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 The Single Habitat Module (SHM) concept approach to the infrastructure and conduct 
of exploration missions combines many of new promising technologies with a central concept 
of mission architectures that use a single habitat module for all phases of an exploration 
mission. Integrating mission elements near Earth and fully fueling them prior to departure 
of the vicinity of Earth provides the capability of using the single habitat both in transit 
to/from an exploration destination and while exploring the destination. The concept employs 
the capability to return the habitat and interplanetary propulsion system to Earth vicinity so 
that those elements can be reused on subsequent exploration missions. This paper provides 
an overview of the SHM concept and the advantages it provides.  A summary of calculations 
of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars 
Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission 
mass assessments related to use of a high specific impulse space based propulsion system is 
provided.   

Those calculations lead to the conclusion that the SHM concept can significantly reduce 
the mass required and streamline mission operations to explore Mars (and thus all 
exploration destinations).  

Nomenclature 
CCiCAP  = Commercial Crew Integrated Capability 
CLLS = Closed Loop Life Support 
Cx =  Constellation (Program) 
DRM = Design Reference Mission 
DSH = Deep Space Habitat 
EVA = extravehicular activity 
HAT = Human Architecture Team 
HPS = Habitat Propulsion System 
HLV = heavy-lift launch vehicle 
ISP  =  Interplanetary Space Propulsion (system) 
ISS = International Space Station 
JSC = Johnson Space Center 
K = Kelvin 
LEO = low-Earth orbit 
LLO = low-lunar orbit 
LMO = low-Mars orbit 
LSS = Lunar Surface Systems 
MMSEV = Multi-Mission Space Exploration Vehicle (in this context, configured for in-space or  
  surface mobility) 
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MOX =  liquid methane/liquid oxygen 
NEA = near-Earth asteroid 
NSO = Nuclear Safe Orbit 
OAB = Orbiting Assembly Base 
SEV = surface exploration vehicle 
SHM = Single Habitat Module 
SLS = Space Launch System 

I. Introduction 
hen humanity goes to Mars and other exploration destinations, the approach employed will affect the success 
of the endeavor. Combining the best ideas for the technology with an efficient approach is most likely to 

result in mission success. 
Deep space missions require that the crew be supported in transit and at exploration destinations for long 

durations. The Single Habitat Module (SHM) concept (Fig. 1) recognizes that crew support requirements for transit 
and while at a destination are roughly the same and thus could be addressed with a single module. Assuming the 
heritage of recent decades of human space operations in low-Earth orbit (LEO), the SHM concept starts with 
assembly of the exploration vehicle at a location near Earth using the capabilities humanity has developed and 
demonstrated in creating and operating the International Space Station (ISS). The SHM vehicle will include 
habitation to address crew support requirements and an efficient Interplanetary Space Propulsion (ISP) system to 
address propelling the vehicle to and from an exploration destination. Assembling and fueling the integrated vehicle 
near Earth provides the capability to start exploration missions fully fueled to meet the requirements of the mission. 
Being fully fueled at the start of each mission makes it possible to leave the vicinity of Earth with enough fuel to 
return a habitat from an exploration destination. Employing only one habitat can dramatically simplify mission 
conduct and make it possible to reuse mission assets. 

The end of a SHM exploration mission results in the ISP system and habitat being returned to the near-Earth 
staging site. Those core elements are to be refurbished and refueled in space, then reused for subsequent exploration 
missions. 

Such an approach to space exploration would focus development on the fewest possible number of exploration 
elements (the habitat and ISP) and enable reuse of those elements to provide a human exploration infrastructure that 
can address many exploration goals. A campaign of exploration missions using the SHM approach should be more 
quickly achievable and much more affordable (versus independent missions) since fewer elements are required. 

This paper provides a description of the SHM concept, including ideas on how the concept could be 
implemented using a combination of new technologies and past exploration program concepts.  

