Data Acquisition System Architecture & Capabilities
At NASA GRC Plum Brook Station’s Space Environment Test Facilities

Richard K. Evans
Gerald M. Hill

27th Space Simulation Conference
November 6th, 2012

Presented by
Richard K. Evans
(NASA Glenn Research Center)

ABSTRACT
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world’s largest space environment test facilities located at the NASA Glenn Research Center’s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
Data Acquisition System Architecture & Capabilities
At NASA GRC Plum Brook Station’s
Space Environment Test Facilities

Richard K. Evans
Gerald M. Hill

27th Space Simulation Conference
November 6th, 2012

Presented by
Richard K. Evans
(NASA Glenn Research Center)
Presentation Outline

- **Overview**
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- **Plum Brook Facility DAS Design Drivers**
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- **Overview of Plum Brook Data Systems**
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
Presentation Outline

- Overview
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- Plum Brook Facility DAS Design Drivers
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- Overview of Plum Brook Data Systems
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
Overview - NASA Plum Brook Station Test Sites

Plum Brook Station
6,400 Acres near Sandusky, OH
Five World-Class Test Facilities

- Space Power Facility (SPF)
 * Thermal Vacuum Chamber
 * Reverberant Acoustic Chamber
 * 3 Axis Sine-Vibration Facility

- Cryogenic Components Lab (CCL)
 High-Energy, High Risk Cryogenics Systems Testing

- Hypersonics Tunnel Facility (HTF)
 Blow-Down, Non-Vitiated, Free-Jet Wind Tunnel

- Cryogenic Propellant Tank Research Facility (K-Site)
 Large-Scale LH₂ Testing

- Spacecraft Propulsion Research Facility (B-2)
 High Altitude Engine Testing
Overview – Recent Modernization Projects

- **B-2 Restorations (2006..2010)**

Beginning in 2006, B-2 underwent a systematic, phased refurbishment program to revitalize all major facility subsystems and ancillary infrastructure equipment.

NASA’s Space Operations Mission Directorate (SOMD) and Exploration Systems Mission Directorate (ESMD) have funded this activity, under the guidance of the Rocket Propulsion Test Management Board (RPTMB), a NASA Level II office responsible for maintaining the agency’s chemical propulsion test capability.

To date this refurbishment includes the chamber and all vacuum systems, propellant and pressurant systems, control and data acquisition systems, and numerous facility support systems.

- **SPF Vibroacoustic upgrade (2007..2011)**

In late 2007, NASA began a project to create single location where large-scale space environment testing could be performed. Leveraging the existing thermal-vacuum test chamber at the Space Power Facility (SPF), NASA began the work to add acoustic, vibration, and modal test capabilities at a comparable scale.

The modifications to the facilities were completed in 2011 and included the installation of a dedicated facility data acquisition system to support the new test capabilities as well as a replacement data system for the thermal-vacuum chamber.
Presentation Outline

- Overview
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- Plum Brook Facility DAS Design Drivers
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- Overview of Plum Brook Data Systems
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
Design Approach for the New Data System

What would the IDEAL DAS solution look like?

- **Commercial Off-The-Shelf (COTS)**
 - Look for mature product lines from industry leading manufacturers
 - Maximize the use of open standards for both hardware and software

- **Modular**
 - Scalability
 - Upgradability
 - Easier to Troubleshoot, Check-out, Verify & Repair

- **Electronically Configurable**
 - Avoid Manual Knobs and Dials
 - Able to automate and back-up “SAVE/RESTORE” functions
 - Configurations included as part of the test record
 - Facilitates “Whole System” automation

- **Highly Integrated Operation**
 - Traceability is “built-in” to a fully integrated modular system
 - Borrowing the merits of the OSI 7-Layer model, Higher-Level Functions in a layered model allows some “transparency” in the system. (such as Ethernet and Fibre Channel) (i.e. – ability for upstream components to control and configure downstream devices)
Design Approach for the New Data System

What would the IDEAL DAS solution look like?

- Commercial Off-The-Shelf (COTS)
 - Look for mature product lines from industry leading manufacturers
 - Maximize the use of open standards for both hardware and software

- Modular
 - Scalability
 - Upgradability
 - Easier to Troubleshoot, Check-out, Verify & Repair

- Electronically Configurable
 - Avoid Manual Knobs and Dials
 - Able to automate and back-up “SAVE/RESTORE” functions
 - Configurations included as part of the test record
 - Facilitates “Whole System” automation

- Highly Integrated Operation
 - Traceability is “built-in” to a fully integrated modular system
 - Borrowing the merits of the OSI 7-Layer model, Higher Level Functions in a layered model allows some “transparency” in the system (i.e. – ability for upstream components to control downstream devices)

~ Our Strategy ~

These characteristics will result in a system that is:

- Easy to Operate
- Easy to Maintain
- Easy to Upgrade
- Easy to Verify

Our goal is to assure:

- Highest Quality
- Highest Reliability
Design Approach for the New Data System

What are some of the challenges in designing a permanent “facility” data system?

