectively incom-
pressible, M0 = U0/a0 = 0.1. The initial condition for ρ is calculated by the perfect gas law, assuming fixed
T = T0. The transport properties are fixed at their values at T0 throughout the calculation. The resultant
Reynolds number is Re = ρ0U0l/µ0 = 1600.

The time evolution of the Taylor-Green vortex flowfield can be visualized by showing iso-surfaces of zero
Q-criterion (Q = 0) at various times (figure 2). Q > 0 indicates regions of a flowfield in which vorticity
dominates over strain. This calculation was performed using the CD-4 scheme on a 1923 point grid, with
uniform grid spacing throughout the domain. Time is normalized by a characteristic timescale, t∗ = tU0/l,
and the iso-surfaces are colored with the normalized velocity magnitude, U/U0. It is evident from the figure
that the initial large-scale (k = 1) vortex structure at t∗ = 0 steadily evolves toward smaller vortex structures
(t∗ = 4). By t∗ = 8, the flow has transitioned to turbulence, and proceeds steadily to a more isotropic state.
The symmetries in the flowfield, discussed by Ref. 21, are evident from figure 2. Also note that the reduction
in overall kinetic energy as the simulation progresses is visible in the velocity color scale .

Time histories for the mean kinetic energy, kinetic energy dissipation rate, and enstrophy for the CD-4
and UB-3 schemes on a 1923 point grid are compared with the spectral DNS (on a 5123 point grid) of Ref. 22
in figures 3, 4, and 5, respectively. The mean kinetic energy for the domain is given by

Ek,m =
1

ρ0V

∫
ρ
U2

2
dV (8)

and the mean kinetic energy dissipation rate is ε = −∂Ek,m/∂t. The mean enstrophy for the domain is given
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(a) t* = 0 (b) t* = 4 (c) t* = 8

(d) t* = 12 (e) t* = 16 (f) t* = 20

Figure 2. Iso-surfaces of zero Q-criterion showing the time evolution of the Taylor-Green vortex problem at Re = 1600,
computed with the CD-4 scheme on a 1923 grid. Iso-surfaces are colored with the normalized velocity magnitude,
U/U0. t* is a normalized timescale, tU0/l

(a) Overview (b) Closeup of t∗ = 7.5 to t∗ = 10

Figure 3. Plots showing the time evolution of the normalized mean kinetic energy, Ek,m/V
2
0 for the reference spectral

DNS on a 5123 point grid, and the CD-4 and UB-3 schemes on 1923 point grids.

by

Ωm =
1

ρ0V

∫
ρ
ω · ω

2
dV (9)

6 of 10

American Institute of Aeronautics and Astronautics



(a) Overview (b) Closeup of t∗ = 7.5 to t∗ = 10

Figure 4. Plots showing the time evolution of the normalized mean kinetic energy dissipation rate, εl/V 3
0 for the

reference spectral DNS on a 5123 point grid, and the CD-4 and UB-3 schemes on 1923 point grids.

(a) Overview (b) Closeup of t∗ = 7.5 to t∗ = 10

Figure 5. Plots showing the normalized mean enstrophy, Ωl2/V 2
0 for the reference spectral DNS on a 5123 point grid,

and the CD-4 and UB-3 schemes on 1923 point grids.

It is evident from figures 3, 4, and 5 that the CD-4 scheme at this grid resolution is in very good agreement
with the reference DNS results for all three mean flow properties. The UB-3 scheme follows the mean kinetic
energy history reasonably well, although it consistently dissipates the kinetic energy faster than the DNS
through t∗ = 8.6. The mean enstrophy history for the UB-3 scheme begins to diverge below the DNS at
t∗ = 3.5, and remains significantly smaller throughout the remainder of the simulation. This is likely due to
the dissipative nature of the UB-3 scheme at higher wavenumbers, which become more and more significant
as the simulation progresses.

Thus far, simulations for all schemes have been completed on a 1283 point grid, the CD-4, CD-6 and
UB-3 schemes on a 1923 point grid, and the CD-6 scheme on a 2563 point grid. In the final paper, the
schemes will be compared on grids ranging from 643 – 2563 points to assess the suitability of the schemes
for both DNS and LES of the Taylor-Green vortex.

IV.C. Turbulent Channel Flow Problem

Turbulent channel flow has been extensively studied by experiments23 and DNS studies,24,25 and the mean
flow profile and statistics have been very well characterized. Therefore, it is an excellent benchmark case for
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(a) t* = 0 (b) t* = 30

Figure 6. Iso-surfaces of zero Q-criterion showing turbulent channel flow at Re = 14300, computed with the CD-2
scheme on a 128 × 129 × 128 point grid. a) initial condition, b) statistically stationary state. Iso-surfaces are colored
with the normalized velocity magnitude, U/um. t* is a normalized timescale, t∗tum/2πh, representing the number of
streamwise flowthrough times.

evaluating various inviscid flux schemes for DNS or LES of wall-bounded shear flows. Here, turbulent channel
flow of air at p = 0.25 atm, T = 298.15 K and a mean streamwise velocity um = 44.44 m/s is simulated.
The flow is essentially incompressible (Mm = 0.127). The computational domain is 0 ≤ x ≤ 2πh in the
streamwise (x-) direction, −h ≤ y ≤ h in the vertical (y-) direction, and 0 ≤ z ≤ πh in the spanwise (z-)
direction. The channel half-width, h, is 0.01 m. The Reynolds number based on the full channel width, 2h,
is Re = ρmum2h/µm = 14300.