During late 2012 the Habitat Propulsion System (HPS) characteristics were established and the mass of the HPS 
was calculated.  That provided the information needed to finish the first complete mission mass calculation for the 
SHM concept.  The completion of the mass calculations enabled the first direct comparison of the SHM concept 
with the comparable Mars mission addressed in the 2009 Constellation Program (Cx) Mars Design Reference 
Architecture (DRA)1.  While the mission duration of the SHM concept and the Mars DRA are calculated to be 
roughly the same, the mass for a Mars surface exploration mission using the SHM approach is calculated to require 
much less Initial Mass in LEO (IMLEO) (over 40% less (over  330 metric tons)) than using the Mars DRA. 
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Those operations would result not only in the conduct of an exploration mission but also in the return of the most 
critical of mission assets (the interplanetary propulsion system and the habitat module) to near-Earth orbit. 
Returning those elements to near Earth provides the capability to reuse them for the next exploration mission.  

A logical progression of missions using the SHM concept would be to develop the SHM habitat and ISP 
designed to conduct the most challenging Mars surface mission.  Those elements would be used for a sequence of 
progressively more challenging exploration missions.  The first would be to conduct a Near-Earth Asteroid (NEA) 
rendezvous mission.  After returning the SHM to the Earth vicinity, refurbish and resupply the ISP and SHM then 
conduct a lunar surface mission to test and demonstrate SHM capabilities to conduct a surface mission.  Then 
refurbish and resupply the ISP and SHM again at the near-Earth site, then conduct a Mars mission.  The exploration 
sequence could be repeated to other destinations until the life limits of the SHM are reached. 

B. Background 
The Presidential Budget proposal for fiscal year 20112 contained several concepts that (if realized) can be used to 

improve the way deep space missions are conducted. It also directed NASA to focus on deep space missions 
including a mission to a NEA and ultimately to conduct a human mission to Mars. 

The SHM concept of a different approach to crew accommodations and mission conduct puts the new concepts 
together in a way that can make exploration more efficient and less costly, and would nearly eliminate the waste of 
mission resources. SHM combines the following concepts: CCiCAP (or Orion) access of crew to LEO; heavy-lift 
launch vehicle (HLV) launch of large payloads (now funded as the Space Launch System (SLS) Program); fueling 
(later refueling) (and assembly) in space; Closed Loop Life Support (CLLS); interplanetary space propulsion 
(probably nuclear powered); green technology (reuse mission assets and likely use of liquid methane as the SHM 
propellant); possible aerocapture; and ISS utilization. As of 2012, NASA is pursuing all of those new technology 
and vehicle efforts as currently funded projects or in future plans. The CCiCAP, Orion, and SLS projects are well 
under way. 

The SHM concept was first communicated to the NASA Human Exploration Framework Team via an email in 
June 2010. It was proposed as a game-changing concept to the NASA Office of the Chief Technologist in September 
2010.  It was presented at the NASA JSC Innovation Day in May 2011 and at a Knowledge Capture forum in June 
2011 at JSC. During those presentations, the concept was referred to as the Single Crew Module concept. (The 
change to SHM was made to eliminate confusion with mission concepts others have proposed involving a single 
crewmember).  

The SHM concept was described at the 2012 ICES conference3.  At the AIAA Space 2012 conference progress 
in understanding the mission that would employ advanced technologies to implement the SHM concept was 
described4.  Progress on the SHM concept was presented to the JSC knowledge capture forum on October 17, 2012. 

In November and December 2012 calculations for the mass of the HPS system needed to deliver the single 
habitat and Multi-Mission Space Exploration Vehicle (MMSEV) to the surface of Mars and return them to LMO to 
rendezvous with the IPS were completed.  Knowing the HPS mass and the mass of the habitat/MMSEV lead to the 
second iteration of the trajectory and mission mass assuming nuclear powered electric propulsion.  Thus the first 
complete mass estimate of the SHM concept was completed.  That allowed comparison to the Mars DRA mission 
mass and initial assessment of the quantified mission characteristics. 

This paper will summarize the earlier paper results then focus on the way calculation of the HPS them complete 
SHM mission mass was addressed. 

II. Single Habitat Module Essentials 
To achieve the goal of the SHM concept to efficiently conduct an exploration mission and enable reuse of the 

critical elements of an exploration mission, the elements to be reused must be designed to meet the needs of the most 
difficult exploration mission envisioned. The most difficult mission currently envisioned is the surface exploration 
of Mars. The vehicle that addresses the Mars surface exploration mission would be capable of missions to NEAs or 
the moon and would thus be reusable for those types of exploration missions. 