- **Wide variety of Data Rates and Measurement Bandwidths**
- **Wide variety of Measurement Types**
- **Distance Effects and Limitations**
- **Calibrating the system (and troubleshooting)**
- **Synchronization and Timing of Data from Multiple Sources**
- **Future System Growth** (Scaling-up when needed)
- **SAVE and RESTORE Functions**
- **Versatility** (Every customer wants something different)
- **Measurement Fidelity**
Presentation Outline

- **Overview**
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- **Plum Brook Facility DAS Design Drivers**
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- **Overview of Plum Brook Data Systems**
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
Modular Distributed Measurement Topology

128 – 2,000+ channels
Accelerometers, Mics, Strain, Temperature, etc…

µW/nW
(Small Signal Regime)

Sensors & Transducers

(Data Storage)

(Digital Regime)
Modular Distributed Measurement Topology

- **Sensors & Transducers**: 128 – 2,000+ channels. Accelerometers, Mics, Strain, Temperature, etc…

- **Data Storage**

- **µW/nW** (Small Signal Regime)

- **±10V** (Strong Signal Regime)

- **(Digital Regime)**
Modular Distributed Measurement Topology

128 – 2,000+ channels
Accelerometers, Mics, Strain, Temperature, etc…

μW/nW
(Small Signal Regime)

±10V
(Strong Signal Regime)

(Digital Regime)

Data Storage
Modular Distributed Measurement Topology

- **Sensors & Transducers**: 128 – 2,000+ channels for accelerometers, microphones, strain, temperature, etc...
 - > 300 ft
 - Mostly TPS & Coax with various transducer arrangements
- **Signal Conditioners**
 - < 3 ft
 - All TPS
 - ±10V (Strong Signal Regime)
 - IEPE, LDTEDS, ...
- **Digitizers**
 - (Digital Regime)
- **Data Transport**
- **Data Storage**

- **µW/nW (Small Signal Regime)**
Modular Distributed Measurement Topology

- **Sensors & Transducers**
 - 128 – 2,000+ channels
 - Accelerometers, Mics, Strain, Temperature, etc…
 - < 300ft
 - Mostly TPS & Coax
 - w/ various transducer arrangements

- **Signal Conditioners**
 - ±10V
 - (Strong Signal Regime)
 - IEPE, LDTEDS, …
 - < 3ft
 - All TPS

- **Digitizers**
 - (Digital Regime)

- **Digital Meter**
 - < 300ft
 - Mostly TPS & Coax
 - w/ various transducer arrangements

- **Signal Gen.**
 - μW/nW
 - (Small Signal Regime)
 - ±10V
 - (Strong Signal Regime)

- **Data Transport**

- **Data Storage**
Modular Distributed Measurement Topology

- **Sensors & Transducers**
 - 128 – 2,000+ channels
 - Accelerometers, Mics, Strain, Temperature, etc…
 - < 300ft
 - Mostly TPS & Coax
 - w/ various transducer arrangements

- **Signal Conditioners**
 - ±10V
 - (Strong Signal Regime)
 - IEPE, LDTEDS, …

- **Signal Gen.**
- **Digital Meter**

- **Digitizers**
 - < 3ft
 - All TPS

- **Controls**
 - Ethernet
 - (Digital Regime)

- **Runtime Control**

- **Data Transport**
 - Real-time Monitoring
 - Data Storage

- **Instrument Cabling**
- **Acquisition Cabling**

- **μW/nW**
 - (Small Signal Regime)
Modular Distributed Measurement Topology

- **Sensors & Transducers**: 128 – 2,000+ channels, Accelerometers, Mics, Strain, Temperature, etc…
- **Signal Conditioners**: ±10V (Strong Signal Regime)
- **Digitizers**: Digital Meter, Controls Ethernet, Runtime Control
- **Data Transport**: Real-time Monitoring, Data Storage
- **Instrument Cabling**: < 300ft, Mostly TPS & Coax w/ various transducer arrangements
- **Acquisition Cabling**: < 3ft, All TPS
- **IEPE, LDTEDS, …**
- **μW/nW** (Small Signal Regime)
- **Environment**: Mostly TPS & Coax w/ various transducer arrangements
- **(Digital Regime)**

