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The calibration and validation of ocean wave height measurements by the TOPEX, Jason-1, and

Jason-2 satellite altimeters is addressed by comparing the measurements internally among them-

selves and against independent wave measurements at moored buoys. The two six-month verification

campaigns, when two of the satellites made near-simultaneous measurements along the same ground

track, are invaluable for such work and reveal subtle aspects that otherwise might go undetected.

The two Jason satellites are remarkably consistent; Topex reports waves generally 1–2% larger. Ex-

ternal calibration is complicated by some systematic errors in the buoy data. We confirm a recent

report by Durrant et al. that Canadian buoys underestimate significant wave heights by about 10%

relative to U.S. buoys. Wave heights from all three altimetric satellites require scaling upwards by

5–6% to be consistent with U.S. buoys.

Keywords ocean waves, satellite altimetry, significant wave height, Jason-2 validation.

1 Introduction

The subject of this work is the validation of significant wave heights Hs measured by the Jason-2

satellite altimeter (Lambin et al., 2010), as well as its predecessor missions TOPEX/Poseidon and

Jason-1, and the possible recalibration of these data to form a consistent 20-year time series of

global wave data. Validation of the wave-height data from Jason-2 has already been reported,

at least in preliminary fashion, in several studies (e.g., Ablain et al. 2010; Abdalla et al., 2010;

Quartly, 2010). Further and continuing analyses are warranted for a number of reasons. Foremost,
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the use of altimetric time series to study long-term climatic trends (e.g., Young et al., 2011) re-

quires that data be routinely monitored for quality and especially for drift. In addition, different

approaches to the validation-calibration problem, such as satellite-satellite comparisons versus in

situ buoy comparisons, can be mutually complementary and are therefore certainly warranted. In

the present paper extensive use is made of the extremely valuable “verification campaign” data in

which two successive satellites made near-simultaneous measurements along the same ground track.

Such simultaneous measurements are unique opportunities to compare and calibrate overlapping

missions, and many subtle aspects of altimetry were discovered during the first such verification

campaign for Jason-1. To analyze satellite wave data collected outside these special campaigns,

extensive use is made here of in situ wave data collected at a network of meteorological buoys.

Buoy measurements, however, are themselves subject to certain systematic errors, not all of them

understood (e.g., Durrant et al., 2009; Swail et al., 2009; Gemmrich et al., 2011). The inconsisten-

cies noted by Durrant et al. (2009) especially call into question some previous altimeter calibration

results.

In some cases different published calibration data for nominally the same satellite have been in-

consistent because based on different released versions of the data. These differences may stem from

errors in earlier releases, or changes in various correction tables, or especially from use of different

waveform retracking algorithms. Some authors have analyzed only operational or real-time data

because of the importance of these data for assimilation into operational wave forecasting systems.

Other authors have concentrated on the highest quality (usually retracked) climate data records,

for use in non-operational and climate studies. The present paper takes the second approach. For

Jason-2, at least for the present time, this issue does not arise because the two types of records

are identical (aside from minor variations related to interpolation along track—see discussion by
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Lillibridge et al., 2011). The issue does arise for the earlier satellites.

This paper considers the entire TOPEX, Jason-1, Jason-2 time series, with special emphasis

given to the newer Jason-2 data. Such a high-quality time series, now two decades in duration,

with a fixed ground-track pattern covering nearly the whole global ocean, is ideal for wave-climate

studies, and ensuring the consistency of these data and monitoring their quality over time should

be an ongoing and essential task.

2 Data

The Jason-2 Geophysical Data Records (GDRs) used here correspond to the so-called GDR-T

product, usually referred to as simply the GDR (Lambin et al., 2010). The Hs data in these GDRs

are also essentially equivalent to those available (as of this writing) on the Operational GDRs and

Interim GDRs (Scharroo et al., 2009; Lillibridge et al., 2011). The waveform tracking algorithm

used for all three products is the so-called MLE4 algorithm (Thibaut et al., 2010).

The Jason-1 data used here are from the GDR-C release. Those Hs data are also based on the

MLE4 tracking algorithm. Note that in our earlier work on Jason-1 (Ray and Beckley, 2003), we

used the IGDR-A, in which the wave data were based on MLE3 tracking. The different waveform

algorithms do result in small differences in the Hs data, as well as in the normalized backscatter

coefficient (Quartly, 2009), and our statistics regarding Jason-1 differ somewhat from our earlier

analysis. Note that GDR-B, which also employed MLE4 retracking, differs from GDR-C owing

to some updated instrument correction tables (see AVISO PODAAC User Handbook, 2008); the

largest adjustments were for wave heights around 6 m.

The TOPEX data (the much smaller dataset from the Poseidon altimeter will not be considered)

are based on the MGDR-B product from the physical oceanography data center at the Jet Propul-
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sion Laboratory. These data are still consistent with those used in the earlier Ray-Beckley analysis.

