The DECLIC Research Facility
A Fertile Platform for NASA/CNES Scientific Collaboration

Michael C. Hicks 1, Uday G. Hegde 2, Inseob Hahn 3, Louise L. Strutzenberg 4, Gabriel Pont 5, Bernard Zappoli 5

1 NASA - Glenn Research Center (NASA - GRC)
2 National Center for Space Exploration Research (NCSER)
3 Jet Propulsion Laboratory (JPL)
4 NASA - Marshall Space Flight Center (NASA - MSFC)
5 Centre National d’Etudes Spatiales (CNES)
Presentation Outline

• DECLIC Facility - Hardware / Programmatic Overview

• DECLIC Inserts and their Investigations
 - ALice-like Insert
 … ALI, ALI-R, ALI-R2
 - High Temperature Insert (HTI)
 … HTI Experiment
 … Supercritical Water Mixture Experiment (SCWM) in the HTI-Reflight (HTI-R)
 - Directional Solidification Insert (DSI)
 … DSI, DSI-R

• DECLIC - Future plans
DECLIC Facility Overview
DECLIC Facility

DEvice for the study of Critical Liquids and Crystallization (DECLIC)

- Joint CNES/NASA research program
- Launched with STS-128 (August 2009)
- First operations: October 2009

Experiment locker (EXL), housing the optical bench, light sources and sensors (3 cameras, 2 photodiodes, 3 accelerometers)

Experiment Insert containing the sample cell and the dedicated conditioning and stimulus devices

Size: 200*200*450 mm³

Electronic Locker (ELL) including the power and data handling, precision thermal regulation.
DECLIC Diagnostics (cont)

Longitudinal & transverse observations of sample cell
Direct observation: field of view = \(\varnothing \) 12 mm w/ a resolution 10 \(\mu \text{m} \).

Light transmission measurement and grid shadow for turbidity and index gradient
Light Scattering: small angle or 90° for turbidity measurements
Small field of view (microscopy) 1 mm w/ a resolution of 5 \(\mu \text{m} \)

Interferometry: longitudinal or transverse to the fluid cell; resolution 16 \(\mu \text{m} \); on-orbit adjustment w/ piezo-actuator
Cameras: 2 High resolution (HR) and 1 high speed (HS) cameras
Light Sources: 2 mW He-Ne 633 nm laser with various attenuation filters; several 670 nm LED’s

<table>
<thead>
<tr>
<th>Optical Axis</th>
<th>ALI</th>
<th>HTI</th>
<th>DSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>Interferometry</td>
<td>WF and SF imagery, Grid, transmission,</td>
<td>Transversal imagery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Angle Scattering</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>WF and SF imagery, Grid,</td>
<td>Transversal imagery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmission, LAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td></td>
<td>Interferometry</td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>WF and SF imagery, Grid,</td>
<td>Transversal imagery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmission, Low Angle Scattering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td></td>
<td>WF and SF imagery, Grid, transmission,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Angle Scattering</td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>Interferometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td></td>
<td>WF and SF imagery (HR)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interferometry</td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td></td>
<td>Interferometry</td>
<td>(reference beam)</td>
</tr>
</tbody>
</table>
DECLIC Diagnostics (cont)

DSI Images

Axial Wide Field of View

Axial Small Field of View

Interferometry Wide Field of View

Interferometry Small Field of View
DELCIC Ground Segment

NASA Ground Systems

TDRS

Internet Link

Front-end computer TReK

Archiving System

FTP Server

Web Server

Removable Hard Disks

Web Browser

Laboratories

Internet Link
DECLIC Experiments (current)

- **Fluids** (SF6) close to their near ambient critical point in a dedicated insert (**ALI**)

 PI’s Lab: ICMCB

- **High temperature, and high pressure Critical Fluids** (**H₂O**) in a dedicated insert (**HTI**)

 PI’s Lab: ICMCB

- **Directional Solidification of transparent materials** (succinonitrile alloy) in a dedicated insert (**DSI**)

 PI’s Lab: IM2NP
Alice-like Insert (ALI)

ALI, ALI-R and ALI-R2 Investigations
ALI Experiment - Background

- The ALI ("ALice-like" Insert) is built to study the boiling crisis utilizing properties of fluids near the critical point
 - high stable thermostat
 - two sample cells with SF6 near the critical density
- Interferogram, shadowgraph, heaters, thermometers
- NASA/CNES joint investigation additionally measure
 - thermal diffusivity, heat capacity
- Turbidity (correlation length, compressibility)
- Density in two-phase (coexistence curve)
- **Investigation Team:**
ALI Experiment - Results