www.nasa.gov
Modular Distributed Measurement Topology

- **128 – 2,000+ channels**
- **Accelerometers, Mics, Strain, Temperature, etc…**
- **< 300ft**
- **Mostly TPS & Coax w/ various transducer arrangements**
- **Controls**
- **Ethernet**
- **Acquisition Cabling**
- **16 bit ADCs**
- **variable SR/Ch.**
- **Instrument Cabling**
- **Mechanical Vibrations and Acoustic Vibra data**
- **Standardized Signal Conditioning/Ch.**
- **< 300ft**
- **3TB/ea.**
- **4Gbps/ea.**
- **3TB/ea.**

- **μW/nW**
 - (Small Signal Regime)
- **±10V**
 - (Strong Signal Regime)
- **(Digital Regime)**
Modular Distributed Measurement Topology

- 128 – 2,000+ channels
- Accelerometers, Mics, Strain, Temperature, etc…
- ±10V (Strong Signal Regime)
- Integrated Temperature Measurement System
- Type “T” Thermocouples (x512)
- Controls Ethernet
- Ethernet Cabling
- Mechanical Vibration and Acoustic Vibe Info
- Instrument Cabling
- ADAS Translator Brick/PC
- 4Gbps/ea.
- 3TB/ea.
- Digital Regime
- μW/nW (Small Signal Regime)
Integrated FC-SAN for Distributed Scalability

The completed system forms a Fibre-Channel Storage Area Network

- ADCs: High-Speed Digitizer Brick
 - 32 Chan/Brick
 - 8 Bricks/Crate
 - 6 Crates (full design)
 - 1,536 = Total Chans

- RAID 1+0 DATA STORAGE UNITS (+3Tb)

- FC Switch Fabric - Storage-Area Network

- Signal Conditioning System

- Real-Time Monitoring and Control
Presentation Outline

- **Overview**
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- **Plum Brook Facility DAS Design Drivers**
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture

- **Specifications and Capabilities of shared assets**

- **Overview of Plum Brook Data Systems**
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
DAS - Control and Real-Time Display

System Configuration is done using a MS-Excel Spreadsheet

![Excel Spreadsheet Image]

Channels

<table>
<thead>
<tr>
<th>Number</th>
<th>Channel Enabled?</th>
<th>Name</th>
<th>Display Scaling</th>
<th>Cal Poly</th>
<th>Sensitivity (volt/EU)</th>
<th>Offset (volt)</th>
<th>Engineering Units</th>
<th>Sample Rate</th>
<th>ADC Gain</th>
<th>ADC Coupling</th>
<th>CSC Card Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>True</td>
<td>C01</td>
<td>None (linear)</td>
<td>C01</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>4</td>
<td>True</td>
<td>C02</td>
<td>None (linear)</td>
<td>C02</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>5</td>
<td>True</td>
<td>C03</td>
<td>None (linear)</td>
<td>C03</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>6</td>
<td>True</td>
<td>C04</td>
<td>None (linear)</td>
<td>C04</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>7</td>
<td>True</td>
<td>C05</td>
<td>None (linear)</td>
<td>C05</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>8</td>
<td>True</td>
<td>C06</td>
<td>None (linear)</td>
<td>C06</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>9</td>
<td>True</td>
<td>C07</td>
<td>None (linear)</td>
<td>C07</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>10</td>
<td>True</td>
<td>C08</td>
<td>None (linear)</td>
<td>C08</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>11</td>
<td>True</td>
<td>C09</td>
<td>None (linear)</td>
<td>C09</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>12</td>
<td>True</td>
<td>C10</td>
<td>None (linear)</td>
<td>C10</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>13</td>
<td>True</td>
<td>C11</td>
<td>None (linear)</td>
<td>C11</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>14</td>
<td>True</td>
<td>C12</td>
<td>None (linear)</td>
<td>C12</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>15</td>
<td>True</td>
<td>C13</td>
<td>None (linear)</td>
<td>C13</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>16</td>
<td>True</td>
<td>C14</td>
<td>None (linear)</td>
<td>C14</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>17</td>
<td>True</td>
<td>C15</td>
<td>None (linear)</td>
<td>C15</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>18</td>
<td>True</td>
<td>C16</td>
<td>None (linear)</td>
<td>C16</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>19</td>
<td>True</td>
<td>C17</td>
<td>None (linear)</td>
<td>C17</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>20</td>
<td>True</td>
<td>C18</td>
<td>None (linear)</td>
<td>C18</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>21</td>
<td>True</td>
<td>C19</td>
<td>None (linear)</td>
<td>C19</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>22</td>
<td>True</td>
<td>C20</td>
<td>None (linear)</td>
<td>C20</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>23</td>
<td>True</td>
<td>C21</td>
<td>None (linear)</td>
<td>C21</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>24</td>
<td>True</td>
<td>C22</td>
<td>None (linear)</td>
<td>C22</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>25</td>
<td>True</td>
<td>C23</td>
<td>None (linear)</td>
<td>C23</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>26</td>
<td>True</td>
<td>C24</td>
<td>None (linear)</td>
<td>C24</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>27</td>
<td>True</td>
<td>C25</td>
<td>None (linear)</td>
<td>C25</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
<tr>
<td>28</td>
<td>True</td>
<td>C26</td>
<td>None (linear)</td>
<td>C26</td>
<td>1.000E+00</td>
<td>0.000E+00</td>
<td>volt</td>
<td>4000</td>
<td>1</td>
<td>DC</td>
<td>None (Direct Voltage Input)</td>
</tr>
</tbody>
</table>
DAS - Control and Real-Time Display