The design driving case includes a Mars landing and surface exploration followed by return to Earth. Mars 
surface exploration requires that the habitat be equipped with propulsion capability to descend from LMO to land at 
a designated exploration site, support crew operations while on Mars, then ascend back to LMO to rendezvous with 
the ISP.  

For the SHM approach, it is critical to return the habitat module and the MMSEV (for either in-space and/or 
surface mobility) to destination orbit then back to Earth since both the module and the MMSEV are essential for 
crew support and/or to address potential contingencies. 
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The habitat module of the SHM concept will need to address all life support and crew habitability and command 
functions for each entire exploration mission. It must provide enough resources for the crew to function during the 
long zero gravity (or very low acceleration of the ISP) of the to-and-from transit phases and also be compatible with 
the long-duration surface exploration phase in the partial gravity of Mars or the moon.  

Cabin atmosphere leak or contamination and other contingencies must be addressed. 
Extravehicular activity (EVA) and mobility capabilities are required to enable exploration at the destination.  

III. Single Habitat Module Concept Implementation 
If implemented, the SHM concept will have a program to develop the best design for the variety of elements. 

Design development of the SHM would consider many aspects of the mission to use the technology available during 
the design period to accomplish the SHM goals. The Constellation (Cx) Program and technology development 
efforts have provided many options for how to implement such a concept. Many options are possible for the 
technologies involved in specific parts of each deep space mission. The new Advanced Exploration Systems (AES) 
Program and Office of Chief Technologist (OCT) efforts will verify that new technology candidates are ready to 
make the new vehicles robust and efficient in accomplishing mission goals. Mass minimization and safety will be 
key design considerations.  

The features described in the following section and in Fig. 2 make sense for potential design solutions for the 
SHM concept, and take into consideration technology options that are or are expected to be available and vehicle 
element concepts.  This basic concept for SHM implementation was used in mission IMLEO mass calculations that 
will be presented.  A later section will address options that will probably lead to less mass to Mars surface and thus 
much less mission mass. 

The CLLS, thermal control, EVA, and command and habitation capabilities (needed to support the crew during 
the entire mission) need to be as efficient as possible to minimize mass of both equipment and consumables. Long-
duration missions have been shown (in exploration trade studies) to greatly benefit from regenerating resources. The 
longer the mission, the more beneficial regeneration of resources becomes. A single habitat and command module 
will take advantage of the benefits of regeneration for the entire duration of the mission. The most reliable solution 
will be employed, combined with appropriate redundancy and sparing.  

The CLLS will minimize waste products, which will partially address planetary protection issues. The CLLS 
implemented will have to address the most demanding of the environments, whether that occurs in transit or during 
surface operations. 

Thermal control radiators must address the peak heat loads in transit and at Mars. Radiators that work efficiently 
in deep space may also work well in a convective Martian atmosphere. 

EVA capabilities will be required at the exploration destination. EVA interfaces would need to be robust to 
address the dust environment and provide the isolation needed for the crew from potential Martian contamination. 
The suit port concept5 would provide very efficient EVA capability and would address the dusty environment. The 
same EVA system can address potential contingencies during transits and at the destination.  

The inclusion of an MMSEV would address the exploration mobility and EVA capability needed at the 
destination. The MMSEV would also be very capable of addressing many potential cabin contingencies since it can 
function for an extended period of time as an independent spacecraft.  It also offers efficient, independent EVA 
capabilities. 

Landing gear is required for the lunar and Mars missions. The landing gear could be detached and left on the 
surface to reduce return mass. 
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1) The mass of a habitat, MMSEV and landing gear was established for a long duration surface mission based 
on deep space habitat AES and earlier Cx studies with consumables mass calculated based on an assumed 
set of CLLS equipment and calculation of the length of a NEP propelled mission duration 

2) The mass of the aerocapture heat shield was estimated based on 20% of the total SHM vehicle mass (based 
on preliminary heat shield design concepts) 

3) The mass of the HPS system required to land and then relaunch the habitat/MMSEV was calculated 
assuming a MOX propellant system 

