An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

Michael P. Nemeth
Langley Research Center, Hampton, Virginia
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Fax your question to the NASA STI Information Desk at 443-757-5803

- Phone the NASA STI Information Desk at 443-757-5802

- Write to:
 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320
An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

Michael P. Nemeth
Langley Research Center, Hampton, Virginia
CONTENTS

SUMMARY ... 9

PURPOSE AND SCOPE ... 12

NOTATION .. 14
 Indicial Notation .. 15
 Set-Theory Notation .. 17
 Notation for Intervals of Real Numbers ... 22
 Notation for Vectors .. 23

MATHEMATICAL DESCRIPTION OF AN UNDEFORMED SHELL ... 24
 The Premise of Continuum Modeling .. 25
 The Shell Space, \(\mathcal{R}_0 \) ... 28
 Natural Base-Vector Fields of \(\mathcal{R}_0 \) .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Surfaces of \mathcal{R}_0</td>
<td>46</td>
</tr>
<tr>
<td>MATHEMATICAL DESCRIPTION OF THE SHELL</td>
<td></td>
</tr>
<tr>
<td>REFERENCE SURFACE, S_0</td>
<td></td>
</tr>
<tr>
<td>Mathematical Description of S_0</td>
<td>54</td>
</tr>
<tr>
<td>Natural Base-Vector Fields of S_0</td>
<td>57</td>
</tr>
<tr>
<td>Vector Fields Defined on S_0</td>
<td>66</td>
</tr>
<tr>
<td>Metric Coefficients of S_0</td>
<td>68</td>
</tr>
<tr>
<td>Reciprocal Basis of S_0</td>
<td>73</td>
</tr>
<tr>
<td>Curvatures and Torsions of S_0</td>
<td>76</td>
</tr>
<tr>
<td>S_0 Geometry Example</td>
<td>99</td>
</tr>
<tr>
<td>Derivatives of Base-Vector Fields on S_0</td>
<td>108</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Derivatives of Vector Fields on \mathcal{S}_0</td>
<td>117</td>
</tr>
<tr>
<td>Compatibility Conditions for \mathcal{S}_0</td>
<td>122</td>
</tr>
<tr>
<td>MATHEMATICAL DESCRIPTION OF THE SHELL SPACE, \mathcal{R}_0,</td>
<td></td>
</tr>
<tr>
<td>IN TERMS OF REFERENCE-SURFACE PROPERTIES</td>
<td>138</td>
</tr>
<tr>
<td>Mathematical Description of \mathcal{R}_0</td>
<td>139</td>
</tr>
<tr>
<td>Vector Fields Defined on \mathcal{R}_0</td>
<td>143</td>
</tr>
<tr>
<td>Metric Coefficients of a Parallel Surface</td>
<td>155</td>
</tr>
<tr>
<td>Metric Coefficients of \mathcal{R}_0</td>
<td>168</td>
</tr>
<tr>
<td>Differential Areas and Volume in \mathcal{R}_0</td>
<td>173</td>
</tr>
<tr>
<td>Reciprocal Basis for \mathcal{R}_0</td>
<td>178</td>
</tr>
<tr>
<td>MATHEMATICAL DESCRIPTION OF THE DEFORMED-SHELL</td>
<td></td>
</tr>
<tr>
<td>REFERENCE-SURFACE GEOMETRY</td>
<td>192</td>
</tr>
</tbody>
</table>
“Small” Green-Lagrange Strains ... 266
Linearized Reference-Surface Strains and Rotations 275
Linearized Curvatures and Torsions of S_t .. 311
“Small” Green-Lagrange Strains in Terms of Linear Deformation Measures ... 341

GEOMETRY OF S_t FOR “SMALL” STRAINS IN TERMS OF
LINEAR DEFORMATION MEASURES .. 347

“Small-Strain” Metric Coefficients and Base-Vector Fields of S_t 348
“Small-Strain” Curvatures and Torsions of S_t 364
Changes in the Curvatures and Torsions of S_0
for “Small” Strains .. 376
“Small-Strain” Compatibility Conditions for S_t 394
MATHEMATICAL DESCRIPTION OF DEFORMED-SHELL GEOMETRY ... 421

 Mathematical Description of the Deformed Shell, \mathcal{R}_t ... 422

 Convected Base-Vector Fields for \mathcal{R}_t ... 429

 Metric Coefficients for \mathcal{R}_t ... 436

 Reciprocal Basis for \mathcal{R}_t .. 446

 Differential Areas and Volumes for \mathcal{R}_t .. 450

 CHARACTERIZATION OF SHELL DEFORMATIONS ... 456

 Elongation and Shear of the Shell .. 457

 Nonlinear Shell Strains ... 463

 “Small-Strain” Approximations .. 471

 The Kinematic Hypothesis ... 480
SUMMARY

An in-depth exposition on the nonlinear deformations of engineering shell structures, or simply shells, is presented without the use of tensors. First, the mathematical description of an undeformed shell is given in general nonorthogonal coordinates, which includes the definition of a reference surface that is the basis for formulating a two-dimensional theory of deformation. Next, the geometry of the reference surface and associated vector fields are presented. After defining the required reference-surface attributes, mathematical descriptions of the undeformed shell and the corresponding vector fields are given in terms of the reference-surface attributes. Then, a mathematical description of the deformed image of the reference surface and its corresponding geometry are presented. The reference-surface deformations are then characterized by introducing the primitive concepts of elongation and shearing, and by relating these concepts to the corresponding Green-Lagrange strains of continuum mechanics. After this step, the strains are simplified for the important practical case of “small” strains, which are typically exhibited by engineered load-bearing shell structures. To add physical clarity, the linearized reference-surface strains and rotations are derived, followed by the linearized curvatures and torsions of the corresponding deformed reference
surface. These quantities are then used to obtain the “small” Green-Lagrange strains and the deformed-reference-surface geometric parameters in terms of linearized deformation measures.