A limited amount of TOPEX data has been retracked by P. Callahan (JPL), and this retracking

does result in improved statistical characteristics of the wave data (Ray and Beckley, 2003), such

as a more physically realistic 1-D probability density function. At this writing, however, the full

dataset has not been retracked, so only the MGDR-B data are used here. For the buoy-altimeter

statistical comparisons below, the TOPEX data for part of 1997–1999 (repeat cycles 160–236) are

not used because those wave data are known to have drifted markedly (e.g., Queffeulou, 2004).

The buoy data used in Section 4 are extracted from two sources: (1) the National Data Buoy

Center (NDBC), part of the U.S. National Oceanic and Atmospheric Administration (Hamilton,

1986; Teng, 2002), (2) the Department of Fisheries and Oceans, Canada. The buoy measurements

from these two sources are not entirely consistent (Durrant et al., 2009; and below).

3 Analysis of Verification Campaign Data

3.1 Example profiles

This section is restricted to analyzing data collected during the verification campaign for Jason-2

(July 2008 to January 2009), as well as a reanalysis of similar data for Jason-1 (late January through

mid-August 2002). During these periods, each lasting about six months, the two satellites—either

the two Jason satellites or Jason-1 with TOPEX/Poseidon—flew in tandem formation along the

same ground track. (Here ‘tandem’ is in the sense of a tandem bicycle, one immediately behind

the other; usage of the term within the altimeter community is inconsistent.)

The general characteristics of the Hs data can be seen in Figure 1 for a partial track about

6000 km long across the middle Pacific Ocean. There is considerable fine structure apparent in

this profile, with a rich spectrum of features including a sharp front near time −500 s. A high-
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frequency noise envelope of order 10 cm is apparent. The two profiles from the two altimeters are

very consistent, and only very close examination reveals small differences, mostly at short scales of

about 20 s or shorter. Differencing the two Hs profiles (lower panel) shows no evident broad-scale

differences; the RMS difference is 18 cm.

The data shown have undergone fairly standard tests for data quality (see GDR Handbook),

including tests of various instrument hardware flags, quality flags for the radiometer brightness

temperatures, rain flags, and preset land-mask checks. Data editing is otherwise fairly loose: mean

1-Hz data values must be formed from at least four 20-Hz measurements; the standard deviation of

the 20-Hz Hs data may not exceed 1.5 m; the backscatter coefficient σ0 must fall in the range 6–27

dB. The data gap in Figure 1 near time −160 s is a result of the rain-flag check, without which

there would be a small cluster of outliers present with errors reaching about one meter.

The data in Figure 1 were obtained at the primary Ku-band frequency. Figure 2 shows corre-

sponding data at C-band. As is well known (e.g., Thibaut et al., 2004), the C-band altimetric wave

data are considerably noisier; the RMS difference in this case between Jason-1 and Jason-2 is 44

cm. For the remainder of this paper, only the more precise Ku-band data will be considered.

Figure 3 shows another Hs profile from the Jason-2 verification period, which is of interest

because it highlights the relationship between outliers in Hs and “blooms” (the term was invented

by the late George Hayne) of σ0, the normalized backscatter coefficient. These blooms are regions

of abnormally enhanced radar cross-section, and in most instances appear to be over regions of

very light winds (Mitchum et al., 2004). Waveform tracking algorithms built on the standard

rough-surface scattering model tend to break down when applied to these blooms, leading to errors

in estimated sea-surface heights and wave heights. In Figure 3 the bloom near 26◦S is seen to

be associated with large Hs outliers in both Jason-1 and Jason-2. A properly designed edit on
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σ0, built perhaps on detecting localized along-track peaks, might possibly handle many of these

cases, but we have not attempted it. Most cases also escape detection by testing on the variance of

the 20-Hz data, which tends to be only slightly inflated inside these blooms, and generally within

our standard 1.5-m test. We have instead found that application of a median filter, of about 7

1-Hz samples full-width, removes many of these cases and also profitably reduces some of the very

short-scale noise evident in the Hs data. Note that, in our experience, TOPEX Hs data are far

less affected by σ0 blooms—see Figure 3 of Ray and Beckley (2003) which shows an example from

the Jason-1 verification campaign, for the same ground-track as in Figure 3 and with a σ0 bloom

in very nearly the same location.

A somewhat analogous problem that typically arises over regions displaying moderate to large

σ0 concerns the multiple appearance of wave heights set precisely to zero. Figure 4a shows an

example for a Jason-2 pass over the Mediterranean Sea. For most of this pass σ0 is in the range

12–16 dB, normal to moderately high, the latter presumably indicating reflection off a calm sea.