4) The trajectory and IMLEO mass was recalculated using the combined habitat, MMSEV, landing gear, heat 
shield, HPS mass to be delivered to LMO then returning the habitat/MMSEV from LMO to LEO 

a. It was assumed that Orion delivers the crew to the SHM at the end of its spiral leading to departure 
from Earth; then Orion rendezvous’ with the SHM at the start of its spiral toward return to LEO 

 
A. Habitat Propulsion System Implementation  

Prior Cx exploration scenarios to the moon6 or Mars1 required a propulsion system that was to deliver a long-
duration habitat for crew occupation to the surface. The SHM concept requires that the habitat not only be delivered 
to the surface but also be returned to orbit to rendezvous with the ISP. The propulsion system of planned Cx 
missions (which has been assessed to be feasible) had significant capability. The primary difference between the Cx 
and SHM concepts is in the amount of fuel the HPS requires to perform the ascent. Considering that the landing gear 
is probably left on the surface, and given enough propellant, a system capable of launching the habitat from the .377 
g Mars gravity well should be feasible. 

The earlier SHM paper4 described the way a HPS could be implemented such that propellant tanks provide 
radiation protection for the habitat during the transit to Mars.  That system would employ a liquid methane/liquid 
oxygen (MOX) propulsion system that would provide redundancy during descent and ascent.  The use of MOX 
propulsion addresses the need for long term storage of propellants while in transit to Mars.  Cryo-coolers may be 
required to address propellant storage thermal conditioning while at either the moon or Mars.  

Summer 2012 trajectory assessments have confirmed that aerocapture makes sense to enter Mars orbit, then to 
provide braking prior to landing. An aerocapture/heat shield will be used below the MMSEV to aid in the 
deceleration of the entire SHM to enter Mars orbit. The same aerocapture/heat shield is then used (after habitat 
separation) to decelerate the habitat during Mars descent. The aerocapture/heat shield is to be detached prior to 
landing to enable habitat landing. The HPS is required to complete the maneuvers to land on Mars then to launch the 
habitat to rendezvous with the ISP in Mars orbit. 

Propulsion system and fuel mass calculations 
The trajectory assessments provided calculations4 of the velocity changes (DV) needed to land on Mars (800 feet 

per second (fps) and the DV needed to ascend and rendezvous with the IPS (3900 fps).  Those DVs were combined 
with the habitat/MMSEV mass estimates at descent (39,400 kg) and ascent (37,400 kg) to calculate the mass of the 
propulsion system (HPS).   

Calculations were done in reverse to focus on parts that could be quantified.  Thus the ascent habitat/MMSEV 
mass was used to calculate the fuel and propulsion system (HPS) mass to lift and accelerate that mass by the 3900 
fps required.  Using that ascent HPS mass and the descent mass of the habitat, MMSEV and landing gear; the mass 
of the fuel required for the descent DV of 800 fps was calculated. 

Using a MOX engine performance (a little less specific impulse than a LOX/Liquid hydrogen engine but much 
more tolerant of the long duration deep space and Mars surface environments) and using propulsion system mass 
experience (to estimate the size of the propulsion system for the habitat and propellant mass) the mass of the 
propulsion system (the rockets, infrastructure and tankage) was calculated to be 13,100 kg.  That propulsion system 
would be used for both descent and ascent.   

The mass of propellant needed to provide the 3900 fps DV needed to ascent from Mars and rendezvous with the 
ISP was calculated to be 93,400 kg resulting in a total ascent mass of 143,800 kg.   

All the ascent/rendezvous mass plus the landing gear was included in calculation of the descent mass.  To 
provide the 800 fps DV on descent was calculated to require 38,100 kg of MOX propellant. 

Combining the masses; the SHM concept requires that the ISP provide transit from Earth to Mars for a combined 
197,000 kg.  That mass includes the habitat, MMSEV, HPS and landing gear.  On return from Mars to Earth, the IPS 
needs to provide transit of only the habitat/MMSEV or 37,400 kg.  The landing gear is left on Mars (or the Moon) 
and the HPS is assumed to be left in Mars orbit since it is not required for the return transit.  The HPS and landing 
gear elements would be replaced during the refurbishment and refueling operations near Earth before the next 
exploration mission. 
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The habitat/ MMSEV, landing gear, and HPS masses summarized in Table 1 include the first HPS mass 
calculations for the SHM concept.   

