CONCEPT DESIGN OF CRYOGENIC PROPELLANT
STORAGE AND TRANSFER FOR SPACE EXPLORATION

63rd International Astronautical Congress 2012
Naples, Italy
October 2-5, 2012

James M. Free

Susan M. Motil, Trudy F. Kortes, Michael L. Meyer, William J. Taylor
NASA Glenn Research Center, Cleveland, Ohio, USA
CPST Goal and Objectives

CPST Goal Statement: Advance cryogenic propellant systems technologies for infusion into future extended in-space missions.

Objectives

- Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration
- Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment
- Accurately monitor and gauge cryogenic propellants situated in a microgravity environment
CPST Project Organization

Technology Lead

CPST Project
- Project Manager
- Deputy Project Manager
- Chief Engineer

Project Integration
- Schedule, Resources, CM

Software/Avionics

S&MA Technical Authority

CPST Systems Engineer

S&MA

Procurement

CFS Mission Manager

- CFS Payload
- Technology Maturation
- Spacecraft

CPST Integration and Test Manager

- Launch Vehicle
- System Integration
- Test and Verification

Launch Services Provider POC

CPST Mission Operations Manager

- Flight Ops
- Mission Data Processing
- Ground Ops

IAC-I2,D3,3,2,x14163
Mission Overview

Flight Demonstration System Mission Architecture

Launch Vehicle

Launch Control

Remote Researchers

Operations Center

Low Earth Orbit

Flight Laboratory

Space Communications Asset

Ground Communications Asset

Ground Infrastructure
Mission Timeline

<table>
<thead>
<tr>
<th>Mission Demonstration</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft & CFM Demo Systems Checkout</td>
<td>1</td>
</tr>
<tr>
<td>LH2 Storage Tank Passive CFM Demo</td>
<td></td>
</tr>
<tr>
<td>LH2 Storage Tank Active CFM Demo</td>
<td>3</td>
</tr>
<tr>
<td>LH2 Transfer Demos</td>
<td>4 6</td>
</tr>
</tbody>
</table>

Storage Tank Passive CFM Demos include:
- Determination of passive thermal control performance
- Settled mass gauging
- Unsettled mass gauging
- Low-conduction structural concepts

Storage Tank Active CFM Demos include:
- Determination of active thermal control performance
- Settled mass gauging
- Unsettled mass gauging
- Low-conduction structural concepts

Propellant Transfer Demos include:
- Pump-fed propellant transfer
- Pressure-fed propellant transfer
- Settled propellant transfer
- Unsettled propellant transfer
- Transfer Tank and Transfer system conditioning
- Transfer rate measurement and vapor detection
- Settled and unsettled liquid acquisition
- Tank expulsion demos

Tanks Sized to Provide (at least):
- 6 Month Storage Demo for LH2
- 2 Transfer Demo Series for LH2

IAC-I2,D3,3,2,x14163
CPST NASA Point of Departure Concept Recommended Technologies

Needs
- Create the innovative new space technologies for our exploration, science, and economic future

Goals
- Advance cryogenic propellant systems technologies for infusion into future extended in-space mission

Objectives
- Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration
- Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment
- Accurately monitor and gauge cryogenic propellants situated in a microgravity environment

Technologies

LH2 Storage
- Active thermal control: Broad Area Cooling (tubes on tank or tubes on shield)
- Active thermal control: cryo-coolers (90K)
- Passive storage: reduced penetration heat leak through MLI
- Passive storage: low conductivity structural attachments
- Tank Pressure Control: thermodynamic vent system (TVS)
- Tank Pressure Control: mixing pumps

LH2 Acquisition
- Liquid Acquisition Devices (LADs)

LH2 Transfer
- Transfer Valves
- Transfer Pump
- Line and Tank Chill-down

LH2 Quantity Gauging
- Capacitance Probe
- Wet-Dry Sensor (Cryotracker)
- Radio Frequency (settled/unsettled)