According to the OSTM/Jason-2 User Handbook (2009), zero Hs values can be valid data, but in

this case they appear to be invalid, and using these data to smooth along track would be inadvisable.

Thibaut et al. (2004) state that such zeroes arise from waves estimated as negative but truncated

to zero. Aside from deleting such data entirely, which would tend to limit severely the data returns

in some regions such as the Mediterranean, it is not always clear how best to handle such problems.

For the purposes at hand, our approach is simply to delete all data with Hs = 0 and leave intact

the neighboring data; such a course at least avoids skewing any statistical distributions near zero

wave height.

Thibaut et al. (2004) present Hs histograms for Jason-1 with a large spike at zero, implying a

fairly significant number of these zero values. For the period of the verification campaign we find
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0.56% of the Jason-2 data and 0.39% of the Jason-1 data are exactly zero. There is a pronounced

geographical bias, with most zero data occurring in regions tending to have fairly low wave height:

shallow or enclosed seas as well as the Gulf of Mexico, the Caribbean, the South China Sea, and

the Indonesian seas, extending somewhat into the Coral and Philippine Seas. By comparison, the

TOPEX altimeter data appeared far less affected. Figure 4b,c shows Hs along the same Pass 44,

for Jason-1 cycle 16 and TOPEX cycle 359, both collected during the Jason-1 verification phase.

Although there are a few obvious outliers in TOPEX near the coast of Sicily, the data otherwise

appear quite satisfactory, whereas the Jason-1 profile is considerably corrupted, and in a manner

similar to that shown in the top panel.

3.2 Global statistics

Table 1 lists wave height statistics derived from 1-Hz along-track measurements during both the

Jason-1 and Jason-2 verification campaigns. The data are global, but somewhat over-weighted

toward higher latitudes owing to the pattern of the satellite ground-tracks (with turning latitudes

at 66◦). The statistics for the two campaigns must also be expected to differ somewhat owing to

different seasons of observation.

The mean wave heights for Jason-1 and Jason-2 are very close, differing only by 1.2 cm (in good

agreement with that reported by Ablain et al., 2010). The higher moments of the Hs distributions

are also close. The Jason-1 and TOPEX wave heights are slightly less consistent.

These aspects are brought out more clearly by the observed joint probability densities shown

in Figure 5. The Jason data are very consistent, with all density contours centered almost exactly

on the unit slope. In contrast there is a small tendency for TOPEX wave heights to be slightly

higher than Jason-1, which was also the case reported earlier based on using Jason-1 IGDR data
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with a different retracking algorithm (Ray and Beckley, 2003). The left panel also shows a subtle

bowing of contours around 3 and 6m, which arises from an imperfection in the TOPEX density

function—a dearth of waves at 2.9 m and an apparent shift of 6-m waves toward higher elevations

(Figure 4 of Ray and Beckley, 2003; also Quartly, 2000); both imperfections can be corrected by

retracking.

Note that the data used to construct these figures, unlike the data used elsewhere in this

section and below, have not been subjected to median smoothing. If median filtering is applied,

the contours grow much tighter together, reflecting suppression of high-frequency noise. For the

data of Figure 5 the RMS differences between satellites are (left panel) 22 cm and (right panel)

21 cm, while median filtering reduces these differences (as in Table 1) to 11.5 cm and 12.1 cm,

respectively.

A linear fit to the joint Jason data, based on Figure 5, would be almost precisely unity, and

an explicit regression calculation confirms this to 4 significant figures. However, the TOPEX and

Jason-1 density clearly peaks off the diagonal; the crest appears fairly linear except very near the

origin.

To determine a linear fit to the joint TOPEX and Jason-1 density function, one must account

for errors in both variables (e.g., Madansky, 1959), which classical regression methods do not.

For the case at hand, a method treating each variable symmetrically is appropriate, and we use

orthogonal regression (e.g., Isobe et al., 1990), which minimizes the sum of squares of the orthogonal

distances from the data points to the fitted line. Note, however, that the Hs differences described

in Table 1 show an exceedingly large kurtosis, or a very long tail presumably reflecting the presence

of some large outliers. So before computing the linear regression we have employed a 1% trimming

(Everitt, 2002) of the differences, which reduces the kurtosis to near zero. The resulting estimated
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linear relationship is: slope β1 = 1.017, intercept β0 = 2.7 cm, with standard errors smaller than

the quoted precision. (The value of β1 given in the figure is without median filtering.) This slope

is significantly smaller than the 1.030 quoted by Ray and Beckley (2003), but there are several

differences in the input data: the use of Jason-1 GDR-C rather than IGDR, the existence of

roughly 10% more data than before, and somewhat different outlier detection schemes.

