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Abstract

The space radiation environment is composed of energetic particles which can
deliver harmful doses of radiation that may lead to acute radiation sickness,
cancer, and even death for insufficiently shielded crew members. Spacecraft
shielding must provide structural integrity and minimize the risk associated
with radiation exposure. The risk of radiation exposure induced death (REID)
is a measure of the risk of dying from cancer induced by radiation exposure.
Uncertainties in the risk projection model, quality factor, and spectral fluence
are folded into the calculation of the REID by sampling from probability distri-
bution functions. Consequently, determining optimal shielding materials that
reduce the REID in a statistically significant manner has been found to be
difficult. In this work, the difference of the REID distributions for different
materials is used to study the effect of composition on shielding effectiveness.
It is shown that the use of correlated uncertainties allows for the determina-
tion of statistically significant differences between materials despite the large
uncertainties in the quality factor. This is in contrast to previous methods
where uncertainties have been generally treated as uncorrelated. It is con-
cluded that the use of correlated quality factor uncertainties greatly reduces the
uncertainty in the assessment of shielding effectiveness for the mitigation of
radiation exposure.

1 Introduction

The space radiation environment consists of energetic particles which can deliver larger
radiation doses than those experienced on Earth [1]. The assessment of risk from the
space radiation environment is an important factor in the design and composition of
spacecraft shielding, since materials must be chosen that maintain structural integrity
and provide optimum mitigation of radiation for crew members and instrumentation.
Failure to properly shield instrumentation could compromise the mission and endanger
the life of astronauts. Moreover, the effect of radiation on astronauts could lead to acute
radiation sickness, cancer, or even death if crew members are insufficiently shielded. It
is from these consequences that the following question arises: Which shielding materials
and thicknesses provide optimum radiation mitigation for crew members? Before this
question can be answered, a measure of risk associated with radiation exposure must be
defined.

Although many measures of risk exist, NASA uses a career radiation exposure limit [2]
of 3% REID [3, 4, 5, 6, 7, 8], which is based on models of radiation cancer mortality rates
and background mortality data. The life span study (LSS) of the Japanese Hiroshima
atomic bomb cohort is a major source of radiation cancer mortality data [9, 10, 11]. In
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this ongoing study, the number of cancer deaths of a cohort located within 3 km of the
atomic bomb hypocenter is monitored. A control group of similar size and composition is
also monitored within 3-10 km of the atomic bomb hypocenter, where radiation exposure
was assumed to be negligible. Radiation cancer mortality models are based on compar-
isons of the exposed cohort to the control group. There are several uncertainties that
must be incorporated into the REID when using risk models developed from the LSS.
These uncertainties include the extrapolation of the relatively high doses received by the
Japanese Hiroshima atomic bomb cohort to low radiation doses, the reported number
of cancer related deaths, measurements of dosimetry, and the transfer of risk from the
Japanese to other populations [8]. In this document, the aforementioned uncertainties
are collectively referred to as uncertainties in the low linear energy transfer (LET) risk
projection model, where LET is the energy lost by a particle per unit path length into a
material.

The effective dose is also needed for evaluation of the REID and depends on the
quality factor [12], particle fluence, and LET. The quality factor is the largest source
of uncertainty in the estimation of risk for the space radiation environment [3, 13] and
is derived from the maximum relative biological effectiveness (RBE), which is obtained
from experiments on animals and human tissue. The uncertainty in the quality factor is
largely due to insufficient experimental data for various sources of ionizing radiation and
energy ranges relevant to the space radiation environment. In addition to quality factor
uncertainties, there is also a degree of uncertainty associated with the spectral fluence.
Estimates of the spectral fluence uncertainties are obtained from comparisons of radiation
transport codes to space dosimetry measurements [3, 13, 14].

The quality factor, fluence, and low-LET uncertainties have been incorporated into
the calculation of the probabilistic effective dose and the REID by Cucinotta et al. [3]. In
that work, a χ2 analysis was used to show that differences in shielding effectiveness among
materials were not statistically significant, but it was assumed that the quality factor and
fluence uncertainties were uncorrelated, or had no interdependence. However, the quality
factor and low-LET uncertainties described in [3], and in the current document, depend
only on LET; there is no dependence of material composition. In the current document,
the use of correlated uncertainties is shown to greatly reduce the overall uncertainty in
the difference of distributions and allows for the identification of materials which reduce
the overall risk for most of the cases studied herein.

This document is organized as follows. In section 2, the REID is derived from the
cause specific risk of death. Other measures of risk, such as the lifetime attributable risk
(LAR) and estimated lifetime risk (ELR), are also described. In sections 2.1 and 2.2, the
space radiation environment, radiation transport, and the effective dose are discussed.
This is followed by a discussion of the quality factor and the radiation cancer mortality
rate in sections 2.3 and 2.4. In section 3, the quality factor, fluence (physics), and low-
LET uncertainties are described. Note that the description given in this section closely
follows the discussion of Cucinotta et al. [3]. In the current work, the functional forms

2



of probability distributions are explicitly stated. Furthermore, some of the distributions
in this work differ from those used by Cucinotta et al. [3]; thus, for the sake of clarity,
all distributions were described. In section 4, the uncertainties described in section 3 are
incorporated into the effective dose and the REID. Section 5 includes a discussion of the
latency model used for solid cancer and leukemia.

The work presented in sections 2-5 is not original research. Much of this work has
been documented in Cucinotta et. al [3]. It has been presented in this document so that
the results that follow can be unequivocally reproduced. The distributions used for the
projection of the fluence uncertainty and the maximum quality factor differ slightly from
those discussed in reference [3]. In addition, the distribution functions used in the current
document have been stated explicitly.

Calculations of the non-probabilistic and probabilistic effective dose and the REID
are verified in section 6. In section 7, material analysis is performed with the percent
difference of the effective dose and the REID distributions for different materials. The
effect of using correlated uncertainties is shown to reduce the overall uncertainty in the
difference of distributions thus allowing for the better identification of materials and
shielding strategies. The conclusions are stated in section 8.

2 Risk

In this section, the REID and other measures of risk are described. First, the cause specific
risk of death is written as a function of the cause specific mortality rate and the probability
of survival of the background population. The background survival probabilities are
calculated from the probability of death using mortality data. Next, the REID is written
as a variation of the cause specific risk of death in which the cause specific mortality rate
is expressed as a function of the radiation cancer mortality rate, and the probability of
survival becomes a function of effective dose. The radiation cancer mortality rate depends
on the cancer mortality rate of the background population and models of radiation induced
cancer deaths. The exposed probability of survival becomes a function of effective dose
and radiation cancer mortality rates.

Mortality data are usually listed in the form of life tables. The background mortality
rate for all causes of death is taken from the National Vital Statistics Reports (NVSR)
[15]. Cancer specific mortality rates are taken from Surveillance Epidemiology and End
Results (SEER) [16]. The primary source of data for radiation induced cancer deaths
comes from the Japanese Hiroshima cohort, where radiation cancer mortality rates have
been modeled [9, 10, 11]. A full discussion of the background mortality rates and cancer
specific mortality is found in Appendix A.
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The cause specific risk of death is defined by the following integral [6]:

Rγ ≡
β∫

α

mγ(a)S̃(a|α)da, (1)

where a is the age; α and β are the initial and final ages, respectively; mγ(a) is the
mortality rate for cause γ; and S̃(a|α) is the conditional probability of survival for the
background population, which is given by [6],

S̃(a|α) = S(a)

S(α)
, (2)

where S(a) is the probability of survival. In practice, the integral can be approximated
by summing over one year intervals:

Rγ =

β∫
α

mγ(a)S̃(a|α)da ≈
β∑

a=α

mγ(a)S̃(a|α). (3)

The definition of the mortality rate for cause γ is given by [17]

mγ(a) =
number of deaths from cause γ

number of person years lived
. (4)

A person year (PY) is the total number of people exposed to radiation multiplied by the
average number of years in which the cohort was studied after the radiation exposure [8].

There is an important difference between the definition of mortality rate and prob-
ability of death. The denominator in the definition of the probability of death is the
number of people years lived during a given time interval. One must account for the
number of people who lived through the entire age interval and the total number of years
lived by those who died before the end of the interval. On average, the number of deaths
occurring during a given time interval is evenly distributed across that time interval, but
there are exceptions. For example, infant deaths usually occur during the first few weeks
after birth. The number of years lived by those who die in a given interval is given by
the number of deaths times the ratio factor, ax, that describes the distribution of lives to
deaths on the interval. For ND number of deaths of cause γ and NPY number of people
years, the probability of death in the age interval [ai, ai+1] is given by [15, 17]

qγ =
ND

NPY + axND

. (5)

Dividing the numerator and denominator by the number of people years NPY in the
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interval results in [15, 17]

qγ(a) =
mγ(a)

1 + axmγ(a)
. (6)

If the ratio of lives to deaths is assumed to be evenly distributed across the interval for
all ages, then ax = 1/2 and [15, 17]

qγ(a) =
mγ

1 + 1
2
mγ

, (7)

where the time interval is taken to be one year. The probability of survival is calculated
from the probability of death and is given by the following product [3]:

S(a) =
a∏

u=ai

[1− qγ(u)], (8)

where ai is some initial age of interest and a is the attained age.
To calculate the REID, the exposed probability of survival and the radiation cancer

mortality rate are needed. The REID is given by using an altered form of equation 3,
where the lower limit occurs at the age of radiation exposure aE, and the upper limit is
the maximum attained age possible, which is taken to be amax ≈ 101 yr [3]. The REID
is given by [3, 5]

REID =
amax∑
a=aE

m(a, aE, ED)Ŝ(a,ED|aE), (9)

where m(a, aE, ED) is the radiation cancer mortality, a is the age, aE is the age of
exposure, ED is the effective dose, and Ŝ(a,ED|aE) is the conditional exposed probability
of survival given by [6],

Ŝ(a,ED|aE) = S(a,ED)/S(aE, ED). (10)

The conditional exposed probability of survival is calculated from the probability of death,
q, in the interval [ai, ai+1] for a given radiation dose. In order to compute the probability
of death, mγ in equation (7) is replaced with mγ ≡ M(a) +m(a, aE, ED), where M(a) is
the background US mortality rate for all causes of death. Therefore, equation (7) becomes
[3, 17]

q(a, aE, ED) =
M(a) +m(a, aE, ED)

1 + 1
2
[M(a) +m(a, aE, ED)]

. (11)

As in equation (8), the probability of survival for a given radiation dose is expressed as
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[3]

Ŝ(a,ED) =
amax∏
u=aE

[1− q(u, aE, ED)]. (12)

The present work focuses on calculation of the REID; however, there are other ways
to quantify risk. The lifetime attributable risk (LAR) is defined as [3, 4]

LAR ≡
amax∫
aE

m(a, aE, ED)S̃(a|aE)da (13)

≈
amax∑
a=aE

m(a, aE, ED)S(a)/S(aE),

where a is the age, aE is the age of exposure, m(a) is the radiation cancer mortality
rate, and S̃(a|aE) is the conditional probability of survival for the background population
described by equation (8). Note that the above probability of survival for the LAR is
independent of effective dose.