RF Gauge Test Rig

TVS components (installed in test tank)
Pulse-tube cryocooler

Screen Channel Capillary LAD
CPST Technology Readiness Levels

* Items with two TRLs listed are where there is a propellant dependence (hydrogen/oxygen)

<table>
<thead>
<tr>
<th>CPST Technology</th>
<th>TRL Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Active Thermal Control: Cryocoolers w/ tube-on-shield heat collection</td>
<td>4</td>
</tr>
<tr>
<td>2 Thick Multilayer Insulation with Foam Substrate</td>
<td>4/6</td>
</tr>
<tr>
<td>3 Low Conductivity Structures: High Strength Composite Struts</td>
<td>4/6</td>
</tr>
<tr>
<td>4 Micro-G Pressure Control: Thermodynamic Vent System</td>
<td>5</td>
</tr>
<tr>
<td>5 Micro-G Pressure Control: Mixing Pumps</td>
<td>5</td>
</tr>
<tr>
<td>6 Unsettled Liquid Acquisition Devices</td>
<td>4/5</td>
</tr>
<tr>
<td>7 Micro-G Transfer Line Chilldown</td>
<td>4</td>
</tr>
<tr>
<td>8 Pressurization Systems</td>
<td>5</td>
</tr>
<tr>
<td>9 Settled Mass Gauging: Wet/dry silicon diode sensors</td>
<td>5</td>
</tr>
<tr>
<td>10 Unsettled Mass Gauging: Radio Frequency Gauging</td>
<td>5</td>
</tr>
<tr>
<td>11 Micro-G Tank Chilldown</td>
<td>5</td>
</tr>
<tr>
<td>12 Automated Leak Detection</td>
<td>5</td>
</tr>
</tbody>
</table>

• First 11 items address primary mission objectives
 • Leak detection is a secondary objective
• TRL highlighted in yellow indicates TRL is currently being advanced through the Technology Maturation portion of the project
 • Project goal is to have candidate technologies at TRL = 5 before mission authority to proceed (ATP)
CPST Technology Maturation Activities

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2 Reduced Boil-off Active Cooling Thermal Demonstration</td>
<td>Demonstration of a flight representative active thermal control system for Reduced Boil-Off (RBO) storage of LH2 for extended duration in a simulated space thermal vacuum environment</td>
</tr>
<tr>
<td>LH2 Reduced Boil-off Broad Area Cooling Shield/MLI Structural Integrity</td>
<td>Assess the structural performance of an MLI / BAC shield assembly subjected to launch environmental representative loads</td>
</tr>
<tr>
<td>Composite Strut Thermal Performance in LH2</td>
<td>Measurement of heat leak due to composite struts integrated with MLI.</td>
</tr>
<tr>
<td>Liquid Acquisition Device (LAD) Outflow & Line Chill</td>
<td>Quantify the LAD stability (no LAD breakdown) due to transfer line chill down transient dynamic pressure perturbations during outflow</td>
</tr>
<tr>
<td>MLI Penetration Heat Leak Study</td>
<td>Measurement of heat leak due to struts penetration integrated with MLI.</td>
</tr>
<tr>
<td>Active Thermal Control Scaling Study</td>
<td>Conduct study to show relevancy of CPST-TDM active thermal control flight data to full scale CPS or Depot application</td>
</tr>
<tr>
<td>Thick MLI Extensibility Study</td>
<td>Assess optimum approach for attachment of thick (40-80 layer) MLI to very large tanks</td>
</tr>
<tr>
<td>Analytical tools</td>
<td>Continue development of tools to be validated by CPST</td>
</tr>
<tr>
<td>Pathfinder Integrated System Test (GTA)</td>
<td>Demonstrate flight-scale system operations & interactions; demo tank manufacturing; early software development</td>
</tr>
<tr>
<td>Instrumentation Advancement</td>
<td>Mature Radio Frequency Mass Gauge flight avionics and leak detection sensor system for vacuum environment</td>
</tr>
</tbody>
</table>
NASA Internally Developed Point of Departure (POD) Mission Concept