The main point of the present section is that the two 6-month verification campaigns show

(1) that the two Jason wave-height datasets are very consistent and can safely be used to form

a continuous time series across the two missions, and (2) that the TOPEX wave heights are

approximately 2% larger than Jason heights, which should be accounted for before the datasets are

combined. These results, of course, strictly apply only to the two 6-month periods of data. The

next section uses buoy data to extend the analyses over the whole period of available altimeter

data.

4 Buoy Comparisons

Comparison of buoy measurements of significant wave height to altimeter measurements from

nearby ground tracks has long been a standard approach to altimeter calibration (Lefèvre and

Cotton, 2001, and references therein). Our previous efforts with Jason-1 data (Ray and Beckley,

2003) were based on only six months of altimetry, and subsequently published calibrations are

presumably more reliable since based on considerably more data. In the following Section 4.1, data

from all three subject altimeters are reanalyzed. The results are bulk calibration coefficients for

each entire mission. Section 4.3 takes a second approach in order to monitor possible changes in

the measured Hs data over time by employing a technique devised by Mitchum (2000) to monitor

drift in altimetric sea-level data.
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The use of buoys for this task necessarily has certain limitations. With most buoys located fairly

near the North American continent, geographical limitations imply that the statistical distribution

of observed waves is not completely representative of the global environment. This implies that

regression results, which can be sensitive to the statistical distribution of the data (especially if

the ratio of height measurement error to height standard deviation is moderately large), may be

similarly limited and not strictly applicable to the global ocean. A related aspect is the lack of large

Hs data in the buoy data, such as those more routinely observed in the Southern Ocean. Finally,

the use of buoy data can be impacted by their own systematic errors (Durrant et al., 2009). All

these limitations should be kept in mind in the following discussion.

All deep-ocean buoys from the NDBC and Canadian on-line archives were used in the following

analyses except for buoys deemed too close to land and therefore potentially subject to either land

contamination in the altimeter beam pattern or to large Hs spatial gradients from rapid bathymetric

gradients. A total of 44 buoys were used, although the number returning data at any given time

was always fewer. Eight of the buoys are from the Canadian network. Buoy locations are shown

in Figure 6.

4.1 Buoy-altimeter statistics

As in many previous studies (e.g., Dobson et al., 1987; Lefèvre and Cotton, 2001; Zieger et al., 2009;

Durrant et al., 2009), we have constructed a dataset of joint altimeter and buoy near-simultaneous

measurements of Hs. Compiling such near-collocated data requires acceptance criteria for temporal

and spatial separation. Time is of little concern, since hourly buoy data ensures separation times

no longer than 30 minutes and interpolation in time further reduces error. The criteria for spatial

separation is often based on wave-correlation statistics derived by Monaldo (1988) and generally
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restricted to distances less than 50 km, or sometimes 100 km.

We experimented with relaxing the maximum distance between buoy and altimeter track to 150

km. For each buoy and for each of its neighboring tracks falling within 150 km, the RMS difference

for all valid passes of the Jason-1 altimeter was computed. These RMS values are plotted in Figure

7 as a function of distance between the track and buoy. Although many buoy-track pairs have RMS

less than 30 cm even at large distances, the figure does show a general inflation of larger RMS with

distance. Based on this figure we gauged 70 km as the maximum distance we would tolerate. Note

that this does eliminate some buoys completely from our analysis because they are more than 70

km from all groundtracks (e.g., buoys 41002, 41048, 44011, 46006 are eliminated).

It may be of interest (and mild amusement) to examine the largest discrepancy (124 cm) shown

in Figure 7. This arose from buoy 46072, whose location is shown along with its four closest

altimeter tracks in Figure 8. The anomalous discrepancy is with Track 126, and one notices the

closest point along that track falls on the opposite side of the Aleutian Island chain! It is thus not

surprising to see large disagreement between this track and the buoy. (Our criterion of 70 km does

eliminate this pair.)

Figure 9 shows a scatter plot of 3452 pairs of altimeter-buoy Hs measurements for Jason-2, based

on 29 NDBC buoys, with RMS difference 22.9 cm and Pearson correlation coefficient 0.983. The

agreement must be judged very good, but one can detect even by eye a slight systematic difference

in the highest wave heights, with the altimeter yielding slightly smaller heights. Altimeters TOPEX

and Jason-1 yield similar diagrams.

Table 2 summarizes statistics for all three altimeters and the corresponding coefficients of a

linear fit to the data. If one wishes to adjust the altimeter data to agree more closely with the

11



buoy data, then the adjusted data would be given by

Hcorrected

s
= β1 Hs + β0, (1)

using coefficients from this table.