System Operation is accomplished using a simple GUI Interface

Other Features:

- Monitor Disk Usage
- Monitor System Health (Watchdog)
- Monitor Mode – Ability to Monitor without Acquiring until triggered (Monitor Mode will capture data prior to the event once triggered)
Real-Time Display Capabilities

- Time Plots
- Frequency (FFT)
- N^{th} Octave Plots
- Signal Transfer Functions
- many others in many different combinations and arrangements
- and on multiple “Data Monitoring” PCs
DAS - Control and Real-Time Display

Real-Time Display Types – Limits & Alarms

✓ Multiscope also allows for Real-time Monitoring of Alarm & Limits Settings for both Peak Amplitude for each Channel AND per Frequency/Per Channel.
Real-Time Display Types – Limits & Alarms

✓ Multiscope also allows for Real-time Monitoring of Alarm & Limits Settings for both Peak Amplitude for each Channel AND per Frequency/Per Channel
Presentation Outline

- **Overview**
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- **Plum Brook Facility DAS Design Drivers**
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- **Overview of Plum Brook Data Systems**
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
The world’s largest space simulation facility capable of full-scale rocket engine and stage tests.

B-2 Facility — Upper-stage Thermal-Vac Chamber (33ft dia. x 55ft high)

The largest hydrogen compatible thermal vacuum test facility in the US.
B-2 Facility – Upper-stage Thermal-Vac Chamber (33ft dia. x 55ft high)

The largest hydrogen compatible thermal vacuum test facility in the US.

The world’s largest space simulation facility capable of full-scale rocket engine and stage tests.
The data acquisition and control systems of B-2 are designed such that all of the field instrumentation signals and data acquisition hardware is consolidated into a set of Class I Div 2 Group B support rooms, one of which is dedicated for the Data Acquisition System.
Due to the propellants involved in engine testing, all facility controls and data acquisition are implemented remotely from a control building which is located approximately \(\frac{1}{4} \) mile away.
B-2 Facility – Dedicated Data Room
B-2 Facility DAS – Summary

Spacecraft Propulsion Research Facility

Designed for High Altitude Engine Testing

Instrument Cabling to Test Chamber

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Pair, Twisted-Pair Shielded</td>
<td>>1,700 Ch. 1PR TPS</td>
</tr>
<tr>
<td>2</td>
<td>Four-Wire, Twisted-Pair Shielded</td>
<td>312 Ch. of 4C / Ch.</td>
</tr>
<tr>
<td>3</td>
<td>Impedance Matched Coaxial</td>
<td>~64 Ch.</td>
</tr>
</tbody>
</table>

Signal Conditioning Equipment

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Constant-Voltage Bridge Conditioners</td>
<td>76 Ch.</td>
</tr>
<tr>
<td>5</td>
<td>Constant-Current Bridge Conditioners</td>
<td>32 Ch.</td>
</tr>
<tr>
<td>6</td>
<td>ICP/IEPE Conditioners</td>
<td>48 Ch.</td>
</tr>
<tr>
<td>7</td>
<td>Charge-Type Amplifiers</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Filter/Amplifier Signal Conditioners</td>
<td>160 Ch.</td>
</tr>
<tr>
<td>9</td>
<td>Frequency-to-Voltage</td>
<td>28 Ch.</td>
</tr>
<tr>
<td>10</td>
<td>Direct Voltage Inputs</td>
<td>600+ (see ADCs)</td>
</tr>
<tr>
<td>11</td>
<td>UTR Thermocouple Conditioners</td>
<td><tbd></td>
</tr>
</tbody>
</table>