Another risk quantity used frequently is the estimated lifetime risk (ELR), the excess
risk that a person will die from radiation induced cancer as compared to the background
cancer population [3], and is defined as [5]

ELR ≡
amax∑
a=aE

[m(a, aE, ED) +mc(a)]Ŝ(a,ED|aE) (14)

−
amax∑
a=aE

mc(a)S̃(a|aE),

where m(a, aE, ED) is the radiation cancer mortality rate, and mc(a) is the cancer mor-
tality rate of the background population. Ŝ is the exposed probability of survival and S̃
is the background probability of survival. The trends of the LAR, ELR, and the REID
as a function of effective dose are used to verify the results in the present work.

The effective dose and the radiation cancer mortality rate are needed to calculate
the REID. In the next section, the space radiation environment and effective dose are
described. This is followed by a discussion of the quality factor and models of the radiation
cancer mortality rate.

2.1 Space Radiation Environment

The space radiation environment consists of particles that are trapped in Earth’s radi-
ation belts (ERBs), solar particle events (SPEs), and galactic cosmic rays (GCRs) [1].
Earth is surrounded by energetic protons and electrons that have become trapped in the
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geomagnetic field, known as the Van Allen radiation belts. In ERBs, proton energies
can reach hundreds of MeV, and electrons energies extend up to hundreds of keV and
higher. SPEs are primarily composed of protons generated from solar flares and coronal
mass ejections. These events are relatively rare and usually last from a few hours up to
a couple of days and can deliver a potentially lethal dose of radiation to unshielded crew
members. The proton energies in these events can reach up to several GeV. GCRs consist
of protons and heavier ions with energies reaching up to several GeV per nucleon. The
shock waves of supernovae are believed to be the source of GCRs [1, 18]. Due to the
uniform distribution of supernovae throughout the galaxy, the GCR flux of particles that
stream into the solar system is fairly constant.

The interplanetary magnetic field (IMF) generated by the sun modulates the intensity
of GCR particle flux [18]. The IMF is dependent on the solar cycle, which varies over
a period of 11 years between maxima. During solar maximum, the GCR particle flux is
attenuated the greatest; whereas, at solar minimum, the GCR particle flux is attenuated
the least. In the next section, the interaction of particles with the vehicle and the effective
dose are described.

2.2 Particle Transport and Effective Dose

As particles from the space radiation environment encounter spacecraft, elastic scatter-
ing, inelastic scattering and, reactions (fragmentation) may occur [19]. Elastic collisions
describe the scattering of two particles when there is no change in the internal structure
of the projectile and target after the collision. Inelastic collisions refer to scattering that
results in changes of the internal structure of the particles after the collision. Finally,
reactions (fragmentation) refer to the break-up of the projectile and (or) the target into
particles that are different from the initial projectile and (or) target.

Radiation transport is the process in which incident particles from the space radiation
environment, and any particles that result from their subsequent collisions with nuclei
in the shield, propagate through the shield and into the body. This process may be
described with the Boltzmann transport equation. It is difficult to solve the Boltzmann
equation for complex three-dimensional vehicle geometries. As a result, NASA developed
the deterministic transport code, High charge (Z) and Energy TRaNsport (HZETRN)
[20, 21, 22]. To simplify the radiation transport, the assumption is made that particles
moving in one direction before an interaction continue to move in the same direction after
the interaction. This is known as the straight ahead approximation, and it reduces the
complex three-dimensional vehicle calculations to a series of one-dimensional transport
solutions which can be integrated.

Once the particles have penetrated the shield, astronauts and instrumentation will
then be exposed to the radiation. The effects of the radiation on the human body are
studied in order to estimate radiation risks. The dose, dose equivalent, and effective
dose equivalent are used extensively for radiation risk. The dose at a point is the energy
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absorbed per unit mass and is given by

D =
∑
k

∞∫
0

Φk(E)Sk(E)dE, (15)

where k is the summation index for each ion, E is the kinetic energy per nucleon for
a given particle, Φk(E) is the energy dependent particle flux, and Sk(E) is the particle
specific stopping power. For an infinite-sized medium, the stopping power can be replaced
with the linear energy transfer (LET), the energy absorbed per unit length in a material.
Note that lengths are often expressed in units of areal density g/cm2, which is obtained
by multiplying the length [cm] by the density [g/cm3].

The effect of radiation on biology is needed for determining radiation risk. The dose
equivalent is similar to the dose except the quality factor is folded into the integral to
take into account the biological effect of the radiation. The dose equivalent at a point is
defined as

H ≡
∑
k

∞∫
0

Φk(E)Lk(E)Q(Lk(E))dE (16)

where Q is the quality factor as of function of the LET in the energy domain.
The effective dose is used as a measure of the effect of radiation on the body. The

damage incurred from radiation exposure varies among the organs in the body. Tissue
weighting factors are used to account for these differences in calculations. The following
computation procedure is used with HZETRN to compute effective dose. Each organ
is represented by a set of (approximately) equally spaced points. Rays representing the
path of radiation are traced from the outermost shield to a point in the organ. The
dose equivalent is obtained for each of the points located in the organ. The organ dose
equivalent is calculated by averaging over the dose equivalents at each point in the organ.
The effective dose is the weighted sum of the organ dose equivalents and is given as [13]

ED =
∑
k

∑
i

wi

mi

∫ mi

0

dmi

∞∫
0

Φk(E)Lk(E)Q(Lk(E))dE, (17)

where dmi is the differential mass element of each organ i, wi are the tissue weighting
factors, and mi are the total organ masses. In addition, an effective flux Fk(E) may be
defined as

Fk(E) ≡
∑
i

wi

mi

mi∫
0

dmiΦk(E) (18)
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such that the effective dose becomes [3]

ED =
∑
k

∞∫
0

Fk(E)Lk(E)Q(Lk(E))dE. (19)

The effective dose is a function of the flux, LET, and the quality factor. The effective
dose is used to the calculate the REID, an important indicator of the risk associated with
space radiation. Before calculating the effective dose, the quality factor must be defined.
This description is given in the following section.

2.3 Quality Factor

In the last section, the dose was defined as the amount of energy deposited in a material
per unit mass. A definition that takes into account the biological effect of the radiation on
different tissues is needed. The relative biological effectiveness (RBE) was first introduced
to take into account the absorbed dose and biological effect of radiation [23]. The RBE was
defined as the absorbed dose from gamma rays or x-rays that produce a certain biological
effect divided by the the absorbed dose from some other source of radiation that produces
the same biological effect. There are some problems with this definition. The RBE is
not unique because it depends on the radiation energy, the biological target, and many
other factors [23]. The International Commission on Radiological Units of Measurements
(ICRU) defined a factor that modifies the absorbed dose for all types of ionizing radiation.
This factor is known as the quality factor Q and is defined as function of linear energy
transfer (LET) in water, which has been chosen because of the large composition of water
in the human body. The ICRP-60 [12] definition of the quality factor is given by

Q60(L) =


1 for L ≤ 10 keV/µm

0.32L− 2.2 for 10 keV/µm ≤ L ≤ 100 keV/µm
300
L0.5 for L ≥ 100 keV/µm

(20)

where L is the LET.
The quality factor and effective dose are both needed for the calculation of the REID

and have been described. The final component of the REID calculation is the radiation
cancer mortality rate. This is discussed in the next section.

2.4 Radiation Cancer Mortality Rate

The LSS of the Hiroshima atomic bomb cohort is the major source of radiation cancer
mortality data [9, 10, 11]. In this ongoing study, the age and gender specific cancer mor-
tality rates of a cohort located within 3 km of the atomic blast hypocenter are monitored.
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A control group of similar size, sex, and age composition is studied from 3 -10 km outside
of the hypocenter, where radiation doses from the atomic blast is assumed to be negligible.
Radiation cancer models are based on comparisons of the cancer mortality rates of the
group located within 3 km of the hypocenter to the control group.

The radiation risk is modeled by the excess absolute risk (EAR) and excess relative
risk (ERR). The EAR is the absolute difference of the mortality between those who are
exposed to given dose of radiation and those who are unexposed for a given age and sex
[24]. The ERR is defined in terms of the observed number of cancer deaths O and the
expected number of cancer deaths E [8]:

ERR =
O − E

E
. (21)

The radiation cancer mortality data for the LSS cohort consist of solid cancers and
leukemia. The general trend of EAR and ERR is different for solid cancer and leukemia,
and two different models will be used. The radiation cancer mortality rate is given by [3]

m = mS
0χ

S
α +mL

0χ
L
α, (22)

where m0 is baseline mortality rate, χα are statistical factors related to the low LET
uncertainties described in the following section, and S and L represent solid cancer and
leukemia, respectively. In general, the baseline mortality rate may be modeled as a
function of the ERR, EAR, and the cancer mortality rate mc(a) [3]:

m0 = ηERR(a, aE, ED)mc(a) (23)

+ (1− η)EAR(a, aE, ED),

where a is the age, aE is the age of exposure, ED is the effective dose, η = 0 for leukemia
and η = 0.5 for solid cancer [3]. The solid cancer models for EAR and ERR use a linear
dose response, whereas the leukemia models are based on a linear-quadratic effective dose
response [9, 10, 11]. For leukemia, either an EAR or ERR model is used. In this paper,
the EAR model has been used [9].