It is by now widely appreciated within the community that these kinds of linear fits to the

buoy-altimeter data should not be done with classical linear regression methods (i.e., ordinary least

squares or some robust variation), which assume no measurement error in the independent variable

and generally yield slopes biased small (Madansky, 1959). As in Section 3 orthogonal regression has

here been used to determine the β1, β0 coefficients. In fact, the appropriate fitting method depends

on the relative magnitudes of the measurement errors, or at least their ratio (Cheng and Van Ness,

1999), and orthogonal regression is warranted only if this ratio is near unity, thus treating both

variables symmetrically—an approach that appears more justified for the altimeter-altimeter fits

of Section 3. Nonetheless, several studies employing triple-collocation analyses (Caires and Sterl,

2003; Abdalla et al., 2011) have concluded that the buoy and altimeter measurement errors are

roughly comparable. Based on this evidence orthogonal regression is a reasonable approach. Zieger

et al. (2009) employ a technique sometimes called reduced major axis (RMA) regression, which

minimizes the triangular areas formed by vertical and horizontal projections from each point to the

line. Isobe et al. (1990) usefully tabulates formulae for these various kinds of regressions. For the

Jason-2 data RMA yields a slope β1 = 1.0519 versus 1.0528 for orthogonal regression, a difference

of little consequence and less than the standard error (Table 2).

The coefficients for TOPEX in Table 2 are consistent with our earlier estimates (Ray and

Beckley, 2003) within their error limits (which were previously ±0.014 on β1, not 0.0014 as stated
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by Queffeulou, 2004). Our new results for Jason-1 are not consistent with our previous results,

but, as noted above, these were for IGDR data (and for a very small sample size of 368).

The effects of linear adjustment of the altimeter data, as well as insight into the extremes which

are important in climatological studies, may be better assessed with quantile (or Q-Q) plots (e.g.,

Wilk and Gnanadesikan, 1968), as shown in Figure 10. These diagrams are based on the same

collocated dataset used for the regressions. The agreement between buoys and altimetry at all

percentiles is excellent after adjustment. Close examination even reveals better agreement at the

first percentile for the very smallest waves.

4.2 Buoy inconsistencies

So far the discussion has ignored the last row of Table 2, which represents buoy-altimeter statistics

derived from using 8 buoys of the Canadian network (3 in the Pacific, 5 in the Atlantic). Unlike the

NDBC buoys, the Canadian buoys tend to observe wave heights smaller, rather than larger, than

the altimetry, and the resulting regression yields a slope less than unity. Systematic differences

between national buoy networks were first reported, to our knowledge, by Challenor and Cotton

(2003) who also noted systematic differences with British and Japanese buoy networks. Durrant

et al. (2009) recently concluded that Canadian buoys were underestimating wave heights relative

to the NDBC buoys by about 10%, and our slope estimates shown in Table 2 for Jason-1 confirm

their result.

Figure 11 attempts to shed further light on these systematic differences by showing estimates of

the orthogonal regression coefficient β1 derived from each individual buoy over the Jason-1 mission

(2002 through 2008). All Canadian-based coefficients fall below all NDBC-based ones. Within

the NDBC network, however, there is considerable scatter, but the figure suggests no convincing
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dependence on either the mean wave height at a given buoy or its standard deviation. Nor have

we discovered any dependence on average wave period (reported by the buoys) or on platform

size (to the extent we have been able to find this information); see also the discussion by Durrant

et al. (2009). Note that Gemmrich et al. (2011) found several discontinuities at decimeter size in

northeast Pacific buoy time series, including two jumps exceeding 40 cm in the Canadian 46004 and

46184 buoys, but all the Canadian points in Figure 11 are nonetheless tightly clustered together.

These inconsistency problems among different in situ measurements are becoming widely ap-

preciated, and a recent report has identified the critical need to assess and improve the quality of

observations from the present networks of moored buoys (Swail et al., 2010). The recent work of

Gemmrich et al. (2011) should further emphasize this need.

4.3 Buoy-altimeter differences in time

This section analyzes the buoy-altimeter wave-height discrepancies as a function of time in order

to assess system stability and to detect drift errors or other temporally dependent errors. The

approach is to apply the methodology devised by Mitchum (1998, 2000) to use tide-gauge data to

monitor drift and other errors in altimetric sea-level measurements. The application to significant

wave height is somewhat simpler, because unlike the sea-level case we can here use absolute heights

as opposed to relative heights.

For details of the technique readers should consult Mitchum’s original papers. The compilation

of the altimeter-buoy collocation data differs somewhat from that used above. Briefly, at each buoy,

∆Hs time series are formed with altimeter measurements from nearby satellite tracks. Which point

along any particular track is adopted for the comparisons is determined by minimizing the difference

variance or maximizing altimeter-buoy correlations. Mitchum also allows the gauge (or buoy) data
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to be shifted in time to allow for propagation effects, again by minimizing variances, and even

though our software has this capability it seems less relevant to H2 data than to sea level data so

we did not allow any temporal shifting. Each buoy then yields several difference time series, one for

each nearby track. All altimeter-buoy differences are then averaged for each satellite repeat cycle,

yielding a final, single difference time series. The time series, so formed, are shown in Figure 12.