Digitizing Equipment (ADCs)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>High-Speed Digitizers (110 kHz MBW/Ch.)</td>
<td>32 Ch.</td>
</tr>
<tr>
<td>13</td>
<td>Low-Speed Digitizers (1 kHz MBW/Ch.)</td>
<td>576 Ch.</td>
</tr>
<tr>
<td>14</td>
<td>Discrete Channel Acquisition</td>
<td>32 Ch.</td>
</tr>
</tbody>
</table>

Data Storage

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>RAID 1+0 redundant fail-over storage</td>
<td>2.5 – 3 Terabytes</td>
</tr>
</tbody>
</table>

Control, Monitoring and Post-Processing

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Dedicated Control Computers</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Dedicated Monitoring Computers</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Dedicated Post-Processing Computer</td>
<td>1</td>
</tr>
</tbody>
</table>

Other Notable System Elements

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>IRIG-B Distribution</td>
<td>All</td>
</tr>
<tr>
<td>20</td>
<td>LTO-3 Tape Archival System</td>
<td>All</td>
</tr>
</tbody>
</table>
Presentation Outline

- **Overview**
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- **Plum Brook Facility DAS Design Drivers**
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- **Overview of Plum Brook Data Systems**
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS
Space Power Facility (SPF)

Space Environment Testing under one roof
- Thermal-Vacuum
- EMI/EMC
- Acoustic
- Vibration

The World’s largest space environment simulation chamber
Space Power Facility (SPF)

- Thermal Vacuum Chamber
- EMI/EMC Reverberant Chamber

Assembly Highbay

Vibroacoustic Test Facilities

Control Rooms
Space Power Facility – Acoustic Facility

SPF – Reverberant Acoustic Test Facility

- ~101,000 ft³ chamber volume
- ~37ft (w) x 47ft (d) x 57ft (h)
- ~163dB OASPL (Overall Sound Pressure Level)
- 20k Hz Measurement Bandwidth

DAS Measurements Channels to RATF

- 800 - IEPE accels and/or microphones
- 40 - IEPE/charge conditioners
- 184 - 4-arm strain gauge conditioners
Space Power Facility – Vibration Facility

SPF - Mechanical Vibration Facility (MVF)

- 3-axis servo-hydraulic shaker
- Annulus design ~18ft dia.
- Sized for 75,000 lb test articles
- ~4 million lb seismic mass
- 5 -150 Hz Sine Vib.
 - 1.25 g Vert.
 - 1.0 g Lateral

Data System

Measurements Channels to MVF
- 800 - IEPE Accel. conditioners
- 40 - IEPE/Charge conditioners
- 184 - 4-arm Strain gauges
The 1,024 (1,536) Measurement Channels of the HSDAS can be “switched” between the three test locations within a 24 hours period at the “Interface Panel” in the VTC High-bay.

From the Interface Panel in the VTC High-Bay area, all 1,024 (1,536) Channels are routed through the wall and into the HSDAS Instrument Room. The Instrument Room houses all of the Signal Conditioning and Digitizing Hardware.
The 1,024 (1,536) Measurement Channels of the HSDAS can be “switched” between the three test locations within a 24 hours period at the “Interface Panel” in the VTC High-bay.
SPF Vibroacoustic FDAS – Summary

Designed for Large-Scale Environment Testing

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Cabling to the MVF table and RATF chambers</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single Pair, Twisted-Pair Shielded</td>
<td>>1,700 Ch. TPS</td>
</tr>
<tr>
<td>2</td>
<td>Impedance Matched Coaxial to/from ACS</td>
<td>64 Ch.</td>
</tr>
<tr>
<td>3</td>
<td>Impedance Matched Coaxial to/from VCS</td>
<td>64 Ch.</td>
</tr>
</tbody>
</table>

Signal Conditioning Equipment

<table>
<thead>
<tr>
<th>Signal Conditioning Equipment</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 ICP/IEPE Conditioners</td>
<td>800 Ch.</td>
</tr>
<tr>
<td>5 Constant-Voltage Bridge Conditioners</td>
<td>160 Ch.</td>
</tr>
<tr>
<td>6 Direct Voltage Inputs from ACS/VCS</td>
<td>64 Ch.</td>
</tr>
<tr>
<td>7 Buffered Voltage Outputs to ACS/VCS</td>
<td>64 Ch.</td>
</tr>
</tbody>
</table>