2.4.1 Solid Cancer

Solid cancer is defined as all malignant neoplasms, excluding cancers of the blood [25],
and examples include cancers of the heart, liver, breast, and prostate. The solid cancer
baseline mortality rate is given as [3]

mS
0 = 0.5ERR(a, aE, ED)mS

c (a) (24)

+ 0.5EAR(a, aE, ED),

10



where a is the age, aE is the age of exposure, ED is the effective dose, and mS
c (a) is the

solid cancer mortality rate. Preston et al. [11] model the sex averaged excess relative risk
with the following:

ERR0 = 0.47f(ED) exp[−0.038(aE − 30)− 0.70 ln(a/70)], (25)

where the coefficient has units of Sv−1 and f(ED) = ED is the linear dose response,
which carries units of Sv. The ERR for males is 25 percent lower than ERR0, and the
ERR for females is 25 percent higher than ERR0. For males, the ERR is

ERR = ERR0 − 0.25ERR0, (26)

and for females, the ERR is

ERR = ERR0 + 0.25ERR0. (27)

The solid cancer EAR per 10,000 PY is modeled by [11] as

EAR = 30f(ED) exp[−0.027(aE − 30) + 3.7 ln(
a

70
)], (28)

where the coefficient has units of Sv−1 and f(ED) = ED is the linear dose response
with units of Sv. In the current work, the REID is calculated by summing over one-year
intervals of the age in equation (9).

2.4.2 Leukemia

Leukemia is a malignant cancer of blood forming tissues, such as bone marrow or lymph
nodes, and is characterized by excessive production of white blood cells [26]. The baseline
mortality rate for leukemia can be expressed as a sole function of excess absolute risk
[3, 9], with η = 0 in equation (24),

mL
0 = EAR. (29)

The EAR model may be expressed as [9]

EAR = g(ED) exp[βe + γ + (δe + ϵ) ln(a/25)], (30)

where g(ED) is computed with a linear-quadratic model of the dose response

g(ED) = ED + θED2, (31)

where θ = 1.53 Sv−1 for both sexes. For males, γ = 0 and ϵ = 0, and for females,
γ = −0.335 and ϵ = 0.483. The coefficient of equation (30) is 1 Sv−1. The remaining
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parameters in equation (30) depend on the age of exposure and are summarized in Table
1 [9].

Table 1: Age at exposure dependent parameters for EAR [9].

Ages 0-19 Ages 20-39 Ages 40+
βe -0.553 -0.037 0.708
δe -1.542 -0.688 0.173

3 Uncertainties

In this section, uncertainties in the quality factor, the low LET risk projection, and the
fluence (physics) are discussed. Quality factor uncertainties are guided by radiobiological
experiments on animals and human tissue. Low LET risk model uncertainties represent
the uncertainty in extrapolating risk models of the Japanese Hiroshima atomic bomb
cohort to lower doses. Fluence uncertainties are estimated from comparisons of space
radiation transport codes to space flight data [3, 14]. The authors of the current work use
a fluence uncertainty of ±15% as described by Cucinotta et. al [3], although it should be
noted that the uncertainty in fluence is not precisely known.

3.1 Uncertainty in Quality Factor

The quality factor is based on the maximum RBE obtained from biological studies of
protons and heavier ions in animal tissue [3]. The uncertainty of the quality factor is the
largest source of space radiation uncertainty due to the various sources and energies of
ionizing radiation and sparseness of data in much of LET region of interest [3, 13].

The quality factor is defined as [3]

Q(L) =


1 for L ≤ L0

AL−B for L0 ≤ L ≤ Lm

C
Lp for L ≥ Lm

(32)

where

A =
Qm − 1

Lm − L0

and B =
QmL0 − Lm

Lm − L0

(33)

and
C = Lp

mQm. (34)
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Figure 1: The quality factor

where L0, Lm, Qm, and p are sampled from probability distribution functions (PDFs)
described below. The quality factor function is shown in Figure 1. After sampling from
each distribution function, a unique quality factor can be constructed.

A description of the PDFs follows. A similar description is given by Cucinotta et
al. [3]; however, there is no discussion on how the PDFs decrease to zero and increase
from zero at the endpoints. The authors of the current work assume the functional
forms of the PDFs increase from zero and decrease to zero linearly. Furthermore, a
slightly larger geometric standard deviation was used for the Qm distribution. Note that
normalizations are arbitrary in the description that follows, as only relative PDFs are
required for sampling deviates. (See Appendix B.)

• The Qm PDF is a log-normal distribution with median of eµ = 30 [3, 24] and
geometric standard deviation of eσ = 2.05. The log-normal distribution is given as

P (x) =
1√
2πσ2

1

x
exp

[
−(log(x)− µ)2

2σ2

]
, (35)

where σ is the standard deviation and µ is the mean.

• The L0 PDF is constant (set equal to 1) between 5 and 10 keV/µm [3, 24]. The
distribution is assumed to increase linearly from 0 to 1 between 1 and 5 keV/µm
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and decreases linearly from 1 to 0 between 10 to 15 keV/µm:

P (x) =


1
4
x− 1

4
for 1 ≤ x ≤ 5

1 for 5 < x < 10

−1
5
x+ 3 for 10 ≤ x ≤ 15

0 elsewhere

(36)

• The p PDF is constant (set equal to 1) between 1/2 and 1 [3, 24]. The distribution
increases linearly from 0 to 1 between 0 and 1/2 keV/µm and decreases linearly
from 1 to 0 from 1 to 2 keV/µm:

P (x) =


2x for 0 ≤ x ≤ 1

2

1 for 1
2
< x < 1

2− x for 1 ≤ x ≤ 2

0 elsewhere

(37)

• The Lm PDF is constant (set equal to 1) between 75 and 150 keV/µm [3, 24]. The
distribution increases linearly from 0 to 1 between 50 to 75 keV/µm and decreases
linearly from 1 to 0 between 150 and 250 keV/µm:

P (x) =


1
25
x− 2 for 50 ≤ x ≤ 75

1 for 75 < x < 150

− 1
100

x+ 5
2

for 150 ≤ x ≤ 250

0 elsewhere.

(38)

The probability distribution functions obtained from 20,000 Monte Carlo samples are
included in Figures 2-5. Deviates corresponding to the L0, Lm, p, and Qm distribution
functions will be used to obtain the quality factor. Before proceeding to the discussion,
the concept of a deviate should be defined. A deviate (or quantile) is a randomly sampled
variable. Suppose there exists a distribution function ρ(x). Randomly sampled x-values
of the ρ(x) distribution function are known as x-deviates. Likewise, random samplings
of y-values of the ρ(x) distribution are known as y-deviates. A full discussion of Monte
Carlo sampling techniques is found in Appendix B.

Next, 20,000 Monte Carlo samples are accumulated and the 95% confidence intervals
(Appendix C) for the quality factor are obtained using a set of LET values that ranges
from 1 to 1000 keV/µm. The results of this calculation are found in Figure 6. This figure
shows that there is great uncertainty for a large range of LET values, which is consistent
with the results presented in reference [3]. The ICRP 60 definition of the quality factor
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Figure 2: An example of the L0 Probability Distribution Function using 20,000 samples.
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Figure 3: An example of the Lm Probability Distribution Function using 20,000 samples.
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Figure 4: An example of the p Probability Distribution Function using 20,000 samples.
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Figure 5: An example of the Qm Probability Distribution Function using 20,000 samples.
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Figure 6: The 95% confidence interval for the LET dependent quality factor. 20,000
Monte Carlo samples were accumulated for each LET value. This figure indicates the
large uncertainty in the quality factor for a broad range of LET values. The ICRP 60
definition of the quality factor is indicated by the red line. These results are consistent
with those obtained in reference [3].

is indicated in red.

3.2 Uncertainty in Low LET Risk Model

NCRP 126 addresses uncertainties of fatal cancer induced by low-LET radiation [8]. The
cancer mortality models described in section 2.4 of the current document are based on
the Japanese atomic bomb cohort [9, 10, 11]. In this section, the uncertainties associated
with extrapolating the atomic bomb risk models to lower doses is described. The low
absorbed dose range is defined as 0 to 0.2 Gy; whereas, the low equivalent dose range is
0 to 0.2 Sv [8]. The low-LET uncertainty depends on deviates sampled from the PDFs
described below. This description has also been given in Cucinotta et al. [3] and NCRP
126 [8]. It is restated here with an explicit functional form of the dose and dose rate
reduction factor (DDREF) PDF, which follows from the discussion given in reference [8].
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• PDDREF is the PDF associated with the uncertainty in the DDREF, which is defined
by NCRP 126 to be the linear term of the linear-quadratic dose response model [8].
At low dose and dose rates, the slope of a linear dose response model is reduced by
dividing by the DDREF. A truncated triangle distribution is used for the uncertainty
in DDREF. The most probable value is 2, but the uncertainty is expressed as a factor
of 2 to 2.5 from the most probable value. A DDREF of 1 is 1/4 as likely as a DDREF
of 2, and a DDREF of 3 is 1/2 as likely as a DDREF of 2. In addition, the DDREF
PDF decreases linearly from a DDREF of 3 to 5. The distribution has a most
probable value of 2 with a 90% CI of 1.25 to 4.13 and is given by

P (x) =


(
3
4
x− 1

2

)
for 1 ≤ x ≤ 2(−1

2
x+ 2

)
for 2 < x ≤ 3(−1

4
x+ 5

4

)
for 3 < x ≤ 5

0 elsewhere.

(39)

• Ptransfer is the PDF associated with the transfer of cancer risk from the Japanese to
United States population. A log-normal distribution function with an expectation
value of 1 and geometric standard deviation of 1.3 was used, which corresponds to
a 90% CI of 0.70 to 1.65 [3, 8].

• PDosimetry is the PDF associated with estimates of bias and random errors in dosime-
try. A normal distribution function with a mean value of 0.84 and a standard devi-
ation of 0.11 was used. The standard deviation corresponds to a 90% CI from 0.69
to 1.0 [3, 8].