- Current ALI cell is at off-criticality
- Crossover Parametric equation-of-state Model (CPM)* fits data reasonably well with off-critical density (1.7%)
- The ALI flight experiments are still in progress onboard ISS (until Apr-2013)

\[I_T = I_0 \exp(-\tau e) \]

ALI-R Experiment – Objectives

- Current ALI cell is at off-critical density.
- Baseline Approach … **no new insert development**
 - bring ALI insert to ground
 - re-fill the current flight cell closer to critical density and re-flight
 - operation 7/2014 - 9/2015
 - no engineering change of DECLIC facility
- Turbidity will be measured more precisely at the critical point.
- Effect of Green-Fisher exponent near singularity will be tested.
- Crossover behavior of the SF$_6$ fluid near the critical point will be studied.
- On-going ground-based R&D
 - development of variable density cell using affordable micro-fluidic techniques.
 - variable density cell may be used for ALI-R
ALL-2 Experiment - Objectives

- Entails development of new hardware (variable density cell w/ new insert) to study critical phenomena utilizing the DECLIC facility
- Precision turbidity measurement
 - Multiple densities + critical density (0.01%)
 - Will provide data 2 orders of magnitude closer to critical point than previous ground experiments
- Critical isotherm measurement & isothermal Compressibility measurement
 - Multiple isotherm measurements using electrostriction technique
 - Determination of singular behavior (exponent δ, γ)
- Critical isotherm & isothermal compressibility measurements
 - Multiple isotherm measurements using electrostriction technique
 - Determination of singular behavior (exponents δ, γ)
- Dielectric constant anomaly measurement
 - 2 orders of magnitude closer to the critical point than previous ground based experiments
 - Anomaly is related to the exponent α.

Plan: 3 years development, launch 2016
PIs: I. Hahn (USA) & Y. Garrabos
Team: F. Zhong, S. Marre, D. Beysens, C. Lecoutre

Micro-fluidic Technique

* S. Marre (DECLIC Workshop, 2012)

Electrostriction Technique

** I. Hahn (DECLIC workshop, 2012)
High Temperature Insert (HTI)

HTI and HTI-R (SCWM) Investigations
HTI Experiment – Background

- The HTI (High Temperature Insert) is built to study near-critical phenomena of pure water
 - pure water critical point $T_c \approx 647$ K; $P_c \approx 218$ atm
 - represents the high end of fluids in the *3D Ising-like universality class*
- Diagnostics same as that used with ALI … interferometry, shadowgraph, turbidity measurement
- Five test sequences from Sep '09 to Jul '10
 - relative value of T_c measured within 1 mK; absolute value of T_c within 50 mK
 - turbidity measurements made in non-homogenous temperature field make it difficult to correlate w/ density … final analysis awaits development of theoretical tools from ALI experiment
 - further observations … phase separation processes and unexpected transport of localized vapor bubbles due to temperature gradients
- **Investigation Team:**
 - Y. Garrabos, C. Lecoutre, D. Beysens, B. Zappoli
HTI–R / SCWM Experiment – Objectives

- The *Supercritical Water Mixture* (SCWM) experiment (2nd Qtr 2013) is a "follow-on" experiment to an earlier ISS experiment (HTI)
 - collaborative effort between NASA / CNES / ICMCB
 - uses a refurbished High Temperature Insert (HTI-R)
 - designed to study precipitation and transport phenomena of a solute near the critical point of the salt/water mixture

- SCWM Motivation:
 - key technological hurdle limiting application of SCWO technology is control of corrosion and fouling caused by deposition of salt precipitates

- Science Objectives:
 - quantify critical point for a specific salt/water mixture (0.5%-w Na₂SO₄)
 - observe/quantify (i) incipient precipitation and solvation at near critical, (ii) observe/quantify transport processes of the precipitate in the presence of thermal/salinity gradients

- Investigation Team:
 - M. Hicks, U. Hegde, Y. Garrabos, C. Lecoutre, D. Beysens, B. Zappoli