 

Mass of elements of the SHM concept 
Mass 
(kg) 

Ascent from Mars to rendezvous with the ISP 

Habitat  30,900

MMSEV  6,500

HPS  

System  13,100 

Propellant at launch  93,400 

Descent from LMO to landing on Mars 

Habitat  30,900

Landing Gear  2,000

MMSEV  6,500

Aerocapture/Heat Shield  67,000

HPS 

System  13,100 

Propellant at start of Descent  131,500 

Total ISP payload Mass at start of mars Mission (IMLEO)  309,000

Total ISP payload mass at start of return from Mars to Earth  37,400

Total SHM Mass in LEO at start of Mars Mission  512,000

Total mass of SHM at Return to LEO  117,000

 
Table 1 (TBS) Masses calculated for a Mars surface mission implemented using MOX propulsion 

 

C. Interplanetary Space Propulsion System Implementation  
ISP system efficiency is critical to the feasibility of deep space exploration.  Chemical propulsion can work, but 

the mass required would be very high. Due to the dramatic specific impulse achievable via electric propulsion, a 
factor of 10 less propellant might be required (versus Space Shuttle vintage chemical propulsion).  

High power is required to achieve both the high specific impulse and moderately high thrust desired for deep 
space human sized mission transit. To provide the high power levels needed probably requires that nuclear (versus 
solar electric) power be employed.  Studies by NASA on nuclear powered propulsion systems have developed 
concepts for up to 5 megawatt Nuclear powered Electric Propulsion (NEP)7 systems illustrated in Figure 3.  The 
feasibility of the NEP concept leads to the mission mass of a SHM that employs a 5 MW system to power the ISP as 
the basis for trajectory and mass calculations for a mission to the surface of Mars.   
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8  
Figure 3 - The spiral trajectory resulting from the implementation of a high specific impulse ISP system  
 
Two cases were assessed to evaluate the effect of added nuclear power on mission mass and mission time.  The 

first used a 5 MW NEP powerplant, whereas the second assumed a 10 MW powerplant.  Both cases assumed a 
starting point at a NSO of 500 km circular LEO, a power delivery efficiency of 0.8, powerplant specific mass of 6 
kg/kw and structures and heliocentric tank mass of 15% of the vehicle mass.   

Mission Parameters Used in Case Studies 
Both cases assume that the SHM starts uncrewed from the NSO and spirals from Earth increasing velocity until 

escape from Earth gravity and the transit to Mars.  To minimize exploration crew time; it is assumed that the crew is 
launched to the SHM on an Orion vehicle that rendezvous’ with the SHM just prior to escape from the vicinity of 
Earth.  The details of the Orion delivery of the crew and the use of the Orion after crew delivery are details that are 
future work.  It is possible that a crew flies the SHM to that point then hands over SHM control to the exploration 
crew and then uses the Orion vehicle to return to Earth.  Each case also assumes the use of an aerocapture/heat 
shield to aid in deceleration of the SHM entire vehicle using the Martian atmosphere as a brake.  The same heat 
shield is used after the habitat elements are separated from the ISP for the Martian descent and landing.  The 
aerocapture/heat shield is use to provide most of the deceleration of the habitat, then it is discarded and the habitat 
HPS is used to propulsively land on Mars.   

Starting the missions was determined to be best at a time when Earth and Mars alignments provided minimal DV 
requirements for the transit.  For missions using NEP the transit times are different than for those using more 
historic propulsion systems thus the Hohman transfer timing is a little different.  Considering those parameters each 
of the case studies is started on 1/2/2028.  Since the transfer of the vehicle to mars requires more propellant than the 
return transit this approach minimized mass required for the Mars bound transit. 

To target a realistic mission on Mars an estimate of the amount of time needed to conduct exploration near the 
landing site was made.  It was assumed that MMSEV aided exploration of the selected site could be done in 2 
months.  That would allow time for 3 or 4 MMSEV exploration excursions each followed by MMSEV resupply and 
refurbishment at the landing site.  It should be noted that the MMSEV is returned to Earth with the habitat because it 
serves as not only a surface mobility aid but also as a contingency vehicle to address potential cabin contingencies. 
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those added masses associated with the SHM concept is viewed as future work; however, it is expected that most of 
the 336 mt difference will be saved if the SHM concept is employed. 