• Pstatistical is the PDF associated with the uncertainty of the risk coefficient, a param-
eter that takes into account the increase in risk with increasing radiation dose [8].
A normal distribution function with mean of 1 was used. The standard deviation
of 0.15 corresponds to a 90% CI from 0.75 to 1.25 [3, 8].

• PBias is the PDF related to the error associated with the failure to detect cancer
cases and the classification of cancer. A normal distribution function with a mean
value of 1.1 and a standard deviation of 0.05 was used. The standard deviation
corresponds to a 90% CI of 1.02 to 1.18 [3, 8].

The PBias, PDosimetry, PDDREF, Pstatistical,and Ptransfer probability distribution functions for
20,000 Monte Carlo samples have been plotted in Figures 7-11. Each distribution has an
associated quantile (random deviate) obtained by the Monte Carlo sampling procedure
described in Appendix B. These quantiles are labeled χB for PBias, χD for PDosimetry,
χDDREF for PDDREF, χS for Pstatistical,and χT for Ptransfer. The product of the quantiles
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gives χα in equation 22. For solid cancer [3],

χS
α =

χBχDχSχT

χDDREF

, (40)

and for leukemia,
χL
α = χBχDχSχT . (41)

Note that the low-LET uncertainty is not reduced by the DDREF for leukemia, as the
DDREF is only applied to linear models of dose response [8].

Figure 7: The pbias Probability Distribution Function obtained fromMonte Carlo sampling
using 20,000 samples.
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Figure 8: The pDosimetry Probability Distribution Function obtained from Monte Carlo
sampling using 20,000 samples.
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Figure 9: The pDDREF Probability Distribution Function obtained from Monte Carlo
sampling using 20,000 samples.
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Figure 10: The pStatistical Probability Distribution Function obtained from Monte Carlo
sampling using 20,000 samples.

3.3 Uncertainties in Physics

The uncertainty in fluence is projected to vary by ± 15% by Cucinotta et. al [3], though
the actual uncertainty is not precisely known [14]. In the current work, a fluence uncer-
tainty of ± 15% is assumed. For the uncertainty in fluence PDF, Cucinotta et al. [3]
utilized normal distributions with a mean of µ = 0.65 and LET dependent standard de-
viations: σ = 1.0 for LET ≤ 30 keV/µm, σ = 2.0 for 30 keV/µm ≤ LET ≤ 300 keV/µm,
and σ = 2.5 for 300 LET ≥ keV/µm. In the current document, the physics uncertainty is
modeled with Gaussian distributions with mean µ = 1 and the following LET dependent
standard deviations [3]:

σ(LET) =


0.075 for LET < 30 keV/µm

0.150 for 30 keV/µm ≤ LET < 300 keV/µm

0.1875 for LET ≥ 300 keV/µm

(42)
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Figure 11: The pTransfer Probability Distribution Function obtained from Monte Carlo
sampling using 20,000 samples.

It is important to note that although this model was developed by Cucinotta et al. [3], the
mean and standard deviations are significantly different from those reported in reference
[3]. The probability distribution functions associated with uncertainty in physics are given
in Figure 12.

4 Incorporating Uncertainty into Risk Calculations

This section describes how uncertainties are incorporated into the calculation of risk.
In the last section, three uncertainties were identified that should be included in the
calculation of the effective dose and the REID. These included uncertainties in the quality
factor, fluence, and low LET risk model.

Quality factor uncertainties are incorporated by unique Monte Carlo sampling of the
quality factor distribution functions described in the last section. For a given trial J , a
unique quality factor is sampled. Figure 13 shows Monte Carlo samplings of the quality
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Figure 12: The PDF associated with uncertainties in fluence (physics) obtained with
20,000 Monte Carlo samples.
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Figure 13: Monte Carlo samplings of the quality factor. These results are consistent with
those given by [3].

factor and is consistent with the results of [3]. The quantiles (random deviates) associated
with the fluence uncertainties are labeled as xLJ , where L indicates that the quantile sam-
pled depends on the LET region and J indicates the Monte Carlo trial. A full discussion
of the Monte Carlo sampling techniques used in this document is found in Appendix B.

If the uncertainty in the quality factor and the fluence uncertainties are included in
the effective dose, then equation (19) may be expressed as [3]

EDJ =
∑
k

∞∫
0

Fk(E)Lk(E)QJ(Lk(E))xLJdE, (43)

where k represents the sum over the ions in the radiation environment, and J indicates
Monte Carlo samplings and is not a summing index, Fk(E) is the tissue weighted flu-
ence, QJ(Lk(E)) is the quality factor, Lk(E) is the LET, and xLJ represents the fluence
uncertainty.

Next, the low LET risk model uncertainties are included into the radiation cancer
mortality rate in equation (22). For a trial J, the low LET risk model uncertainties are
labeled as χαJ . The radiation cancer mortality rate for a given Monte Carlo trial J may
be written as [3]

mJ = mS
0χ

S
αJ +mL

0χ
L
αJ , (44)

where m0 is the baseline mortality rate described in the last section, χαJ is the quantile
associated with the low LET uncertainty for a given Monte Carlo trial J , and S and L
represent solid cancer and leukemia, respectively.
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The REID is given as a function of radiation cancer mortality rate and exposed prob-
ability of survival [3, 5]

REIDJ =
amax∑
a=aE

mJ(a, aE, EDJ)ŜJ(a,EDJ |aE) (45)

where a is the age, aE is the age of exposure, ED is the effective dose, amax is the maximum
attained age (101 yr) [3], J represents a Monte Carlo trial, mJ is the radiation cancer
mortality rate, and ŜJ(a,EDJ |aE) is the radiation probability of survival given by [6]

ŜJ(a,EDJ |aE) = SJ(a,EDJ)/SJ(aE, EDJ). (46)

All of the equations given in the discussion of the effective dose and risk quantities,
equations (11)-(14), will remain the same except ED → EDJ , Ŝ → ŜJ , S̃ → S̃J , q → qJ ,
and m → mJ to reflect the Monte Carlo sampling for the uncertainties.

5 Latency

Latency refers to the period of time elapsed after radiation exposure before any specific
types of cancers are observed [8, 24]. The latency period is usually around two years for
leukemia [9] and up to ten years for solid cancer [3]. A step-in latency model for both
solid cancer and leukemia [3, 9] is utilized in the current work. This model is based on
the Pierce et al. [9] LSS study. The Hiroshima atomic bomb event took place in 1945;
however, the LSS does not include data taken before 1950. Since excess leukemias were
observed two years after the atomic bomb, Pierce et al. [9] estimated that the EAR for
the first five years after the 1945 exposure to be half of the EAR at 1950. After the
step-in latency model has been used for the first five years following radiation exposure,
the REID and other risk quantities may be calculated as usual.

6 Verification

Thus far, uncertainties in the quality factor, physics (fluence), and low LET uncertainties
have been incorporated into the effective dose and the REID. In this section, the effect of
the Monte Carlo sampling is shown.

The effective dose and the REID are generated for the August 1972 SPE [27], solar
minimumGCR, and solar maximumGCR environments. The solar minimum environment
was modeled using the dates October 26-28, 1976 with the Badhwar-O’Neill GCR model
[28]. The solar maximum environment was modeled using a solar modulation parameter
of 1110 MV with the Badhwar-O’Neill GCR model [28] as was done by [3]. All radiation
transport was accomplished with HZETRN [20, 21, 22]. The fluxes generated from the
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transport code are used for the effective dose and the REID calculations. In addition, the
computerized anatomical female body model (CAF) has been used [29, 30]. Note that 600
day missions were used for the GCR environments, and all shielding materials discussed
in this document are spherical shells.

6.1 Effective Dose

In order to verify the projected uncertainty in physics, the effective dose is calculated by
sampling the physics uncertainty and by using the fixed ICRP 60 [12] definition of the
quality factor. The physics uncertainty sampling produces a slightly asymmetric effective
dose distribution, as seen in Figure 14. The median and 95% CI is given by 0.74 [0.62,
0.85] Sv for 40 yr females in a 20 g/cm2 aluminum shield during a 600 day mission in the
GCR solar minimum environment. The ratio of the 95% CI width to the median is used
as a measure of the projected uncertainty from the median. In this example, the ratio is
approximately 31%, which roughly produces the ±15% uncertainty in the effective dose.

The uncertainties in physics and quality factor are included in the next calculation
of the effective dose, which results in a log normal distribution. The effective dose for a
40 yr female in the GCR solar minimum environment under a 20 g/cm2 shield is given
in Figure 15. The median and 95% CI is 0.77 [0.47, 2.06] Sv. The probabilistic effective
doses for aluminum, polyethylene, and titanium with 20 g/cm2 and 5 g/cm2 spherical
shields for the GCR solar minimum (SOLAR MIN), GCR solar maximum (SOLAR MAX)
and SPE environments are given in Table 2. A mission duration of 600 days was used
for the GCR environments. Note that the effective dose is smaller in the GCR solar
maximum environment than in the GCR solar minimum environment for thicker shields.
This is expected, since the the GCR solar maximum environment has been modulated
with a solar modulation parameter of 1100 MV. The thicker shields tend to mitigate SPE
effectively. Thus, the contribution of the effective dose for thicker shielding is coming
largely from the GCR environment, which has been modulated at solar maximum.

6.2 Risk

In this paper, three different ways of evaluating radiation risk have been examined: the
REID, LAR, and ELR. The REID is the focus of this paper; however, the trends of the
LAR and ELR curves are used to help confirm the results. In Figure 16, the REID, LAR,
and ELR are plotted as a function of the effective dose. The low-LET risk uncertainty has
not been included in this plot. The trends of the figure are consistent with the results of
Kellerer et al. [4]. The LAR is larger than both the REID and the ELR. Furthermore, the
REID is expected to be roughly 20% larger than the the ELR [4]. This is most notable
at higher effective doses. There is little difference between all of the risk quantities at
low effective doses. In Figure 17, the most probable values of the low LET uncertainty
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Figure 14: The effective dose for a female in a 20 g/cm2 Al shield during a 600 day
mission in the GCR solar minimum environment. The quality factor has been fixed to the
ICRP 60 definition, but the uncertainty in physics has been sampled using Monte Carlo
methods. The median and 95% CI is 0.74 [0.62, 0.85] Sv. See section 6 for a discussion
of the GCR solar minimum environment.

distributions are included in the calculation of the risk as a function of effective dose,
resulting in lower overall risk percentages.