Periodic boundary conditions are used in both the x- and z-directions. Adiabatic, no-slip wall boundary
conditions are imposed on the bottom and top (y-) surfaces. In order to prevent the viscous losses at both
walls from slowly “wearing down” the flow, the integrated area-sum of these forces is computed at each time
step, and added in as a body force term, f , over the entire computational volume. This term effectively
reproduces the effect of the pressure gradient needed to sustain a real turbulent channel flow, and maintains
a constant mass flow rate in the simulation.

The flow is initialized using a power law mean velocity profile, along with unit wavenumber (k = 1)
oscillations in y and z, and k = 2 wavenumber oscillations in x. This divergence-free initial condition was
borrowed from Moin and Kim.26

u = uc,0

[
1−

(y
h

)8
]

+ U0π cos

(
2x

h

)
sin
(πy
h

)
sin

(
2z

h

)
,

v = −U0 sin

(
2x

h

)[
1 + cos

(πy
h

)]
sin

(
2z

h

)
,

w = −U0
π

2
sin

(
2x

h

)
sin
(πy
h

)
cos

(
2z

h

) (10)

where here the initial centerline streamwise velocity, uc,0 = 50 m/s and U0 = 5 m/s.
This initial condition, as well as a fully developed turbulent channel flow, can be visualized by showing

iso-surfaces of zero Q-criterion (Q = 0) at t∗ = 0 and t∗ = 30 (figure 6). t* is a normalized timescale,
t∗ = tum/2πh, representing the number of streamwise flowthrough times. The iso-surfaces are colored with
the normalized velocity magnitude, U/um. This calculation was performed using the CD-2 scheme on a
128× 129× 128 point grid. The grid spacing is uniform in x and z, and stretched by the hyperbolic tangent
function in y. The wall-normal grid spacing at the walls is 0.001h. Grid spacings normalized by the wall
friction lengthscale are: ∆x+ = ∆x

√
(τwρw)/µw = 20.1, ∆y+

w = 0.426, ∆y+
c = 16.4, ∆z+ = 10.0.

Skin friction coefficient histories for the various inviscid flux schemes are shown in figure 7. The CD
schemes were started from the initial condition, and it is evident from the skin friction history that the flow
rapidly transitions to turbulence within the first few flowthrough times. The solutions were time-averaged
from t∗ = 15–30, as well as space-averaged in the periodic directions x and z. The time- and space-averaged
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(a) CD-2, CD-4 and CD-6 (b) CD-2, UB-1, UB-3, UB-5, UB-7, and Fromm-2

Figure 7. Comparison of skin friction coefficient history for the inviscid flux schemes on a 128 × 129 × 128 point grid.

(a) CD-2, CD-4 and CD-6y (b) CD-2, UB-1, UB-3, UB-5, UB-7, and Fromm-2

Figure 8. Comparison of streamwise velocity profiles for the inviscid flux schemes on a 128 × 129 × 128 point grid.

skin friction coefficient for all three CD schemes is in excellent agreement (within 3%) with the predictions
from the reference Dean23 correlation at this Reynolds number. The UB and Fromm schemes were started
from the CD-2 solution at t∗ = 10. As might be expected, the UB-1 scheme rapidly begins to laminarize
the flow, but has not achieved a steady state condition even by t∗ = 30. The UB-3, UB-5 and UB-7
schemes do achieve a stationary state by t∗ = 15, and their time- and space-averaged coefficient values are
in progressively closer agreement with the CD-2 results and the prediction from the Dean correlation. The
average skin friction for the Fromm-2 scheme is slightly lower than the UB-3 scheme.

The time- and space-averaged streamwise velocity profiles for the schemes (except UB-1 which is only
space-averaged at t∗ = 30) are compared with the laminar sublayer profile, the log-law profile, and the DNS
results of Moser et al.25 in figure 8. The velocity profiles are normalized by the characteristic wall friction
velocity, u+ = u/

√
(τw/ρw), and the distance from the wall is normalized by the wall friction lengthscale,

y+ = |y − yw|
√

(τwρw)/µw The results are consistent with the observations from the skin friction history.
Thus far, simulations for all of schemes have been completed on a 128× 129× 128 point grid, the CD-2

scheme on a 192 × 193 × 192 point grid, and the CD-2, CD-4 and CD-6 schemes on progressively coarser
96× 129× 96, 64× 129× 64, and 48× 129× 48 point grids. In the final paper, the suitability of all of the
schemes for DNS and LES of turbulent channel flow will be assessed. The effect of the Smagorinsky and
Dynamic Smagorinsky subgrid models on the results will also be determined.
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