Comparing Case 2 versus the Mars DRA shows that 56 days of crew time and 117 mt could be saved if a 10 MW 
powerplant is employed.  However, the 10 MW powerplant is beyond the current nuclear power feasibility studies 
thus higher risk would be incurred if that level of power is planned. 

Qualitative Comparison of the SHM approach versus Cx and HAT approaches 
SHM could be compared directly to the Cx Mars Design Reference Architecture (DRA) to compare assets and 

thus understand the benefits. Alternatively, SHM could be compared to the elements required to conduct a lunar 
sortie mission. Those comparisons would address the benefits of the mission simplification associated with the SHM 
single habitat. However, such comparisons would be somewhat misleading since one of the benefits of the SHM 
concept is the reuse of mission assets and, when compared to a single mission, those benefits are not considered. 

The most appropriate comparison of past approaches and SHM is to compare the combination of NEA, lunar 
landing, and Mars surface missions. The Cx DRMs require the following: separate crew accommodations for transit, 
descent, ascent, and surface operations; new vehicles for every mission; prepositioning mission assets at exploration 
locations; (for the Mars DRA) in-situ resource utilization to provide propellant for the return mission. The SHM 
simplifies the mission compliment of elements.  

Top-level comparison of elements required to depart from Earth for exploration missions comparing the SHM 
compliment to Human Architecture Team (HAT) NEA mission, Cx Lunar Sortie and the Cx Mars DRA:  

 
SHM for the three missions   Habitat, MMSEV, ISP plus two refurbishment and refuel operations, 
         plus probably several Orion Multi-Purpose Crew Vehicle (MPCVs).  
  
HAT NEA      Orion, DSH, MMSEV, Solar Electric Propulsion. MPCVs 
Cx Lunar Sortie mission   Orion, Altair (Lander, Ascent).  
Cx Mars Surface mission  Orion, DSH, Surface Habitat, two Nuclear Thermal Rockets, SEV,  
        Combined Descent and Ascent Vehicle, Mars Ascent Vehicle. 
 
Comparing elements required for the approaches leads to an appreciation of the ways that the approaches are 

different. Qualifications to such comparisons are that the masses of the SHM habitat and ISP propulsion systems 
still need to be refined, and the SHM refurbishment and refuel process will require launch of materials from Earth. 
The author speculates that NEA and Cx Mars DRA missions would also require some level of assembly near Earth 
prior to departure. The SHM approach of decelerating the ISP and SHM to return to Earth vicinity will require more 
propulsion capability than the direct atmospheric reentry planned for the HAT NEA and Cx lunar sortie and Mars 
DRA but enables reuse of those critical elements. 

F. Why Single Habitat Module is Expected to Reduce Cost and Time Required to Explore 
The SHM concept was calculated save a significant amount of mass-to-destination when the entire mission is 

considered.  Part of that savings is because prepositioning a habitat and separate descent and ascent vehicles is not 
required for the SHM concept. In addition to the mission mass savings, fewer exploration elements are required 
using the SHM concept (versus the Mars DRA) thus a program using the SHM approach should be more 
streamlined and focused. Development of fewer vehicles should reduce the schedule to start exploration. 
Efficiencies in development organizations needed and the cost to conduct missions will be realized because fewer 
project organizations are needed. 

Reusing mission assets for subsequent missions will dramatically reduce the cost and schedule for other 
exploration missions.  

The in-space assembly base (perhaps ISS, but more likely ISS-derived) could be used to support Earth orbit and 
other Earth vicinity (Lagrangian or lunar) NASA or commercial activities between exploration missions.  

V. Summary of Single Habitat Module Approach Benefits  
The benefits of the SHM approach center around the single vehicle needed to conduct exploration. Supporting 

the crew through the entire mission in one habitat simplifies the total mission and enables reuse of mission assets. 
The SHM approach can make exploration more affordable and can focus missions on exploration instead of vehicle 
development. SHM approach benefits include: 

 
1) A single module that addresses crew functions for all mission phases.  
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a. This eliminates modules that in Cx approaches are required for transit to a destination (Multi-
Purpose Crew Vehicle), transit from orbit to destination surface (Altair descent vehicle), a surface 
habitat, and an ascent vehicle to return to orbit 

b. Reducing the number of exploration elements reduces the number of projects required for 
exploration thus reducing the size of the organization needed to implement exploration 