Since the trend of the REID as a function of effective dose has been verified, the REID
may be generated for each of the materials and thicknesses. Monte Carlo trials of the
REID from equation (45) are binned into a histogram and are scaled by a factor of 100 to
obtain the REID%. In Figure 18, the REID% for a 40 yr female in 20 g/cm2 aluminum,
polyethylene, and titanium shields during a 600 day mission in the GCR solar minimum
environment has been generated. In Table 3, the REID% is calculated for aluminum,
polyethylene, and titanium in the GCR solar minimum, GCR solar maximum, and SPE
environments with 20 g/cm2 and 5 g/cm2 shields. A mission duration of 600 days was
used for the GCR environments.

7 Material Analysis

The assessment of radiation shielding effectiveness based on material composition is an
important concern for spacecraft design. In the current work, radiation shielding ef-
fectiveness is studied with percent difference distributions utilizing both correlated and
uncorrelated uncertainties. In section 7.1, it is shown that the uncertainty of difference
distributions may be reduced significantly when using correlated Monte Carlo samplings.

30



0 0.5 1 1.5 2 2.5 3 3.5 4
Effective Dose (Sv)

0

0.002

0.004

0.006

0.008

PD
F

Al: Median and 95% CI: 0.77 [0.47, 2.06] Sv

Effective Dose for a Female in GCR Solar Min Env
600 day mission, Uncertainty in Physics Sampled, Quality Factor Sampled

Figure 15: The effective dose for a female in a 20 g/cm2 Al shield during a 600 day
mission in the GCR solar minimum environment. Both the quality factor factor and the
uncertainty in physics have been sampled. The median and 95% CI is 0.77 [0.47, 2.06]
Sv. See section 6 for a discussion of the GCR solar minimum environment.

Table 2: Median Effective Dose and 95% CI for 20 g/cm2 and 5 g/cm2 aluminum (Al),
polyethylene (Poly), and titanium (Ti) spherical shields. Note that smaller effective doses
are expected more in the GCR solar maximum than GCR solar minimum environment
for the thicker shields. This is due to the modulated GCR flux at solar maximum. See
section 6 for a discussion of the GCR solar minimum (SOLARMIN), GCR solar maximum
(SOLAR MAX), and SPE space radiation environments. A mission duration of 600 days
was used for the GCR environments.

Effective Dose
SOLAR MIN SOLAR MAX SPE

Al (20 g/cm2) 0.77 [0.47, 2.06] Sv 0.54 [0.35, 1.37] Sv 0.087 [0.067, 0.16] Sv
Al (5 g/cm2) 0.93 [0.50, 0.78] Sv 1.26 [0.82, 3.13] Sv 0.72 [0.54, 1.54] Sv

Poly (20 g/cm2) 0.66 [0.42, 1.67] Sv 0.42 [0.28, 1.03] Sv 0.040 [0.028, 0.087] Sv
Poly (5 g/cm2) 0.86 [0.48, 2.53] Sv 0.97 [0.62, 2.47] Sv 0.48 [0.35, 1.01] Sv
Ti (20 g/cm2) 0.85 [0.50, 2.32] Sv 0.59 [0.37, 1.50] Sv 0.13 [0.10, 0.24] Sv
Ti (5 g/cm2) 0.93 [0.49, 2.79] Sv 1.26 [0.82, 3.13] Sv 0.73 [0.54, 1.55] Sv
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Figure 16: The LAR, REID, and ELR versus the effective dose. The low LET risk
uncertainty has not been included here. These results show the correct trend for the
three risk quantities. The LAR is expected to be larger than both the REID and the
ELR, and the REID is expected to be roughly 20% larger than the ELR [4].
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Figure 17: The LAR, REID, and ELR versus the effective dose. The most probable
values of the low LET uncertainty distributions have been included. These results show
the correct trend for the three risk quantities. The LAR is expected to be larger than
both the REID and the ELR, and the REID is expected to be roughly 20% larger than
the ELR [4].
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Table 3: Median REID% and 95% CI for 20 g/cm2 and 5 g/cm2 aluminum (Al), polyethy-
lene (Poly), and titanium (Ti) spherical shields. Note that smaller REID% are expected
(as a result of smaller effectives doses) in the GCR solar maximum than GCR solar mini-
mum environment for the thicker shields. This is due to the modulated GCR flux at solar
maximum. See section 6 for a discussion of the GCR solar minimum (SOLAR MIN),
GCR solar maximum (SOLAR MAX), and SPE space radiation environments. A mission
duration of 600 days was used for the GCR environments.

REID
SOLAR MIN SOLAR MAX SPE

Al (20 g/cm2) 3.40% [1.90%, 10.90%] 2.30% [1.34%, 6.40% ] 0.34% [0.25%, 0.63%]
Al (5 g/cm2) 4.20% [2.05%, 15.68%] 5.98% [3.57%, 18.28% ] 3.19% [2.22%, 7.54%]

Poly (20 g/cm2) 2.87% [1.72%, 8.38%] 1.76% [1.09%, 4.79% ] 0.15% [0.10%, 0.34%]
Poly (5 g/cm2) 3.87% [1.96%, 14.01%] 4.39% [2.62%, 13.63% ] 2.00% [1.40%, 4.63%]
Ti (20 g/cm2) 3.77% [2.09%, 12.46%] 2.53% [1.49%, 7.39% ] 0.53% [0.39%, 0.98%]
Ti (5 g/cm2) 4.20% [2.05%, 15.73%] 5.99% [3.59%, 18.41% ] 3.19% [2.20%, 7.63%]
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Al: Median and 95% CI: 3.40% [1.90%, 10.90%]
Poly: Median and 95% CI: 2.87% [1.72%, 8.38%]
Ti: Median and 95% CI: 3.77% [2.09%, 12.46%]

REID% for GCR Solar Min Env
40 yr females on 600 day mission 

20 g/cm
2
 spherical shields

Figure 18: The REID% for a 40 yr female in spherical 20 g/cm2 aluminum (Al), polyethy-
lene (Poly), and titanium (Ti) shields on a 600 day mission in the GCR solar minimum
environment.
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Furthermore, the use of uncorrelated distributions introduces extraneous uncertainty in
the difference of distributions when interdependence is clearly established.

In a recent study, Cucinotta et al. [3] showed that polyethylene and carbon shields
do not significantly reduce the risk as compared to aluminum. This was attributed to
large radiobiological uncertainties that tend to dominate over other uncertainties. Refer-
ence [3] used a χ2 analysis based on the assumption that the quality factor and low LET
uncertainties for different materials were uncorrelated. However, the quality factor and
the low LET uncertainties depend on LET only; there is no dependence on material com-
position. Therefore, the use of independent Monte Carlo samplings of the quality factor
and low-LET uncertainty for two different materials introduces extraneous uncertainty
in the percent difference of the effective dose and the REID distributions. Consequently,
correlated quality factors and low LET uncertainties should be considered in evaluating
shielding effectiveness.

In sections 7.2 and 7.3, correlated quality factors are shown to significantly reduce
the uncertainty of the percent difference as compared to uncorrelated quality factors.
The same approach is taken for correlated low LET uncertainties, where only a modest
reduction of the percent difference uncertainty is achieved.

7.1 Correlative Effects on Uncertainty

In this section, the effect of using uncorrelated and correlated Monte Carlo samplings in
the difference of distributions is discussed. The reader is directed to Appendix B for a
full discussion of Monte Carlo sampling techniques.

Let two distributions be defined by the following sets:

f(x) = {xf
1 , x

f
2 , x

f
3 , . . . , x

f
N} (47)

and
g(x) = {xg

1, x
g
2, x

g
3, . . . , x

g
N}, (48)

where xf
i are the x-deviates of the f(x) distribution, and xg

i are the x-deviates of the
g(x) distribution; N is the total number of deviates in the set. The difference of the two
distributions, D = f(x)− g(x), is obtained by subtracting the elements:

D = {xf
1 − xg

1, x
f
2 − xg

2, . . . , x
f
N − xg

N}. (49)

Next, let f 1(x) and f 2(x) denote two independently sampled distributions constructed
from the same function. Then, the difference D = f 1(x)− f 2(x) is expressed as

D = {x1f
1 − x2f

1 , x1f
2 − x2f

2 , . . . x1f
N − x2f

N }. (50)
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An example of such a difference is illustrated for a normal distribution in Figure 19,

f(x) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
, (51)

where µ = 2 and σ = 1. The median and 95% CI of the difference of the two distributions
is given by 0.0088 [-2.68, 2.68]. In this example, the Monte Carlo samplings have no inter-
dependence and may be viewed as being uncorrelated. If a single Monte Carlo sampling
of the distribution is used, then the median and 95% CI is obviously 0.0 [0.0, 0.0]. In
this case, there is obvious interdependence, or correlation, because the same sampling of
the distribution was used in the difference. The use of correlated Monte Carlo samplings
allows for the reduction of uncertainty in the difference.

Suppose that the difference involves a product of distributions, such as

D = f 1(x)g(x)− f 2(x)h(x) (52)

where f(x), g(x), and h(x) are distributions, and the superscripts on f(x) indicate in-
dependent Monte Carlo samplings. If a correlated Monte Carlo sampling of the f(x)
distribution is used, then f 1(x) = f 2(x) = f(x), and

D = f(x)g(x)− f(x)h(x) = f(x)

[
g(x)− h(x)

]
(53)

In this case, the result could be attributed to differences in the g(x) and h(x) distributions
rather than independent samplings of the same distribution function f(x), and the overall
uncertainty in the difference would be reduced. This is best illustrated with an example.
Consider the following difference in distributions

D = f 1
2 (x)f3(x)− f 2

2 (x)f1(x), (54)

where fµ(x) are distributions sampled from equation (51) and µ is the mean. The su-
perscripts represent unique Monte Carlo samplings of the same function. The standard
deviation is set to 1 for each distribution. The difference defined in equation (54) is
expected to have a median of 4, based on the most probable values of the normal distri-
butions. The uncorrelated difference is represented by the red distribution in Figure 20,
where the median and 95% CI is given by 3.40 [-6.99, 9.50]. If correlated Monte Carlo
samplings are used in the difference, then f 1

2 = f 2
2 in equation (54), and the median and

95% CI is given by 4.07 [0.16, 8.10]. This is illustrated by the blue curve in Figure 20.
These examples show that the use of uncorrelated Monte Carlo samplings introduces ex-
traneous uncertainty in the difference of distributions. In addition, the use of uncorrelated
Monte Carlo samplings led to skewing of the median from the most probable result.

