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Motivation

• Success of output error estimation and 
adaptive mesh refinement in goal-
oriented simulations

- Automatic and user-independent 
production databases

• Challenges of simulation-based design

- High CFD expertise

‣ Reliable mesh generation, long setup time

‣ High cost due to repeated evaluation of 
objectives on fine, hand-crafted meshes 
or high uncertainty due to inappropriate 
meshes
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Objectives
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Adaptive discretization
 of  aerodynamic shape optimization problems

Accuracy
• Improve design confidence

- Direct control over objective 
function discretization error

Automation
• Reduce level of CFD expertise

- Eliminate the requirement to hand-craft  
general meshes appropriate for all 
candidate designs

- Shorten problem setup time

• Reduce cost by systematically increasing the depth of refinement as the 
design improves

- Progressive optimization strategy
- Investigate challenges of dynamic error control

Progress toward improved efficiency



Previous Work - Infrastructure

1. Embedded-boundary Cartesian mesh method
• Arbitrarily complex domains, efficient and accurate
• Irregularity confined to body intersecting cells

3. Aerodynamic shape optimization
• Gradient computation
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2. Incremental strategy for h-refinement  

Adjoints

4. Output error estimates
• Adaptive mesh refinement

Modify Geometry

Mesh

Flow Solve

Compute Gradient

Optimize

Error Maps

See AIAA Paper 
2013-0543 
(Smith et al.) for 
applications



• Shape optimization

Optimization: Discrete Formulation

Modify Geometry

Mesh & Flow Solve

Evaluate Objective

Compute Gradient

Optimize
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subject to

• Steady Euler equations
• Gradient-based optimization

- BFGS
- SNOPT

M = f [T(X)]

R (X,Q) = 0 8X 2 ⌦

min
X

J (X,Q)

dJ

dX



Role of Adjoints
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Role of Adjoints
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M∞=1.1, α=-25° 
J = CN + 0.2CA

• Control problem
-Optimal shape design: adjust design variables to control the flow and 
improve performance

-Error analysis: adjust mesh refinement to control discretization errors

Addition of mass 
increases functional

Addition of mass 
decreases functional

Not sensitive

Density Adjoint

Flow Solution



Linearization Details
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• Objective function gradient
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• Mesh sensitivities: infinitesimal perturbations are confined to cutcells

@M

@T
= 0

@M

@T
6= 0

• Triangle to cut-cell connectivity established on-the-fly as the design 
evolves: triangulation connectivity and topology allowed to change 



Error-Estimate Details
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• Given a user specified tolerance TOL, refine until E < TOL 

E =
N�

k=0

ek• Net functional error 

• Bound on remaining error in each 
coarse cell k   

Log10

• In practice, specify number of cycles, mesh-growth factor per cycle and 
cell-budget

Remaining Error

J(Qh) ⇡ J(QH
h )� ( H

h )TR(QH
h )� ( h �  H

h )TR(QH
h )

ek =
5X

i=1

���( Q �  L)
T R(QL)

���
i



Basic Framework Integration

Adaptive Meshing 
Flow & Adjoint 
Analysis (J , )

Optimizer

Geometry
(T, @T/@Xi)

Gradient
@J
@M

,
@R

@M
,
@M

@T

• Integration into existing, fixed mesh, 
optimization framework

- Build sequence of adapted meshes
- Pass values of objective and gradient 

from finest mesh to optimizer

Modify Geometry

Initial Mesh

Evaluate Objective

Compute Gradient

Optimize

Adapt & Solve
Adapt & Solve

Adapt & Solve

• In each design iteration, perform fixed 
(user specified) number of adaptations

- Fixed depth strategy
- Very robust and precise control over 

computational resources
- May be inefficient

• Multilevel parallelism
- Mesh sensitivities in 

stand-alone code



Basic Example

• Find angle of attack to minimize 
drag coefficient

- Transonic flow, M∞ = 0.8

- NACA 0012 airfoil

- J = Cd, X = α
- Initial design: αi = 2°

• Demonstrate numerical optimization with adaptive meshing 

• Study mesh convergence of 
objective function, its error 
estimates and gradients
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Mesh Setup

• Fixed-depth strategy

- 8 adaptive refinements at 
each design iteration

- Initial mesh ~1,700 cells

- Final mesh ~25,000 cells

• Demonstrate numerical optimization with adaptive meshing 

• Study mesh convergence of 
objective function, its error 
estimates and gradients

Near-field view of initial mesh 
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Optimization Convergence History

• Optimizer minimizes drag in 7 iterations
• Gradient reduced by almost 5 orders of magnitude
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• Angle of attack history: 2°, 1°, -0.5°, 0.01°, -0.001°
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Final Meshes After 8 Adaptations

Design 1
α=2º

Design 2
α=1º

Design 3
α=-0.53º

Design 5
α=-0.001º

~25,000 cells

14



Output Mesh Convergence

• Drag and gradient are well converged on meshes with ~10,000 cells

• Sign predicted correctly even on the coarsest mesh

Mesh convergence of drag and gradient at selected design iterations
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Convergence of Error Estimates

• Key parameter to safeguard oversolving and transfer optimization 
to next mesh
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Mesh Efficiency of Fixed-Depth Strategy 
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• Angle of attack history: 2°, 1°, -0.5°, 0.01°, -0.001°



Objectives in Quadratic Form
• Frequently use objective functions that contain quadratic terms

- Penalty terms, e.g. ( CL - T )2

- Inverse design, e.g. 