Digitizing Equipment (ADCs)

<table>
<thead>
<tr>
<th>Digitizing Equipment (ADCs)</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 High-Speed Digitizers (20 kHz MBW/50 kHz SR)</td>
<td>1024 Ch.</td>
</tr>
</tbody>
</table>

Data Storage

<table>
<thead>
<tr>
<th>Data Storage</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 RAID 1+0 redundant fail-over storage</td>
<td>3 Terabytes total</td>
</tr>
</tbody>
</table>

Control, Monitoring and Post-Processing

<table>
<thead>
<tr>
<th>Control, Monitoring and Post-Processing</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Dedicated Control Computers</td>
<td>1</td>
</tr>
<tr>
<td>11 Dedicated Monitoring Computers</td>
<td>3</td>
</tr>
<tr>
<td>12 Dedicated Post-Processing Computer</td>
<td>1</td>
</tr>
</tbody>
</table>

Other Notable System Elements

<table>
<thead>
<tr>
<th>Other Notable System Elements</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 IRIG-B Distribution</td>
<td>All</td>
</tr>
<tr>
<td>14 LTO-3 Tape Archive</td>
<td>All</td>
</tr>
</tbody>
</table>
Presentation Outline

- Overview
 - Plum Brook location and facilities
 - Summary of recent facility upgrades at Plum Brook

- Plum Brook Facility DAS Design Drivers
 - Goals
 - Challenges
 - Measurement Topology
 - Architecture
 - Specifications and Capabilities of shared assets

- Overview of Plum Brook Data Systems
 - B-2 Facility DAS
 - SPF Vibroacoustic Facilities DAS
 - SPF Thermal-Vacuum Chamber DAS

Designed for Large-Scale Environment Testing
Space Power Facility (SPF)

- Thermal Vacuum Chamber
- EMI/EMC Reverberant Chamber

Assembly Highbay

Control Rooms

Vibroacoustic Test Facilities
Thermal-Vacuum Tests Require “Low-Speed” DAS

Altitude Performance Tests Require “High-Speed” DAS
SPF Thermal-Vacuum – Annulus Feedthroughs
SPF Thermal-Vacuum – Outside Connections
SPF Thermal-Vacuum – Outside Connections
SPF Thermal-Vacuum Temperature DAS Racks
SPF Thermal-Vacuum – Mobile DAS Layout

(High-Speed/Dynamic, 256 Channels)
SPF Thermal-Vacuum MDAS – Front View
SPF Thermal-Vacuum MDAS – Rear View
SPF Thermal-Vacuum MDAS – Summary

<table>
<thead>
<tr>
<th>Instrument Cabling in the Vacuum Chamber Annulus</th>
<th>Num. of Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Single Pair, Twisted-Pair Shielded</td>
<td>324 Ch. 1PR TPS</td>
</tr>
<tr>
<td>2 Four-Wire, Twisted-Pair Shielded</td>
<td>288 Ch. 4C/Ch.</td>
</tr>
<tr>
<td>3 Impedance Matched Coaxial</td>
<td>126 Ch. BNC</td>
</tr>
<tr>
<td>4 Type-T Thermocouple Instrumentation Wire</td>
<td>512 Ch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal Conditioning Equipment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ICP/IEPE Conditioners</td>
<td>64 Ch. *</td>
</tr>
<tr>
<td>6 Constant-Voltage Bridge Conditioners</td>
<td>48 Ch. †</td>
</tr>
<tr>
<td>7 Charge-Type Conditioners</td>
<td>24 Ch. †</td>
</tr>
<tr>
<td>8 Direct Voltage Inputs</td>
<td>120 Ch.</td>
</tr>
<tr>
<td>9 Buffered Voltage Follower Outputs</td>
<td>As needed †</td>
</tr>
<tr>
<td>10 Thermocouple Signal Conditioning</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digitizing Equipment (ADCs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11 High-Speed Digitizers (100 kHz MBW/256 kHz SR)</td>
<td>256 Ch.*</td>
</tr>
<tr>
<td>11a Low-Speed Digitizers/Data-Translators (10Hz SR)</td>
<td>512 Ch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Storage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 RAID 1+0 redundant fail-over storage</td>
<td>3 Terabytes total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control, Monitoring and Post-Processing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Dedicated Control Computers</td>
<td>1</td>
</tr>
<tr>
<td>14 Dedicated Monitoring Computers</td>
<td>4*</td>
</tr>
<tr>
<td>15 Dedicated Post-Processing Computer</td>
<td>1*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Notable System Elements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16 IRIG-B Distribution</td>
<td>All</td>
</tr>
<tr>
<td>17 LTO-3 Tape Archive</td>
<td>All*</td>
</tr>
</tbody>
</table>

Designed for Large-Scale Environment Testing
Thank you.
Backup Charts
A Modular, COTS, Fully Remote-Controllable Signal Conditioning Platform has been selected. This system supports all major transducer types and provides unprecedented remote control and monitoring capabilities.