Note that the difference in equation (52) was chosen because it is analogous to the
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Figure 19: The difference of two independently sampled distributions of a single function.

effective dose difference distribution that follows in the next section. In this context, the
quality factor is associated with the discussion of f 1

2 and f 2
2 above. The fact that integrals

are involved has no bearing on the argument.

7.2 Effective Dose

The percent difference for the effective dose distributions of two materials is expressed as

%DIFFED =
ED1 − ED2

(ED1 + ED2)/2
× 100, (55)

where ED is the probabilistic effective dose distribution given by equation (43), and the
subscript indicates a material label. The uncorrelated difference of the effective dose
distributions for two materials is written as

ED1 − ED2 = (56)∑
k

∞∫
0

F 1
k (E)L1

k(E)Q1
J(L

1
k(E))x1

LJdE

−
∑
k

∞∫
0

F 2
k (E)L2

k(E)Q2
J(L

2
k(E))x2

LJdE,

where k is the summation index for the ions, the superscripts represent material labels and
unique Monte Carlo samplings, Fk(E) is the fluence, Lk(E) is the linear energy transfer,
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Figure 20: The effect of using correlated distributions is shown to reduce the uncertainty
in difference of distributions.

QJ(L(E)) is the quality factor, and xLJ is the uncertainty in physics.
Since the quality factor is independent of material composition, correlated quality

factors should be used for the percent difference. Using the correlated quality factor, the
effective dose difference may be expressed as

ED1 − ED2 = (57)∑
k

∞∫
0

[QJ(L
1
k(E))F 1

k (E)L1
k(E)x1

LJ

−QJ(L
2
k(E))F 2

k (E)L2
k(E)x2

LJ ]dE.

In equation (56), Q1
J and Q2

J represent two unique samplings of the quality factor for a
single Monte Carlo trial. Each unique sampling corresponds to a unique functional form
of the quality factor. However, for the correlated difference given by equation (57), the
functional form of the quality factor QJ is obtained once per Monte Carlo trial. Thus, a
single functional form of the quality factor is used for the difference per trial. Using the
effective dose distribution differences in equations (56) and (57) and similar effective dose
distribution sums, the percent difference of the effective dose distributions is calculated.

In Figure 21, the percent difference of the effective doses is plotted for aluminum
and polyethylene during a 600 day mission in the GCR solar maximum environment as
calculated with uncorrelated and correlated quality factors. The percent difference was
calculated using equation (55) with ED1 = EDAl and ED2 = EDPoly, where EDAl is
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the effective dose distribution of aluminum and EDPoly is the effective dose distribution
of polyethylene. Positive percent difference values indicate a larger effective dose for
aluminum than polyethylene, whereas negative percent difference values indicate a larger
effective dose for polyethylene than aluminum. The initial calculation of the percent
difference with uncorrelated quality factors results in a median and 95% CI of 6.25% [-
18.29%, 27.91%]. Since much of the confidence interval is negative, it is difficult to discern
if the effective dose for aluminum is actually larger than than that of polyethylene. After
using the correlated quality factor, the median changes only slightly to 6.03%; however,
the 95% CI is reduced significantly to [0.43%, 11.79%]. Since the 95% CI of the percent
difference distribution is positive, one may assert with much higher confidence that the
effective dose percent difference of aluminum is greater than that of polyethylene. In Table
4, the effective dose differences for aluminum, polyethylene, and titanium for 20 g/cm2 and
5 g/cm2 spherical shields are calculated for the different radiation environments. A mission
duration of 600 days was used for the GCR environments. There are some cases in which
the lower bound of the 95% confidence interval is negative after using correlated quality
factors and correlated low LET uncertainties. In these cases, the confidence interval that
gives the minimum positive bound was found when the median was significantly different
from zero and positive. The median may also be statistically different from zero and
negative. If this occurs, the confidence interval that gives the upper negative bound is
found.

In the next section, the percent difference of the REID distributions for different
materials is examined.

7.3 REID

In the last section, the effect of using a correlated quality factor distributions was to
reduce the uncertainty in the percent difference of the effective dose for two materials.
Since the REID is a function of effective dose, the correlated quality factors must again
be considered. In addition, the REID is proportional to the low LET uncertainty through
the radiation cancer mortality rate mJ from equation (44).

The percent difference of two REID distributions for two different materials is given
by

%DIFFREID =
REID1 − REID2

(REID1 +REID2)/2
× 100, (58)

where the REID is given by equation (45). The REID also includes deviates associated
with low LET uncertainty, xLJ , where L represents the low LET uncertainty and J
represents a Monte Carlo trial. The uncorrelated difference of two REID distributions is
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Table 4: The effective dose percent difference distributions for aluminum (Al), polyethy-
lene (Poly), and titanium (Ti) as calculated with equation 55. Unless otherwise stated,
all confidence intervals are 95%. See section 6 for a discussion of the GCR solar min-
imum (SOLAR MIN), GCR solar maximum (SOLAR MAX), and SPE space radiation
environments. A mission duration of 600 days was used for the GCR environments.

Effective Dose % Difference
SOLAR MIN SOLAR MAX SPE

Al/Poly (20 g/cm2)
Uncorr. Q 3.54% [-20.76%, 27.34%] 6.25% [-18.29%, 27.91%] 18.79% [-0.13%, 31.09%]
Corr. Q 3.65% [-1.83%, 9.77%] 6.03% [0.43%, 11.79%] 18.44% [11.79%, 23.26%]

Corr. Q (81% CI) 3.65% [0.037%, 7.56%] – –

Al/Poly (5 g/cm2)
Uncorr. Q 1.96% [-25.98%, 29.38%] 6.65% [-13.76%, 24.64%] 10.51% [-8.91%, 27.32%]
Corr. Q 1.76% [-4.14%, 8.03%] 6.58% [2.51%, 10.44%] 10.46% [5.76%, 16.97%]

Corr. Q (44% CI) 1.76% [0.033%, 3.53%] – –

Ti/Al (20 g/cm2)
Uncorr. Q 2.31% [-23.65%, 27.11%] 1.95% [-21.74%, 25.26%] 10.62% [-5.09%, 24.26%]
Corr. Q 2.33% [-3.18%, 8.06%] 2.16% [-2.78%, 7.37%] 10.65% [5.81%, 15.33%]

Corr. Q (60% CI) 2.33% [0.018%, 4.68%] – –
Corr. Q (62% CI) – 2.16% [0.022%, 4.34%] –

Ti/Al (5 g/cm2)
Uncorr. Q -0.19% [-28.55%, 28.40%] -0.024% [-18.88%, 18.60%] -0.11% [-19.09%, 18.72%]
Corr. Q -0.0035% [-6.10%, 6.00%] 0.014% [-2.81%, 2.85%] 0.0048% [-4.74%, 4.69%]

Ti/Poly (20 g/cm2)
Uncorr. Q 5.85% [-19.17%, 29.22%] 8.19% [-16.51%, 29.71%] 27.29% [10.47%, 36.87%]
Corr. Q 6.00% [0.46%, 12.25%] 8.17% [2.55%, 14.00%] 26.94% [21.48%, 30.74%]

Ti/Poly (5 g/cm2)
Uncorr. Q 1.81% [-26.30%, 28.77%] 6.66% [-13.67%, 24.16%] 10.47% [-9.00%, 26.99%]
Corr. Q 1.76 % [-4.17%, 8.01%] 6.59% [2.50%, 10.45%] 10.47% [5.77%, 14.97%]

Corr. Q (45% CI) 1.76% [0.0031%, 3.55%] – –
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Figure 21: The percent difference of the effective doses for aluminum (Al) and polyethylene
(Poly) during a 600 day mission in the GCR solar maximum environment as calculated
with uncorrelated and correlated quality factors. The 95% CI reduces significantly after
using correlated quality factors. See section 6 for a discussion of the GCR solar maximum
environment.

given by

REID1 − REID2 = (59)
amax∑
a=aE

m1
J(a, aE, ED1

J)ŜJ(a,ED1
J(Q

1
J)|aE)

−
amax∑
a=aE

m2
J(a, aE, ED2

J)ŜJ(a,ED2
J(Q

2
J)|aE)

where superscripts represent material label and unique Monte Carlo samplings, ED1
J and

ED2
J are the uncorrelated effective doses, Q1

J and Q2
J are independent samplings of the

quality factors per trial J , and m1
J and m2

J are the uncorrelated radiation cancer mortality
rates.

The low LET uncertainties should be treated as correlated, since the low LET un-
certainty has no dependence on the material. Using both correlated effective doses and
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correlated low LET uncertainties, the difference becomes

REID1 − REID2 = (60)
amax∑
a=aE

[mJ(a, aE, ED1
J)ŜJ(a,ED1

J(QJ)|aE)

−mJ(a, aE, ED2
J)ŜJ(a,ED2

J(QJ)|aE)]

where mJ represents the correlated low LET uncertainty sampling for the radiation can-
cer mortality for both materials, and QJ represents a correlated quality factor for both
materials.

The percent difference of the REID distributions for 40 yr females behind 20 g/cm2

spherical aluminum and polyethylene shields during a 600 day mission in the GCR solar
maximum environment is given in Figure 22. The medians and 95% CIs have been listed
in each case. In the first case, both uncorrelated quality factors and uncorrelated low LET
uncertainties have been used for the percent difference. This results in a distribution with
a broad 95% CI, which makes it difficult to distinguish which material poses greater risk.
In the next case, a correlated quality factor has been used with uncorrelated low-LET
uncertainties. This reduces the 95% confidence interval significantly. However, there is
still some uncertainty in which material poses greater risk. The reason for this is that the
lower bound on the 95% CI is negative, which implies a chance that polyethylene may
pose greater risk than aluminum. Finally, both correlated quality factors and correlated
low LET uncertainties are used to calculate the percent difference. Since the upper and
lower bounds of the 95% CI are positive, it may be stated with 95% confidence that
aluminum poses 6.57% greater risk than polyethylene.