2) Elimination of the need to develop new vehicles for subsequent missions 
3) Transportation of significantly less mass to destination since fewer elements are required 
4) Use of regenerative technologies that minimize mass via use for the entire mission 
5) Elimination of the need for short-duration non-regenerative technologies 
6) No requirement for the prepositioning of assets 

a. Reduces landing accuracy requirements 
b. Crew arrives at an exploration site that has not been explored robotically via prepositioned assets 

(thus crew exploration is all new and not partially redundant) 
7) Use of a high-power ISP that can shorten mission duration to 944 days versus the Mars DRA mission 

duration of more than 942 crewed days 
a. Would reduce the amount of consumables required 
b. Would partially address radiation protection by shortening crew exposure time 

8) Vehicle dimensions that are not constrained by launch vehicles 
a. Allows architectural freedom to arrange mission elements 

9) The positioning of propellant around the habitat protects the crew from radiation 
10) Exploration flexibility by allowing the exploration community to use exploration resources to get to new 

destinations instead of building new vehicles 

VI. Summary and Conclusion  
The SHM concept has merits and could significantly simplify the conduct of exploration missions. The reuse of 

mission assets for subsequent exploration missions could dramatically reduce the cost of exploration and could 
significantly reduce the time required to develop and conduct a Mars mission. Assessment of the use of high specific 
impulse propulsion has led to a better understanding of the implications that using such technology has on mission 
planning. The infrastructure in the Orbital Assembly Base could be used to conduct other near-Earth NASA or 
commercial operations between exploration missions.   

The completion of the first estimation of the mass of the vehicle employing the SHM concept has confirmed that 
the concept is likely to provide substantial mass savings versus the Cx Mars DRA approach for one crewed mission 
to the surface of Mars.   

NASA Leaders should consider the SHM concept as an alternative approach for exploration and start a program 
to implement SHM.  Such a program organization should be the advocate for current technology development 
leading to those technologies being available for use in a SHM program.  Exploration programs should initiate 
development of the assembly station (or address repurposing of the ISS as the assembly station). 

More detailed studies be should be conducted to refine the SHM concept, specifically to assess the option of the 
SHM concept presented below as forward work. 

VII. Forward Work  
The SHM concept will be presented to NASA engineering management to provide them with an understanding 

of the concept and of the work done to date.  It is expected that give the results of studies performed to date; 
management will decide to pursue additional detailed development of the SHM concept leading to organization of a 
program to implement the SHM approach to exploration.  Such a program will provide the “pull” reason to continue 
development of technologies that will make the SHM concept work. 

In mid and late 2012 several engineers have commented that it would be important to minimize the mass of the 
elements that are used to conduct a surface mission.  Others have commented that using 2 MMSEVs to conduct 
surface exploration is beneficial in several ways.  Those changes would impact the SHM concept significantly and 
may further reduce the IMLEO of the SHM concept.   

The most promising architecture is shown in Figure 6 wherein all the habitat functions, supplies for transit and 
waste generated during the Earth to Mars transit are left in LMO and only the required functions are located in a part 
of the habitat that serves only to support MMSEV exploration of the surface.  Using 2 MMSEVs provides habitation 
volume for the crew, command of descent and ascent functions, and addresses contingencies during long roving 
operations.  The part of the habitat that accompanies the MMSEVs to the surface would be dedicated to providing 
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4) Jettison landing gear at destination surface (requires refurbishing the SHM with new landing gear for the 
next mission) 

5) Jettison SHM propulsion prop tanks and maybe the engines (requires resupply of those elements for the next 
mission) (refueling required in any scenario) 

a. Consider using a set of propulsion tanks for descent and another for ascent and rendezvous and 
leave the descent tanks at Mars (to reduce ascent mass) 

6) Segmenting the ISP prop tanks and discarding tanks when empty (refueling required in any scenario)  
7) Leaving the SEV on the surface (compromises contingency capabilities during return)  
8) Leaving one of the two MMSEVs in the 2 MMSEV concept (introduces symmetry issues for ascent) 
9) Conduct further studies of the trajectory of the SHM concepts that better optimize the transit times 
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