Current Signal Conditioning System:
- Multiple “Card-Cage” Chassis for Signal Conditioning
 ("n" crates x 16 cards/crate @ 4, 8, and 16 Ch/Card = 512 – 1,536 Channels)
A Modular, COTS, Fully Remote-Controllable Signal Conditioning Platform has been selected. This system supports all major transducer types and provides unprecedented remote control and monitoring capabilities.

Current Signal Conditioning System:
- Multiple “Card-Cage” Chassis for Signal Conditioning
 (“n” crates x 16 cards/crate @ 4, 8, and 16 Ch/Card = 512 – 1,536 Channels)

Current Signal Conditioning System supports the following measurement types:
- Voltage Bridge Conditioners
 (42 cards @ 4 ch/card = 168 channels)
- Constant Current Conditioners
 (12 cards @ 4 ch/card = 48 channels)
- Voltage Amplifier/Filter
 (25 cards @ 8 ch/card = 200 channels)
- IEPE/ICP Accels/Microphones
 (50 cards @ 16 ch/card = 800 channels)
- Charge/Voltage Accelerometers
 (6 cards @ 4 ch/card = 24 channels)
- Frequency to Voltage Converters
 (8 cards @ 4 ch/card = 32 channels)
VME-based Digitizer Modules ("Bricks")

- Low-Speed Bricks → 96 Channels/Board
- High-Speed Brick (and Discrete) → 32 Channels/Board
- 6 Low-Speed Bricks → 576 channels @ 100 Hz-5kHz SR
- 32 High-Speed Bricks → 1,024 channels @ 5kHz - 256 kHz SR
- 1 Discrete Brick → 32 channels @ 5kHz - 256 kHz SR
- Auxiliary Data Translator for accepting external data sources.
- Simultaneous sampling on all channels
- 16-bit resolution with ~90 dB signal-to-noise
- Integrated linear-phase, anti-alias filters (>100dB Alias rejection)
- Differential inputs (+/- 10V)
- Programmable gains of 1, 10, 100 & 1,000
- On-board DSP and FPGA
Modular Distributed Measurement Topology

- 128 – 2,000+ channels
- Accelerometers, Mics, Strain, Temperature, etc…

(Strong Signal Regime)

- ±10V

(Digital Regime)

- 4Gbps/ea.
- 3TB/ea.

(Strong Signal Regime)

- Controls Ethernet

(Digital Regime)

- Instrument Cabling
- Type “T” Thermocouples (x512)
- < 300ft

- Integrated Temperature Measurement System

- ADAS Translator Brick/PC

- Ethernet Cabling
SPF Thermal-Vacuum – Temperature Data
(Low-Speed, 512 Channels)

Features
- Accepts type E, J, K, N, R, S, T, and B
- Engineering Unit output, °C, °F, °R, or K
- Ethernet TCP/IP protocol "network ready"
- 10 samples/channel/second
- 50 - 60 Hz noise rejection
- Open thermocouple test
- 1000 Vdc input isolation
- LabView® driver and OPC server
- 16, 32, and 64 channel
Benefits of a Fibre-Channel Switch Fabric

- Performance to over 4 Gbits/second.
- Delivers sustained Transfer Bandwidth of ≈ 97 Mbytes/Sec for file transfers.
- Support for long distances up to 10 Km.
- Support for multiple simultaneous protocols.
- Allows for shared storage.
- Provides a scalable network.
- Robust data integrity and reliability
- Fast data access and backup.
DAS - Data Storage

> 3TB of RAID 1+0 are provided for the Data System to record to

Total Storage Size =
{Aggregate Data Rate} × {required test duration}

> 3 Terabytes ≈
{153.6 Mbytes/sec} × {8 hours × 3,600 seconds/hour}

RAID 1+0 provides the best combination of data-recording bandwidth and disk-failure protection.
Integrated FC-SAN for Distributed Scalability