In Table 5, the percent differences of the REID distributions for aluminum, polyethy-
lene, and titanium for 40 yr females behind 20 g/cm2 and 5 g/cm2 spherical shields are
calculated during 600 day missions in different radiation environments using correlated
and uncorrelated uncertainties. The median and 95% CI for each case has been listed.
There are some cases in which the lower bound of the 95% CI is negative after using
correlated quality factors and correlated low LET uncertainties. In these cases, the con-
fidence interval that gives the minimum positive bound was found when the median was
significantly different from zero. The median may also be statistically different from zero
and negative. If this occurs, the confidence interval that gives the upper negative bound
is found. Correlated uncertainties in quality factor and physics are used in the discussion
that follows.

The percent difference of the REID for a 40 yr female in 20 g/cm2 and 5 g/cm2

spherical aluminum and polyethylene shields. With the use of correlated quality factor
and physics uncertainties, it may be stated with 95% confidence that aluminum poses
greater risk than polyethylene during the SPE and GCR solar maximum environments
for both 5 g/cm2 and 20 g/cm2 shield thicknesses. During the GCR solar minimum, it is
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Figure 22: The percent difference of the REID distributions for a 40 yr female behind
aluminum (Al) and polyethylene (Poly) spherical shields during a 600 day mission in
the GCR solar maximum environment as calculated with uncorrelated and correlated
uncertainties. The 95% CI is reduced significantly after using correlated quality factors.
However, there is still some uncertainty in which material poses greater risk. After includ-
ing correlated low LET uncertainties, aluminum can be identified with 95% confidence
to pose greater risk than polyethylene. See section 6 for a discussion of the GCR solar
maximum environment.

predicted with 81% confidence that aluminum poses greater risk than polyethylene in the
20 g/cm2 shield. However, the REID percent difference for aluminum and polyethylene
is 2.01% [0.036%, 4.05%] with 44% confidence for the GCR solar minimum environment
in the 5 g/cm2 shield.

As shown in Table 5, it can be stated with approximately 60% confidence that titanium
poses greater risk than aluminum in the 20 g/cm2 shield for the GCR solar minimum and
maximum environments. In addition, when an SPE event is considered, titanium is shown
to pose 10.83% [5.86%, 15.67%] greater risk than aluminum in the thicker shield. There
is no statistical difference between the titanium and aluminum shields in mitigating the
risk for the thinner shield of 5 g/cm2.

It is also shown in Table 5 with 95% confidence that titanium poses greater risk than
polyethylene for the GCR solar minimum, GCR solar maximum, and SPE environments
in the 20 g/cm2 shield. In the 5 g/cm2, titanium poses greater risk than aluminum for
the GCR solar maximum and SPE environments. However, it may only be stated with
45% confidence that titanium poses greater risk than polyethylene in the 5 g/cm2 shield.

42



Table 5: The REID percent difference distributions for aluminum (Al), polyethylene
(Poly), and titanium (Ti) as calculated with equation 55. Unless otherwise stated, all
confidence intervals are 95%. See section 6 for a discussion of the GCR solar minimum
(SOLAR MIN), GCR solar maximum (SOLAR MAX), and SPE space radiation environ-
ments. A mission duration of 600 days was used for the GCR environments.

REID % Difference
SOLAR MIN SOLAR MAX SPE

Al/Poly (20 g/cm2)
Uncorr. Q, Uncorr. χL 4.00% [-23.53%, 30.61%] 6.78% [-20.04%, 30.33%] 18.92% [-0.67%, 31.74%]
Corr. Q, Uncorr. χL 4.17% [-3.56%, 12.33%] 6.62% [-0.92%, 14.21%] 18.55% [10.61%, 24.83%]
Corr. Q, Corr. χL 4.10% [-2.05%, 11.27%] 6.57% [0.47%, 13.00%] 18.64% [12.00%, 23.47%]

Corr. Q, Corr. χL (81% CI) 4.10% [0.042%, 8.63%] – –

Al/Poly (5 g/cm2)
Uncorr. Q, Uncorr. χL 2.06% [-29.68%, 33.06%] 7.77% [-16.71%, 28.58%] 11.45% [-10.29%, 30.12%]
Corr. Q, Uncorr. χL 2.03% [-5.87%, 10.41%] 7.64% [1.40%, 13.70%] 11.60% [4.78%, 18.02%]
Corr. Q, Corr. χL 2.01% [-4.79%, 9.39%] 7.67% [2.98%, 12.14%] 11.55% [6.35%, 16.51%]

Corr. Q, Corr. χL (44% CI) 2.01% [0.036%, 4.05%] – –

Ti/Al (20 g/cm2)
Uncorr. Q, Uncorr. χL 2.58% [-27.08%, 30.65%] 2.18% [-24.31%, 28.05%] 10.84% [-5.86%, 25.36%]
Corr. Q, Uncorr. χL 2.63% [-5.04%, 10.46%] 2.42% [-4.71%, 9.60%] 10.82% [3.98%, 17.47%]
Corr. Q, Corr. χL 2.64% [-3.61%, 9.32%] 2.37% [-3.11%, 8.33%] 10.83% [5.86%, 15.67%]

Corr. Q, Corr. χL (60% CI) 2.64% [0.029%, 5.32%] – –
Corr. Q, Corr. χL (62% CI) – 2.37% [0.026%, 4.82%] –

Ti/Al (5 g/cm2)
Uncorr. Q, Uncorr. χL -0.27% [-32.42%, 32.02%] 0.034% [-22.47%, 22.32%] -0.048% [-21.68%, 21.37%]
Corr. Q, Uncorr. χL 0.017% [-8.19%, 8.19%] 0.0074% [-5.17%, 5.24%] 0.0019% [-6.99%, 7.00%]
Corr. Q, Corr. χL -0.0034% [-7.11%, 6.99%] 0.016% [-3.37%, 3.43%] -0.0072% [-5.41%, 5.37%]

Ti/Poly (20 g/cm2)
Uncorr. Q, Uncorr. χL 6.58% [-22.24%, 32.70%] 8.86% [-18.31%, 32.33%] 27.52% [10.22%, 37.40%]
Corr. Q, Uncorr. χL 6.75% [-0.94%, 15.09%] 8.94% [1.32%, 16.65%] 27.21% [20.74%, 32.20%]
Corr. Q, Corr. χL 6.74% [0.51%, 14.26%] 8.91% [2.81%, 15.55%] 27.26% [21.86%, 31.05%]

Ti/Poly (5 g/cm2)
Uncorr. Q, Uncorr. χL 2.06% [-29.93%, 32.64%] 7.63% [-16.40%, 27.90%] 11.45% [-10.60%, 29.90%]
Corr. Q, Uncorr. χL 2.04% [-6.05%, 10.53%] 7.66% [-1.48%, 13.58%] 11.60% [4.63%, 18.00%]
Corr. Q, Corr. χL 2.02% [-4.82%, 9.43%] 7.69% [2.97%, 12.17%] 11.55% [6.25%, 16.56%]

Corr. Q, Corr. χL (45% CI) 2.02% [0.0039%, 4.08%] – –
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8 Conclusions

The largest source of uncertainty in radiation risk assessment is the quality factor due to
lack of experimental data for the energy and ions of interest in the space radiation envi-
ronment. Consequently, determining optimal shielding materials that reduce the REID
in a statistically significant manner has been found to be difficult in previous studies.

In the current work, it is demonstrated that correlated uncertainties may be used to
reduce the overall uncertainty in the difference of distributions. Moreover, the use of
uncorrelated uncertainties is shown to introduce extraneous uncertainty in the difference
of distributions when clear correlation (interdependence) is established. Since the quality
factor used in the current work is independent of material composition, correlated quality
factors should be used when evaluating the difference of the REID distributions.

The effect of composition on shielding effectiveness is studied with the difference of
the REID distributions for different materials. It is shown, with the use of correlated
uncertainties, that statistically significant differences between materials can be determined
despite the large uncertainties in the quality factor. This differs from previous studies
where uncertainties have been generally treated as uncorrelated. It is concluded that the
use of correlated quality factor uncertainties significantly reduces the uncertainty in the
assessment of shielding effectiveness for the mitigation of radiation exposure.

Appendices

A Life Tables

In this document, the background mortality rate for all causes of death M(a) and the
solid cancer mortality rate mS

c (a) are used. The background mortality rate for all causes
of death is taken from the National Vital Statistics Reports (NVSR) [15]. Mortality data
are usually given in the form of life tables. (See Shryock [31] and Chiang [32] for useful
discussions of life tables.) The first six years of the relevant columns from the background
mortality life table have been listed in Table 6. The mortality rate is calculated by dividing
the number of people dying in the time interval by the number living in the same time
interval.

The probability of survival may be calculated from mortality rates with equations (7)
and (8). The background mortality rate for all causes of death is plotted in Figure 23.
The probability of death can be calculated from noting that the probability of survival
plus the probability of death is 1. It is important to distinguish the probability of dying
in an age interval, qγ in equation (7), from the probability of death. The probability of
death may be expressed in a form that is analogous to equation (8), which involves a
product of qγ(a) from birth to some maximum age, amax. The probability of death during
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Table 6: A portion of the unabridged Background Mortality Table for all causes of death
for Males. The background cancer mortality rateM(a) is obtained by dividing the number
dying in an age interval by the number of people years lived in the same time interval.