Several aspects of Figure 12 (top panel) merit discussion. None of the difference time series for

the three satellites is centered about zero. Except for a brief two-year span of TOPEX all series

imply that the mean altimeter wave heights are smaller than the mean buoy heights, in agreement

with the previous section. The diagram for TOPEX clearly shows the period beginning in 1997

where Hs began drifting markedly, increasing by more than 30 cm in two years (e.g., Queffeulou,

2004). The sharp discontinuity in February 1999 was the result of switching to a second redundant

altimeter aboard TOPEX. Neither Jason-1 nor Jason-2 shows signs of such anomalous drifting.

All of the series show evidence of an annual cycle. This is to be expected when, for example, the

buoy and altimeter wave data differ by a scaling parameter, as our previous discussion suggested.

Because the buoy data are limited to the northern hemisphere, an annual cycle should be apparent

in the mean, so any scaling error with altimetry would generate a similar signal in the mean

differences.

Figure 12 (bottom) shows the same data after adjusting the altimeter data by the β1, β0 linear

corrections of Table 2. (A specially developed adjustment was obviously used for the anomalous

1997–1999 TOPEX data. The adjustment was taken as a simple linear function of time, which

appears adequate to the task.) All three series are now seen to be more closely centered about zero

with reduced evidence of annual oscillations. There is, however, a suggestion of a small change

over time in the Jason-1 data. In fact, if some of the fine detail of Figure 12 is reliable, Jason-
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1 actually experienced a small jump around the beginning of 2005. It is not clear at this stage

whether such fine detail is reliable—there are other small jumps at other times, and some of these

must undoubtedly arise from changes (dropouts or additions) in the buoy network. In fact, five

of our adopted buoys first came online in 2005, so to test sensitivity to this we removed these five

buoys and regenerated Figure 12. The small jump in early 2005 remained. Of the various subtle

offsets in Figure 12, the Jason-1 offset in 2005 does appear the most exceptional.

Fitting a straight line to all adjusted time series in Figure 12 gives the following drift estimates:

TOPEX : 0.16 ± 0.10 cm yr−1

Jason-1 : 0.52 ± 0.17

Jason-2 : 0.39 ± 0.62

Combined 0.06 ± 0.04

The drift in Jason-2 is not statistically significant. (If the TOPEX time series is split into its

separate Sides A and B—pre 1997 and post 1999—the trends are 0.90 ± 0.31 and −0.66 ± 0.50

cm yr−1, respectively. The Side-A drift is clearly evident in Figure 12; the Side-B drift is hardly

significant.) The drift in the combined 20-year time series is very small, less than 1 mm per year.

Notwithstanding these small residual drifts or offsets, and the many possible errors in the buoy

data against which the calibration is being done, it seems safe to conclude that Jason-2 data are

of the same high quality as Jason-1, and that no large anomalous drifts of the sort that TOPEX

experienced in 1997 has been affecting either the Jason-1 or Jason-2 data.

Application of Mitchum’s technique to the TOPEX and Jason-1 data, after the satellites had

each been moved into their final interleaved orbits, results in the difference time series shown in

Figure 13. After adjustment (bottom panel) the data appear comparable in quality to the results

of Figure 12.
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5 Discussion

Are the various calibration analyses presented above consistent? Surely the most robust results

presented here are from the two verification campaigns, since these are based on more than 8

million measurements each and must be more reliable than either cross-over comparisons with

other satellites or buoy comparisons. These analyses suggest that TOPEX significant wave heights

are 1.7% larger on average than Jason-1 wave heights, whereas Jason-1 and Jason-2 wave heights

are on average essentially equivalent. The only qualification to these statements is that they strictly

describe only the two six-month verification periods.

Comparisons against the NDBC buoy data (Table 2) suggest that, within quoted error bars, all

three satellites report wave heights roughly comparable: between 5 and 6% smaller than the buoys.

The β1 scaling factors specifically suggest TOPEX and Jason-1 heights should be in the ratio

1.063/1.056, or only 0.6% difference. However, these buoy results apply to the entire missions. If

the small jump seen in Figure 12 at the start of 2005 is real, then we cannot expect exact agreement

with the verification-campaign ratio. If the Jason-1 data are separated into two periods before and

after December 2004, orthogonal regression against the buoy data gives a slope β1 = 1.073 for the

early data, and 1.059 for the later data. Then the proper ratio with TOPEX is 1.073/1.056 =

1.016, in near-perfect agreement with the direct ratio of 1.017.

Similarly, the regression slope for the late data (1.059) is very close, within 1%, for the Jason-2

value of 1.053, and certainly within their uncertainties (Table 2).