The completed system forms a Fibre-Channel Storage Area Network

ADCs
High-Speed Digitizer Brick
32 Chan/Brick
x 8 Bricks/Crate
x 6 Crates (full design)
1,536 = Total Chans

RAID 1+0 DATA STORAGE UNITS (+3Tb)

Real-Time Monitoring and Control

Signal Conditioning System
DAS - Control and Real-Time Display

System Configuration is done using a MS-Excel Spreadsheet
DAS - Control and Real-Time Display

System Operation is accomplished using a simple GUI Interface

Other Features:

✓ Monitor Disk Usage

✓ Monitor System Health (Watchdog)

✓ Monitor Mode – Ability to Monitor without Acquiring until triggered (Monitor Mode will capture data prior to the event once triggered)
Other Features:

- Monitor Disk Usage
- Monitor System Health (Watchdog)
- Monitor Mode – Ability to Monitor without Acquiring until triggered (Monitor Mode can capture data prior to the event once triggered)
(Pseudo) Real-Time (< 1 sec.) Data Display is provided by the Data System using the fully-integrated software from DSPCon called “Multiscope”
DAS - Control and Real-Time Display

Real-Time Display Types

- Time Plots
- Frequency (FFT)
- Nth Octave Plots
- Signal Transfer Functions
- many others…

<table>
<thead>
<tr>
<th>Plot Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Plots</td>
<td>Amplitude Versus Time</td>
</tr>
<tr>
<td>Spectral Plots</td>
<td>Amplitude Versus Frequency (Low and High Resolution)</td>
</tr>
<tr>
<td>Nth Octave Plots</td>
<td>Amplitude versus Log Frequency</td>
</tr>
<tr>
<td>Track Order Plots</td>
<td>Track order plots display spectral responses with a fixed or variable bandwidth that are harmonic orders of shaft speed. Display RMS, minimum, or maximum spectral values.</td>
</tr>
<tr>
<td>ZMod Plots</td>
<td>ZMod plots show the user how spectral values change over time as shaft speed changes.</td>
</tr>
<tr>
<td>Lissajous</td>
<td>Lissajous shows the time domain correlation between two signals. The reference signal values are plotted on the x axis. The second signal is plotted on the y axis.</td>
</tr>
<tr>
<td>Bode Plots</td>
<td>Bode plots show the spectral amplitude and phase response at the shaft speed's fundamental harmonic.</td>
</tr>
<tr>
<td>1 Revolution Plots</td>
<td>1 Revolution plots show the time response that spans a single shaft revolution (for rotating machinery applications).</td>
</tr>
<tr>
<td>Campbell</td>
<td>Display types: 1. Shaft speed - Campbell Shaft speed shows an icon that is proportional to spectral amplitude centered at the spectral frequency (y axis) and shaft speed (x axis). 2. Time - Campbell Time shows an icon that is proportional to spectral amplitude centered at the spectral frequency (y axis) and time (x axis). 3. Reference channel - Campbell Reference Channel shows an icon that is proportional to spectral amplitude centered at the spectral frequency (y axis) and rms value of the reference channel.</td>
</tr>
<tr>
<td>Strip Chart Plots</td>
<td>Strip chart (RMS, Min, Max) show an envelope of the channel response over time; updates are every 2048 samples. Strip Charts can be plotted to show the shaft speed over time; updates are every processed frame.</td>
</tr>
<tr>
<td>Waterfall Plots</td>
<td>Waterfall plots allow users to see how x and y values (representing frequency response) change as a function of time or shaft speed.</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>This scope renders the transfer function, coherence, and/or cross spectral magnitude and phase response of a channel against a reference channel.</td>
</tr>
</tbody>
</table>
DAS - Control and Real-Time Display

Real-Time Display Capabilities

- Time Plots
- Frequency (FFT)
- Nth Octave Plots
- Signal Transfer Functions
- many others in many different combinations and arrangements
- and on multiple “Data Monitoring” PCs
DAS - Control and Real-Time Display

Real-Time Display Capabilities

- Time Plots
- Frequency (FFT)
- N^{th} Octave Plots
- Signal Transfer Functions
- many others in many different combinations and arrangements
- and on multiple “Data Monitoring” PCs
Real-Time Display Types – Limits & Alarms

✓ Multiscope also allows for Real-time Monitoring of Alarm & Limits Settings for both Peak Amplitude for each Channel AND per Frequency/Per Channel
Real-Time Display Types – Limits & Alarms

✓ Multiscope also allows for Real-time Monitoring of Alarm & Limits Settings for both Peak Amplitude for each Channel **AND per Frequency/Per Channel**