Age at Death Number Dying Number of PY Background Mortality
(yr) in (a,a+1) lived in (a,a+1) Rate: M(a)

[PY] [PY]−1

0-1 759 99333 0.0076409
1-2 56 99213 0.0005644
2-3 38 99165 0.0003832
3-4 28 99132 0.0002823
4-5 22 99107 0.0002220
5-6 21 99086 0.0002119

Figure 23: The background mortality rate for all causes of death for males and females.
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a lifetime is cumulative, as it depends on prior risk of death. The background probability
of survival and death for males is shown in Figure 24. Note that the probability of survival
approaches zero at 100 years of age, but it does not quite reach zero. This is consistent
with the NVSR [15]. The usual convention is to set the probability of survival to zero for
all ages greater than 100 years, instead of using equation (8) to calculate the probability
of survival for those years.

Figure 24: The probability of survival and death for all causes of death for males.

Cancer mortality rates are taken from Surveillance Epidemiology and End Results
(SEER) [16], which lists the mortality data differently than the NVSR. In the SEER re-
port, the mortality rate times 100,000 is listed as “mortality rate”, but the true cancer
mortality rate is obtained by dividing by 100,000, as is seen in Table 7. Also note that
SEER gives the cancer mortality rate for all causes of cancer. The solid cancer mortality
rate was obtained by subtracting the leukemia mortality rate from the total cancer mor-
tality rate. Finally, note that the data in Tables 7 and 8 are given in abridged form. For
example, years 1-4 are grouped together for one mortality rate. It is assumed that the
mortality rate is constant for all of the years in a given group.
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Table 7: A portion of the abridged solid cancer mortality table for males.

Age at Death Cancer Mortality Rate Cancer Mortality Rate
(yr) mS

c (a) × 100000 mS
c (a)

< 1 1.5 0.000015
1-4 2.0 0.000020
5-9 1.9 0.000019
10-14 1.7 0.000017
15-19 2.9 0.000029

Table 8: A portion of the abridged leukemia mortality table for males.

Age at Death Cancer Mortality Rate Cancer Mortality Rate
(yr) mL

c (a) × 100000 mL
c (a)

< 1 0.7 0.000007
1-4 0.9 0.000009
5-9 0.8 0.000008
10-14 1.1 0.000011
15-19 1.3 0.000013
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The lifetime risk of dying from solid cancer and leukemia is given in Figure 25. The
solid cancer mortality rate was modeled by Kellerer et al. [4] in which the average mor-
tality rate for a span of several years was used. This model will be slightly different from
the mortality data used in the present work. Nonetheless, the Kellerer et al. [4] model of
the solid cancer mortality rate may be used to confirm the mortality data. In addition,

Figure 25: The lifetime risk of dying from solid cancer and leukemia.

the authors of the present work propose a new parametrization for the leukemia mortality
rate. The cancer mortality rates are modeled by [4]

mc(a) = k
( a

60

)r

exp
[
−0.06

( a

60

)r]
+ c, (61)

where a is the age, and sex dependent parameters are given in the Table 9. In Figure 26,
the solid cancer mortality rate and the Kellerer et al. [4] model for males and females
have been plotted. In Figure 27, a similar fit has been used for leukemia mortality data.
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Table 9: Sex dependent parameters for cancer mortality rates for equation (61). This
model may be used in lieu of actual mortality data for testing purposes. The solid cancer
parameters are given in reference [4].

Solid k r c
males 0.0045 6.0 0.0004
females 0.0030 5.0 0.0004

Leukemia k r c
males 0.0001981 6.081 0.0
females 0.0001108 5.968 0.0

Figure 26: The solid cancer mortality data and the Kellerer et al. [4] model for males and
females.
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Figure 27: The leukemia mortality data for males and females.
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B Monte Carlo Sampling

The acceptance-rejection algorithm for sampling PDFs is discussed in this section and
follows the description given in reference [33].

A deviate (or quantile) is a randomly sampled variable. Suppose there exists a function
ρ(x), as in Figure 28. Randomly sampled x-values of the ρ(x) function are known as x-
deviates. Likewise, random samplings of y-axis are known as y-deviates. The aim of
sampling is to find a unique value of the random deviate x for a corresponding value
of ρ(x). The idea is to randomly sample a y-deviate and to find the corresponding x-
deviate. A distribution of x-deviates will be accumulated after many Monte Carlo trials
are binned. Unfortunately, for distributions such as ρ(x) in Figure 28, any randomly
sampled y-deviate is associated with two x-deviates. To avoid this problem, the PDF
ρ(x) is covered with a Lorentzian function f(x), which is everywhere larger than ρ(x).
The Lorentzian distribution function is given by

f(x) =
c0

1 + (x− x0)2/a20
, (62)

where c0, x0, and a0 are chosen such that f(x) is everywhere greater than ρ(x). The
Lorentzian function is integrated, which results in

F (x) =

∫
f(x)dx = a0c0 arctan

(
x− x0

a0

)
. (63)

F (x) is a monotonically increasing function and is ideal for sampling, because a randomly
sampled y-deviate will correspond to exactly one x-deviate. The minimum Amin and
maximum Amax of the integrated Lorentzian in equation (63) are needed for sampling
purposes; Amin = F (xmin) and Amax = F (xmax), where xmin and xmax are the minimum
and maximum x-deviates from ρ(x). Samples can be obtained directly from the integrated
Lorentzian F (x), which was chosen because it can be easily inverted to produce a unique
x-deviate:

x = x0 + a0 tan

(
F (x)

a0c0

)
. (64)

Next, a random deviate y1 is sampled from F (x) such that y1 ϵ [Amin, Amax]. The inte-
grated function F(x) is inverted and the corresponding value x1 is calculated. At this
point, x1 must be accepted or rejected as a deviate. In order to decide this, a new random
number r is generated between 0 and f(x1). If r ≤ p(x1), then x1 is retained as a deviate,
otherwise another random sample is taken from F (x), and the entire process is repeated.

As an example of the acceptance-rejection method, consider the following probability
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Figure 28: A Lorentzian function f(x) is integrated resulting in F (x), an invertable
function. The minimum and maximum areas (Amin and Amax) are calculated. A random
value y1 is generated between Amin and Amax and the corresponding x1 value is obtained
by inverting F (x1), since y1 = F (x1). Next, a random number (r) is generated between 0
and f(x1). If r ≤ p(x1) then x1 is retained as the random deviate.
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distribution function:

ρ(x) =


x− 1 for 1 ≤ x < 2

3− x for 2 ≤ x ≤ 3

0 elsewhere.

(65)

ρ(x) is covered with a truncated Lorentzian function f(x) with parameters c0 = 2, x0 = 2,
a0 = 1, as in Figure 29. f(x) is integrated to obtain an invertible function F (x), as shown

Figure 29: The Probability Distribution Function ρ(x) is covered with a truncated
Lorentzian f(x).

in Figure 30. A random number y1 is generated between F (1) = −1.57 and F (3) = 1.57.
In this example, the randomly sampled y-deviate is y1 = 0.49 and the corresponding
x-deviate is x1 = 2.25, which is found from equation (64). Next, as seen in Figure 31, a
random number r is generated between 0 and ρ(x1) = 0.75. Two cases must be considered.
If the random number generated is less than ρ(x1) = 0.75, such as r = r1 = 0.4, then
x1 = 2.25 is accepted as the x-deviate. If, instead, a random number r is generated that
is larger than ρ(x1) = 0.75, such as (r = r2 = 1.4), then x1 = 2.25 is rejected as the
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Figure 30: The Lorentzian function is integrated resulting in F(x). A random deviate y1
is selected and is inverted to find the corresponding x1 deviate.
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Figure 31: A random number r is generated between 0 and f(x1). If the random number
r = r1 is less than or equal to ρ(x1), then x1 is retained as a deviate. If the random
number r = r2 is greater than ρ(x1), then x1 is rejected as a deviate.

x-deviate. If the x-deviate is rejected, then the whole process begins again with a newly
selected random deviate y1 as in Figure 29.

The Lorentzian parameters and the limits of integration for all of the samplings are
listed in Table 10. For numerical sampling efficiency, the parameters of the covering func-
tion are adjusted in such a way that there is minimum difference between the covering
function and the PDF. It is assumed that the Gaussian distributions described for the
fluence uncertainties are zero for all negative valued quantiles. This is a reasonable approx-
imation for the given standard deviations. However, care should be taken in the future
if the standard deviations of the Gaussian distributions are increased. A negative-valued
quantile could result in a negative effective dose, which is an unphysical result.
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Table 10: Lorentzian Parameters used for Monte Carlo Sampling. The min and max values
indicate the minimum and maximum range of the sampling. Negative valued quantiles
are excluded from the physics uncertainty.

c0 a0 x0 min max
Physics Uncertainty
LET < 30 keV/µm 5.5 0.13 1.0 0 ∞

30 < LET < 300 keV/µm 3.1 0.18 1.0 0 ∞
LET ≥ 300 keV/µm 2.3 0.24 1.0 0 ∞
Low LET Uncertainty

Dosimetry 3.7 0.15 0.84 −∞ ∞
Statistical 2.7 0.2 1.0 −∞ ∞

Bias 8.0 0.07 1.1 −∞ ∞
Transfer 1.6 0.4 0.94 0 ∞
DDREF 0.55 1.2 2.1 1 5

Quality Factor Uncertainty
L0 1.2 6.0 7.5 1 15
Lm 1.2 100 115 50 250
p 1.2 1.0 0.7 0 2
Qm 0.025 30 17 0 ∞
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C Median and 95% Confidence Interval

Samples of the the effective dose and the REID% were accumulated with 20,000 Monte
Carlo trials, and the results were binned in histograms, each of which are divided into 2000
bins. The median and 95% CI were also calculated. The median for a given distribution is
the point that divides the area into two equal (50%) halves, as in Figure 32. The next task
is to estimate the 95% confidence interval. The point along the x-axis that corresponds
to 2.5% of the total area is identified as the lower bound of the confidence interval. The
upper bound of the CI is found the same way at 97.5% of the total area. The total area
that has been excluded for this analysis is 5.0%. The 95% CI is bounded between the
upper and lower limits obtained by examining the areas, as in Figure 32. Integration was
performed between consecutive points utilizing 5 point Gaussian quadrature, and linear
interpolation was used between consecutive points in the histogram data file. Due to the
many fluctuations in the histogram data, future algorithms should first smooth the data
before integration.

Figure 32: An example of the median and 95% confidence interval.
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