Thus, these several independent strands of the calibration problem—buoy comparisons, 6-month

satellite overlaps, and the Figure 12 time series—lead to a fairly consistent picture of the satellite-

derived wave data.

There are, however, several topics left hanging. One of the most important is whether our
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results can lend support to climate studies such as the recent work of Young et al. (2011) who

used altimeter data to determine trends in global extreme wave heights (specifically in the 90th

and 99th percentile waves). To some extent our results do support such studies, and diagrams

such as Figure 10 confirm that the altimetry can properly map the 99th percentile at the available

buoys. However, the 99th percentile in this collocation dataset, consisting of wave samples only

at the infrequent times of satellite overpasses and limited severely in geographic extent, is unlikely

to be representative of true 99th percentile global waves. Moreover, our drift results (Figure 12)

apply to a great extent to the observed mean wave heights. It is possible that the tails of the wave-

height distributions behave differently. We have attempted to address this issue by partitioning the

collocation data of Section 4.1 into individual years, computing annual 99th percentile wave heights

for both altimeter and buoy data, and plotting their differences in time. The result is Figure 14.

(The advantage of using yearly intervals for this is that is avoids complications from the seasonal

cycle.) Unfortunately, the error bars in Figure 14 are too large to constrain trends with any useful

precision. More work is needed to confirm altimeter measurements of the largest waves.

A second topic of concern more directly addresses the main topic at hand: what are the possible

effects on our analysis of changes or malfunctions in the buoy network, in the buoy instrumentation,

and/or in the associated data processing algorithms? Errors—primarily jumps in Hs—of the sort

recently documented by Gemmrich et al. (2011), must at some level lead to corresponding errors in

our calibration analyses. Some presumably account for the scatter in individual buoy β1 estimates

(Figure 11). Also, some of the small jumps evident in Figure 12 may originate with the buoy data.

Gemmrich et al. suggest a possible approach to addressing and correcting some of these problems,

but we are hardly here in a position to do so, since a complete history of the network seems a

required starting point. Accepting such errors as they now exist surely does not invalidate our
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results. Even the current buoy data are sufficiently robust to maintain the noise envelope in Figure

12 to generally within ±10 cm and to detect easily any anomalies such as the 1997–1998 TOPEX

drift.

Finally, it is clear that our calibration results are dependent on adoption of the NDBC network

as the standard. Calibration against, for example, the Canadian DFO network, yields very different

results. According to Challenor and Cotton (2003), other national (or international) networks would

also yield disparate calibrations. Again we are in no position to solve such issues, except to lend

our support to the views of Swail et al. (2010) that better consistency and accuracy of in situ ocean

wave measurements is essential, not only for these sorts of calibration exercises, but for climate

science in general.
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Table 1: Global Hs statistics during verification periods
Mean Median Mode Std. dev. Skewness Kurtosis
(cm) (cm) (cm) (cm)

Jason-1 265 234 182 133 1.3 2.14
Jason-2 266 236 184 133 1.3 2.15
J1 minus J2 −1 −1 −1 12 0.7 > 200

Topex 273 237 190 135 1.2 2.03
Jason-1 271 243 190 132 1.2 1.87
Topex minus J1 2 2 2 11 3.4 > 200

From over 8 million 1-Hz measurements along satellite ground-track during two verification campaigns, after

along-track median filtering.

Table 2: Altimeter–buoy Hs differences
N Mean RMS Linear relationship ρ

(cm) (cm) β0 β1

Topex 5652 −3.8 24 −7.8 ± 0.8 1.056 ± 0.005 0.983
Jason-1 7462 −5.4 24 −7.7 ± 0.8 1.063 ± 0.005 0.982
Jason-2 3452 −2.2 23 −8.7 ± 1.1 1.053 ± 0.007 0.983
Jason-1 * 2543 13.7 29 −3.2 ± 1.6 0.960 ± 0.008 0.975

* Final line employs Canadian buoys; all others are NDBC.

The mean refers to (altimeter minus buoy). The linear structural relationship corresponds to Buoy =

β1× Altimeter + β0 (in cm), assuming equal error variances. N is number of collocated altimeter-buoy

measurement pairs. Uncertainties representing one standard error follow from large-sample formulae given

by Isobe et al. (1990).
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FIGURES

