Composites for Space Applications

Nathanael J. Greene
NASA White Sands Test Facility
Composite Core Capability Manager
Remarks

☑ Welcome to Composite Conference 2012
☑ Special thanks and welcome to participants in the NASA Composite Summit that started this collaboration.
☑ Special Thank You!
 ☐ Joshua Jackson (MKF), Harold Beeson (NASA), James Fekte (NIST) and Antonio Ruiz (DOE) for chairing the conference
 ☐ Session chairs and all NASA and NIST staff who worked hard to organize the conference with MKF
 ☐ New Mexico State DACC’s president Dr. Margie Huerta for hosting us in the East Mesa Facility
 ☐ Angelique Lasseigne (G2M2) Crystal Lay (NMSU Mechanical and Aerospace Engineering) and Charles Nichols (NASA) for making STEM student sponsorship possible.
Why are we here?

- Need high strength materials in mass and cost constrained applications
 - Additional knowledge needed to use composites in our applications more efficiently
 - Non-homogenous material
 - Anisotropic structures
 - Viscoelastic response to loading
 - Multiple material interfaces

- Composite use in space systems requires
 - Advanced structural models
 - Life and failure mode prediction
 - Harmonized codes and standards
 - Materials and processes that address composite component variability
 - Reliable nondestructive evaluation
NASA’s Use of Composites

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future</td>
<td>NASA Space Technology Roadmaps</td>
<td>Composite is Cross cutting technology, TA12, TA7</td>
</tr>
<tr>
<td>Today</td>
<td>NASA’s COTS & CCDEV Vehicles</td>
<td>Composite Pressure Vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite Structure</td>
</tr>
<tr>
<td>Today</td>
<td>Space Launch System</td>
<td>Composite Pressure Vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite Structure</td>
</tr>
<tr>
<td>Today</td>
<td>Orion</td>
<td>Composite Pressure Vessels</td>
</tr>
<tr>
<td>1990s</td>
<td>International Space Station</td>
<td>Composite Pressure Vessels</td>
</tr>
<tr>
<td>1970s</td>
<td>Space Shuttle</td>
<td>Composite Pressure Vessels</td>
</tr>
<tr>
<td>1960s</td>
<td>Apollo</td>
<td>Pre-composites</td>
</tr>
</tbody>
</table>
Crosscutting for Space Technology Roadmaps

- Composites are a crosscutting technology for NASA’s future missions.
 - Mars Precursor Missions & Heavy Lift Vehicle (2020)
 - Advanced In-space Propulsion (2025)
 - Space Platforms (2030)

- Information on technology roadmaps can be found at:
 http://www.nasa.gov/offices/oct/home/roadmaps/index.html
Composites Need: Space Technology Roadmap

2.1 Materials
- **2.1.1 Lightweight Structure**
 - Non-autoclave Composite
 - Hybrid Laminates
 - Tailorable (spec. strength, therm. Cond.)
- **2.1.2 Computational Design**
 - Micro Design Models
 - PMC Damage Models
 - Environment (time dependent degradation)
- **2.1.3 Flexible Material Systems**
 - Expandable Habitat
 - Flex. EDL Materials
- **2.1.4 Environment**
 - Cryo-Insulators
 - Ad. Ablator
 - Radiation/MMC
- **2.1.5 Special Materials**
 - Optical Materials (windows)
 - Repair
 - Sensor Materials
 - Space Suits

2.2 Structures
- **2.2.1 Lightweight Concepts**
 - Non-Autoclave Primary Struct.
 - Composite Allowables
 - Probabilistic Design Methodology
- **2.2.2 Design and Certification Methods**
 - Streamlined DAC Processes
 - Composite Allowables
 - High-fidelity Response Simulation
- **2.2.3 Reliability and Sustainment**
 - Predictive Damage Methods
 - Life Extension, Prediction
 - SHM, THM Integration
- **2.2.4 Test Tools and Methods**
 - Integrated Flight
 - Test Data ID and Usage
 - Full-field Data Acquisition (non-contact)
 - Full-field Model V&V
- **2.2.5 Innovative, Multifunctional Concepts**
 - Integrated Cryo tank
 - Integrated (non-pres) MMOD
 - Integrated Window
 - Reusable Modular Components
 - Active Co of Struct
 - Actuator
 - Integrated

2.3 Mechanical Systems
- **2.3.1 Deployables, Docking and Interfaces**
 - Common Universal Interchangeable Interfaces
 - Deployment of Flex Materials
 - Large Lightweight Stiff Dep
- **2.3.2 Mechanism Life Extension Systems**
 - Long Life Bearing/ Lube Systems
 - Cryo Long Life Actuators
- **2.3.3 Electro-mechanical, Mechanical and Micromechanisms**
 - Robotic Assembly Tools/Interfaces
 - Cryogenic and Fluid Transfer
 - Active Landing Attenuation System
- **2.3.4 Design and Analysis Tools and Methods**
 - Kinematics & Rotor Dynamics Analysis
 - Precursor Flight High Rate Data for Design
- **2.3.5 Reliability / Life Assessment / Health Monitoring**
 - Relevant Environment Durability Testing (i.e. ISS)
 - Predictive Damage Methods
 - Embedded Systems
 - Life Extension
- **2.3.6 Certification Methods**
 - Loads & Environments
 - Test Verified Physics
 - Life Extens

2.4 Manufacturing
- **2.4.1 Manufacturing Processes**
 - PMC & MMC Processes
 - CMC Processes
 - Metallic Processes
 - CMC Processes

Cont’d

Cont’d
Accelerated Growth in Composites

- Barriers to Growth
 - Funding limitations
 - Cross disciplinary technological challenges
 - Maturity required to meet roadmap dates

- Steps to Accelerate Growth
 - U.S. intra-government collaboration
 - Government-industry partnerships
 - International communication and collaboration
 - Globally harmonized roadmaps for key technologies

NASA-Commercial Collaboration
Charlie Bolden (NASA) and Elon Musk: (Space X)
Let’s Go!

• Address the global challenge of using composites in our applications by addressing common issues
• Excited to meet with leaders who are advancing composites in their applications
• Keep up with a paradigm shift from metals to composites occurring in aerospace, automotive, marine, and pipelines

www.compositeconference.com