• As working variable approaches its target, adjoint variables vanish
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J =
�

(P � Ptarget)2dS

�
⇥R
⇥Q

⇥T

� =
⇥J
⇥Q

T @J
@Q

= 2(P � T )
@P

@Q

0

• Consequences include vanishing error estimates as optimality is 
approached, which effectively terminate adaptation, as well as 
strongly non-monotone error convergence



Quadratic Example

• Find angle of attack to match a target lift coefficient

- Transonic flow, M∞ = 0.8

- NACA 0012 airfoil

- J = (Cl - 0.55)2, X = α
- Initial design: αi = 0°

- Final design: αf ≈ 2°
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• Fixed-depth strategy

- 9 adaptive refinements at each design iteration

- Initial mesh ~1,700 cells; final mesh ~35,000 cells



Convergence Histories

• Optimizer matches lift in 6 iterations

• Error convergence satisfactory in early design iterations, but 
becomes non-monotone and errors vanish at optimality  
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“Companion” Functional 

• Use a companion functional to eliminate numerical artifacts 
for quadratic objectives

- Objective function working variable is used for error 
control and drives adaptation

- Objective function drives design 

• Possible to implement at no additional cost

- Arrange computations to use error estimates from the 
penultimate adaptation cycle and solve objective 
function adjoint only on the finest mesh
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Quadratic Example

• Find angle of attack to match a target lift coefficient

- J = (Cl - 0.55)2, X = α
- JEC = Cl, Error Estimate = ε
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• Compute conservative error 
estimate in objective function 

J = ((Cl ± ")� 0.55)2

� = |2(Cl � 0.55)"|+ "2

J  (Cl � 0.55)2 ±�



Quadratic Example
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• Objective function error estimate  
smoothly decreasing in all design 
cycles 

• Eliminated numerical artifact of 
vanishing error estimate near 
optimality 



Sonic-Boom Mitigation

Drive vehicle shape by prescribing quieter near-field signals



Inverse Design Model Problem
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Initial Shape

Target
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• Prescribe a target signature from a known shape and 
verify that the optimization can recover this solution

• 10 design variables that control body radius
• M∞ = 1.5 and α = 0° 



Inverse Design Model Problem
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Problem Setup

• Consider two cases
1. Fixed-depth strategy: 7 adaptation cycles in each design iteration
2. Progressive optimization

• Inverse design formulation: at h/L = 2J =
1

p21

Z
(p� ptarget)

2dS

JEC =
1

p21

Z
(p� p1)2dS• Error control functional:



Inverse Design Model Problem
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Inverse Design Model Problem

28

Initial Shape Final Shape

Fixed-Depth Strategy

7 Adaptations, ~650k cells



Progressive Optimization
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• Minimize number of design iterations performed on finest mesh
• Allow the designs to advance as far as possible on each level



Progressive Optimization
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4 Adaptations, ~130k cells

• Terminated due to design variable bound violation near nose
• Peak-to-peak signal reduced by over a factor of five, smooth aft body



Progressive Optimization
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5 Adaptations, ~230k cells

• Terminated due to design variable bound violation near nose
• Smoother nose shape, finer scales not resolvable on the previous 

mesh



Progressive Optimization
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6 Adaptations, ~350k cells

• Most work performed on this mesh: cost is roughly half of fixed-depth 
example per design iteration

• Target matched to plotting accuracy but tip shape different from target



Sonic-Boom Inverse Design
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7 Adaptations, ~650k cells

• Matched target shape in 12 design iterations 
• Roughly a factor of two faster than fixed-depth strategy
• Mesh largely unchanged, could we re-use the same mesh?



Summary and Future Work
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• Developed framework for gradient-based optimization with 
capability to perform adaptive meshing in each design iteration 

- Promising approach to enhance accuracy, efficiency and 
automation of simulation-based design

• Preliminary investigation of dynamic error control

- Eliminated numerical artifacts in error estimates for 
objective functions in quadratic form

• Future work

- Use of error estimates to limit oversolving

- Transfer of Hessian matrix as the design moves from 
mesh to mesh

- Mesh re-use from nearby designs
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