Test in 1g showing illustrating rapid build-up of salt precipitate; Na₂SO₄ aqueous solution 4%-w at (T_{BF} = 356°C, P=250 atm) flowing past unheated rod (left) and heated rod (right) (Hodes, M. ’04)
Directional Solidification Insert (DSI)

DSI (MiSOL-3D, DSIP), DSI-R (MiSOL-3D, SPADES) Investigations
DSI Experiments – Background

Microstructures de Solidification 3D (MiSOL-3D)
Investigation Team: B. Billia, N. Bergeon, A. Ramirez, L. Chen

Dynamical Selection of 3-D Interface Patterns (DSIP)
Investigation Team: R. Trivedi, J. Gu, A. Karma, D. Tourret

Relevance/Impact:
- Microstructures created during solidification control material properties
- Applicable to formation of high temperature/strength, complex alloys and molten metal joining (e.g., welding, brazing and soldering)
- Also, micro-gravity effects need to be understood for any potential in-situ metal fabrication/processing

Science Objectives:
- Understand the interface dynamics leading to uniform and reproducible pattern formation in materials, particularly in alloys
- Obtain benchmark data required for establishing the role of interface dynamics on spatial arrangement of three-dimensional interface patterns

Development Approach:
- Transparent alloy of succinonitrile (SCN) - camphor is used as analog of metallic alloy
- Sample included with DSI at launch: (SCN –0.24 wt% Camphor) was re-run with various temperature gradients.
- Step changes in velocity were initiated to examine the role of interface dynamics on the selection of three-dimensional patterns

Comparison of cell growth patterns at solid-liquid interface in 1-g and 0-g. Radial variation in size, from center outward, due to convectively induced disturbances during cell growth. In 0-g, radial variations in cell structure are absent.

1-g mixture = SCN 0.10%-w Camphor w/ VP = 10 μm/s
0-g mixture = SCN 0.24%-w Camphor w/ VP = 4 μm/s
DSI Experiments – Results

- Data bank being created through systematic analysis of the interface patterns to extract characteristic parameters \(f(C_0, G, V_p) \)
- Homogenous patterns observed over a large range of experimental conditions

Example: Primary spacing = \(f(V_p) \)

Steady state growth
SCN – 0.24 wt% Camphor
\(G = 28 \text{ K/cm} \)

![Graph showing primary spacing as a function of \(V_p \)](image)

Images:
- Cells
- Deep Cells
- Deep Cells + Dendrites
- Dendrites

Table:

<table>
<thead>
<tr>
<th>(V_P) ((\mu \text{m/s}))</th>
<th>Primary Spacing ((\lambda) ((\mu \text{m})))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\mu \text{m/s})</td>
<td>(\lambda) ((\mu \text{m}))</td>
</tr>
<tr>
<td>4 (\mu \text{m/s})</td>
<td>(\lambda) ((\mu \text{m}))</td>
</tr>
<tr>
<td>8 (\mu \text{m/s})</td>
<td>(\lambda) ((\mu \text{m}))</td>
</tr>
<tr>
<td>16 (\mu \text{m/s})</td>
<td>(\lambda) ((\mu \text{m}))</td>
</tr>
</tbody>
</table>
DSI Experiments – Results

Unique observations in extended 3D patterns included:

- Existence of **oscillatory growth of cells** in a diffusive growth regime
- Formation of **multiplets**
- **Coherent side-branching**

![Image of oscillatory growth of cells](image1)

SCN –0.24 wt% Camphor
- G = 12 K/cm
- \(V_P = 0.25 \mu m/s\)

![Image of multiplets](image2)

SCN –0.24 wt% Camphor
- G = 12 K/cm
- \(V_P = 30 \mu m/s\)

Total of 6 experimental sequences

- 15—20 days ~ 100 days of experimental runtime performed on-orbit during 2010 and early 2011
DSI-R Experiments – Objectives

Microstructures de Solidification 3D (MiSOL-3D) (continuation)

Spatiotemporal evolution of 3D Dendritic array Structures (SPADES)
Investigation Team: R. Trivedi, A. Karma, D. Tourret, D. Young

Outstanding Issues Still to be Addressed:

- Effect of composition on dynamics of pattern evolution
- Characterization of variation in cell and dendrite tip radius with velocity (prefer lower solute concentration)
- Effect of cell-dendrite transition on primary spacing
 - Experiments needed: near cell-dendrite transition point w/ variations in V_p to determine effect of transition on cell spacing
- Further experiments are needed to understand the physics of coherent branch formation
 - Experiments performed at the low G, high V_p regime in DSIP revealed dendrites formed with *coherent branches*
- Identification of regime in which the multiplet branch is stable
DECLIC Future Plans
 DECLIC Future Plans

ALI HTI-R DSI-R ALI-R DSI-R2 HTI-R2 ALI2

ALI-R (Hyp: 1 year dev)

DSI-R2 (Hyp: 1 year dev)

HTI-R2 (Hyp: 1 year dev)

ALI2: Explore NASA sponsorship, DECLIC hardware
(Hyp: no technology gap, starts beg 2013, 3 years development)

SCWO: Explore NASA sponsorship, non DECLIC hardware
(Hyp: technology gaps, starts 2013, 5 years development)

DECLIC Operations

Green: approved
Black: planned
Supercritical Water Mixture Experiment (SCWM)
in the High Temperature Insert – Reflight (HTI-R)

BACKUP
DECLIC Diagnostics

OEB: Optical Emitter Box

ORB: Optical Receiver Box

EOS: Electronics of Optical Subsystem

GSE: Ground Support Equipment
DSI: Large scale side-branch coherence observed

Phase-field modeling will be used to tailor DSI-R/SPADES experiment to investigate dynamical origin of side-branch formation:

- Oscillatory branch of growth solutions bifurcates subcritically and exists over a finite range of large array spacings
- Noise-induced side-branching amplitude increases exponentially with spacing up to non-linear saturation due to overlap of diffusion fields from neighboring cells

Echebarria, Karma, Gurevich
Supercritical Water Mixture Experiment (SCWM) in the High Temperature Insert – Reflight (HTI-R)

From CDR - 2005

<table>
<thead>
<tr>
<th>PLANNING</th>
<th>INSERT</th>
<th>COMPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT TERM DURATION (including the 1st increment)</td>
<td>Insert DSI-1</td>
<td>SUCCINONITRILE – 0.25 % CAMPHOR</td>
</tr>
<tr>
<td>MIDDLE AND LONG TERM DURATION</td>
<td>Insert DSI-2</td>
<td>SUCCINONITRILE – 0.50 % CAMPHOR</td>
</tr>
<tr>
<td></td>
<td>Insert DSI-3</td>
<td>SUCCINONITRILE – 0.10 % CAMPHOR</td>
</tr>
<tr>
<td></td>
<td>Insert DSI-4</td>
<td>SUCCINONITRILE – 0.90 % CAMPHOR</td>
</tr>
<tr>
<td></td>
<td>Insert DSI-5</td>
<td>SUCCINONITRILE – 10 % CAMPHOR</td>
</tr>
<tr>
<td>(LONG TERM DURATION)</td>
<td>Insert DSI-6</td>
<td>PURE SUCCINONITRILE</td>
</tr>
</tbody>
</table>

Outstanding Issues Still to be Addressed:

- **The effect of composition on the dynamics of pattern evolution.**
- Characterization of variation in cell and dendrite tip radius with velocity. This is best achieved with lower solute concentration where cell-to-dendrite transition occurs at higher velocity.
- **Effect of cell-dendrite transition on primary spacing.** DSIP results indicated continuity in spacing in contrast to prior thin sample ground-based experiments. A set of experiments needs to be carried out close to the cell-dendrite transition through change in velocity to determine precisely the effect of the transition on primary cell spacing. At higher solute concentration the dendrite formation occurs at a lower velocity while the macroscopic interface remains reasonably planar due to limited latent heat release.
- **Experiments performed at the low G, high Vp regime in DSIP revealed that dendrites formed with coherent branches.** Further experiments are needed to understand the physics of coherent branch formation.
- **Identification of regime in which the multiplet branch is stable.**

Phase-field modeling will be used to tailor DSI-R/SPADES experiment to investigate dynamical origin of side-branch formation: *noise amplification vs. limit cycle*

- Oscillatory branch of growth solutions bifurcates subcritically and exists over a finite range of large array spacings
- Noise-induced side-branching amplitude increases exponentially with spacing up to non-linear saturation due to overlap of diffusion fields from neighboring cells

Echebarria, Karma, Gurevich
Phys. Rev. E 81, 021608 (2010).

DSI: Large scale side-branch coherence observed

30 µm/s