Figure 1: Significant wave height measurements by Jason-1 and Jason-2 Ku-band satellite altime-
ters (with Jason-1 data offset by 1.5 m), for a partial track across the Pacific Ocean (see map inset),
collected during a time when both altimeters were flying in tandem formation separated by only
55 s. Time on horizontal axis is relative to each satellite’s equatorial crossing time, which occurred
at 27 October 2008 09:21:25 and 09:22:21 UT, respectively. Data are from pass 210, Jason-1 cycle
250 and Jason-2 cycle 11. Lighter dashed line shows the standard deviation of the 20-Hz wave
heights for Jason-2, which is nearly a constant 50 cm. Bottom panel shows the Hs differences
between the two arcs, with a mean of −2 cm and RMS of 18 cm.
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Figure 2: As in Figure 1, but for the C-band wave heights. The noise level is considerably greater.
The RMS difference between the two arcs is 44 cm.
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Figure 3: Comparison of near-simultaneous measurements by the Jason-1 and Jason-2 altimeters
of significant wave height Hs and normalized backscatter coefficient σ0, along a track crossing the
eastern Indian Ocean and the South China Sea (see map inset). Data are from pass 229, Jason-2
cycle 8 and Jason-1 cycle 247, collected on 28 September 2008.
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Figure 4: (a) Jason-2 Hs data crossing the Mediterranean Sea and displaying anomalous wave
heights of precisely zero. Such problems appear to occur when the backscatter coefficient σ0 is
moderate to large, presumably over very calm seas. (b) and (c) show similar (simultaneous) passes
for Jason-1 and TOPEX. It appears TOPEX wave data are less sensitive to high backscatter. The
coarser digitization level (10 cm) used for TOPEX is evident.
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Figure 5: Observed joint density function of Hs measurements during (left) the Jason-1 verification
campaign of 2002 and (right) the Jason-2 verification campaign of 2008. Left diagram is based on
Jason-1 repeat cycles 3–18 and TOPEX cycles 346–363 (excluding 361); right diagram is based on
Jason-2 cycles 1–20 and Jason-1 cycles 240–259. Contours are roughly logarithmic: 0.0003, 0.001,
0.003, 0.01, 0.03, 0.1, 0.3, 1.0 m−2. These data have not been subjected to median filtering, which
tends to tighten the contours considerably. β1 is estimated slope from an orthogonal regression.
There is a small tendency for TOPEX waves to be slightly larger than Jason-1 waves, while Jason-1
and Jason-2 are very consistent.
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Figure 6: Locations of buoy wave measurements. Canadian buoys are denoted by open circles; U. S.
buoys by filled circles. Buoy labels follow the World Meteorological Organization’s standard name
conventions. All buoys are in deep (> 700 m) water, save 42036 which sits on the Florida Shelf
in about 50 m of water. Some of the buoys (e.g., 41040–41048 and 42056–42059) were established
only recently, since 2005 or later.

Figure 7: RMS wave-height differences (cm) between pairs of buoys and their closest points along
particular altimeter tracks, based on 2002–2008 Jason-1 data. Horizontal axis denotes the distance
between the buoy and the altimeter track. Each plotted point represents the RMS difference
between from 40 to 240 pairs of Hs measurements. As should be expected, a general inflation in
RMS occurs as the distance between buoy and track grows.
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Figure 8: Location of NDBC buoy 46072 in the North Pacific and its four closest altimeter tracks.
The largest outlier in Figure 7 corresponds to the RMS difference in Hs between this buoy and
track 126, for which the closest point is on the opposite side of the Aleutians.
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Figure 9: Scatter plot of 3452 pairs of collocated buoy and altimeter Hs measurements for the
Jason-2 satellite, from July 2008 through June 2011. All buoy data are from the NDBC archives.
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Figure 10: Quantile (or Q-Q) plots showing 99 Hs joint percentiles, from the first to 99th, for
collocated buoy and altimeter observations. Top panels show original data, bottom show after
adjustment using the NDBC-based linear coefficients of Table 2.
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Figure 11: Estimates of the regression slope coefficient β1 derived at individual buoys by comparing
against Jason-1 altimetric Hs measurements. Filled circles are NDBC buoys; open circles are
Canadian DFO buoys. No obvious dependence of β1 is observed as a function of either mean wave
height (left panel) or wave standard deviation (right panel). The slope coefficient for every DFO
buoy is less than the coefficient for every NDBC buoy.
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Figure 12: Mean altimeter minus buoy significant wave height differences, for each repeat cycle
(i.e. every 9.9 days) for the TOPEX (blue), Jason-1 (red) and Jason-2 (magenta) satellites. Top
panel based on original GDR data (see text for which GDR versions); bottom panel shows mean
differences after each altimeter height has been adjusted according to the linear coefficients of
Table 2 (the anomalous TOPEX data of 1997–1999 were handled specially). Adjustment noticeably
reduces the bias and annual oscillations seen in top panel.
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Figure 13: As in Figure 12, but after each satellite had been moved into its final interleaved orbit.

Figure 14: Annual differences (in cm) between the 99th percentile altimeter and buoy Hs data,
based on the collocation datasets used in Section 4.1. Error bars are computed by a bootstrap
resampling algorithm from each year’s data. The error bars are too large to yield useful constraints
on possible drift in altimeter measurements of large waves.
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