NASA conducted an internal conceptual design study in 2011 with the objectives of

- defining a preliminary design concept to enable initial assessments of mission viability
- enabling early project formulation activities

POD Salient Features
- Free flying spacecraft separate bus and cryogenic payload
- Downs-selected to flying a single fluid (LH2)
- A smaller secondary tank is included for propellant transfer demonstration
- Carries the full technology suite described earlier
- Loaded with LH2 on the PAD with a T0 disconnect
Five contractor mission concept studies were conducted to augment the Government POD study

- Analytical Mechanics Associates, Ball Aerospace, Boeing, Lockheed Martin, and United Launch Alliance

- The overall objectives of the mission studies were the same as used for the NASA internal POD study

- Cost constraint was a primary challenge and the mission concepts brought various options into the trade space including:
 - Launch: dedicated launch vs. rideshare or dual manifest
 - Spacecraft Bus Function: payload/bus configuration vs. integrated bus functions
 - Loading propellants into the payload: ground loading vs. preloaded vacuum jacketed tanks vs. propellant scavenging from an upper stage

- Technology demonstration included in the concepts were overall similar to NASA POD, with some unique options

- Single fluid and two fluid options were provided by the contractors
CPST Project Notional Schedule

<table>
<thead>
<tr>
<th></th>
<th>FY 12</th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
<th>FY 16</th>
<th>FY 17</th>
<th>FY 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Milestones</td>
<td>KDPA</td>
<td>ASM</td>
<td>KDPB</td>
<td>KDPC</td>
<td>KDPE</td>
<td>KDPF</td>
<td></td>
</tr>
<tr>
<td>Project Milestones</td>
<td>MCR</td>
<td>SPR</td>
<td>Contract SRR/MDR</td>
<td>PDR</td>
<td>CDR</td>
<td>SIR</td>
<td>FRR</td>
</tr>
<tr>
<td>Technology Development</td>
<td>Penetration Heat Leak TDR</td>
<td>LH₂ Active Cooling TDR</td>
<td>LAD Outflow and Line Chill TDR</td>
<td>MLI/BAC Shield Vibration TDR</td>
<td>LO₂ Active Cooling TDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTA</td>
<td>Storage Tank Ready for Integration</td>
<td>Integrated Hardware Assembly and C/O Complete</td>
<td>GTA Installation in TS-300 Complete</td>
<td>Test Preparations Complete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Mass Gauge (GFE to contract)</td>
<td>RFMG PDR</td>
<td></td>
<td>RFMG CDR</td>
<td></td>
<td>RFMG Delivery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Launch 12/16
- Mission Review
- De-Commissioning Complete

IAC-I2,D3,3,2,x14163
CPST Summary

• NASA is planning to fly a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission mission in late 2016 (TBR).

• Mission Concept Review (MCR) and Acquisition Strategy Meeting were recently completed.
 – Based on a NASA in-house mission concept and five contractor developed mission concepts, mission feasibility was demonstrated.

• Preparation for System Requirements Review (SRR) underway.

• Technology Maturation activities to raise candidate technologies to TRL 5 are near completion, by end of CY2012.
CPST Points of Contact

Project Manager: Susan Motil; susan.m.motil@nasa.gov

Chief Technologist: Mike Meyer; michael.l.meyer@nasa.gov

Chief Engineer: Bill Taylor; william.j.taylor@nasa.gov
Cryogenic Propellant Storage and Transfer Functions that CPST Can Demonstrate

Thermal Control
- Insulation (launch environments and in-space)
- Vapor or actively cooled shields
- Low conductivity/ cooled support structure

Pressurization
- Cold helium
- Autogenous

Vent or to vapor cooled shields

Pressure Control
- Zero-g venting (thermodynamic vent and heat)

Liquid Acquisition
- Capillary retention devices LADs vanes, etc.

Propellant Gauging
- Settled propellant/level sensors
- High accuracy micro-g techniques

Propellant Transfer
- Settled/unsettled
- No-vent fill