In the next major part of the present study, the geometry of the deformed shell is described mathematically, along with associated vector fields. Then, the shell deformations are characterized by using the primitive concepts of elongation and shearing, and by relating these concepts to the corresponding three-dimensional Green-Lagrange strains of continuum mechanics. The strains are then simplified for the case of “small” strains. Next, the deformations of the shell and its reference surface are related by introducing a kinematic hypothesis. The kinematic hypothesis used in the present study includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, well-defined subset. To add more physical clarity, an alternate formulation of the shell strains is presented next that emphasizes the geometric parameters of the deformed reference surface.
SUMMARY - CONCLUDED

After completing the fundamental derivations, resume’s of the essential equations are given for general nonorthogonal and orthogonal reference-surface Gaussian coordinates. Then, the basis for further simplification of the essential equations is discussed, and the equations for the important case of “small” strains and “moderate” rotations are given. In addition, resume’s of the essential linearized equations are given for general nonorthogonal and orthogonal reference-surface Gaussian coordinates. Moreover, several special cases of the linearized shell strain are discussed. Finally, strains are derived for shells with “small” initial geometric imperfections. The corresponding equations are also given for the practical case of “small” strains and “moderate” rotations.
PURPOSE AND SCOPE

Nonlinear shell theories generally involve the use of nonorthogonal coordinate systems and elements of differential geometry. As a result, almost all treatments of this subject are presented using generalized tensors. This approach provides a concise way of representing lengthy expressions, but tends to obfuscate the physical interpretation of certain mathematical quantities and manipulations. In addition, the use of generalized tensor analysis typically requires a higher level of mathematical maturity than most practicing engineers possess or have time to acquire. Thus, these drawbacks greatly reduce the size of the audience that can benefit from a detailed knowledge of nonlinear shell theories. This point is particularly important to the aerospace community because the demand for shell structures that are lightweight and exhibit high performance leads to thin-walled members that exhibit at least some nonlinear behavior.

The purpose of the present study is to give a detailed exposition of the nonlinear kinematics of shell structures. Toward this purpose, the basic ideas are presented and the corresponding equations are derived from first principles. In addition, many intermediate steps are presented and many visual representations of mathematical concepts are given.
PURPOSE AND SCOPE - CONCLUDED

The scope of the present study is limited to the nonlinear kinematics of shell structures, but the formulation presented is based on general nonorthogonal coordinates and avoids the use of tensors. The presentation is physics based and includes details of the differential geometry of a shell in its undeformed and deformed states. Additionally, the basic concepts of deformation are presented and related to the changes in shell geometry that occur during deformation. The kinematics include the effects of transverse shearing deformations and retain the equations of classical Love-Kirchhoff shell theory as a well-defined, proper subset. Moreover, simplifications of the key equations that are based on the size of the strains and the rotations of material line elements within a shell are given and related to several well-known published theories. Several parts of the presentation are redundant, by design, to enhance comprehension.
NOTATION
INDICIAL NOTATION

- **Indicial notation** is used in the present study because it provides a compact means for representing lengthy expressions.

- For example, the expression \(a_1 b_1 + a_2 b_2 + a_3 b_3 \) is written concisely as \(a_k b_k \), where the **repeated index** implies a **summation** over the values \(k = 1, 2, \text{ and } 3 \).

- Similarly, the expression \(a^k b_k = c^j \) is used to represent the system of linear equations:

\[
\begin{align*}
a^{11} b_1 + a^{12} b_2 + a^{13} b_3 &= c^1 \\
a^{21} b_1 + a^{22} b_2 + a^{23} b_3 &= c^2 \\
a^{31} b_1 + a^{32} b_2 + a^{33} b_3 &= c^3
\end{align*}
\]

- Coordinates such as the usual **Cartesian coordinates** \((x, y, z)\) are written as \((x_1, x_2, x_3)\) herein to facilitate the use of indicial notation.
INDICIAL NOTATION - CONTINUED

- Herein, the following convention is used for indicial notation:
 - **Repeated indices** that imply a summation can appear as superscripts and subscripts
 \[a_k b_k = a_1 b_1 + a_2 b_2 + a_3 b_3 \]
 - A **Latin index** such as “k” takes on the values 1, 2, and 3 unless noted otherwise; e.g., \[a_k b_k = a_1 b_1 + a_2 b_2 + a_3 b_3 \]
 - A **Greek index** such as “\(\alpha \)” takes on the values 1 and 2 unless noted otherwise; e.g., \[a^{\alpha} b_{\alpha} = a^1 b_1 + a^2 b_2 \]
 - Summation implied by two repeated indices is **suspended if one index is enclosed in parenthesis**; e.g., \(a^{(\alpha)} b_{\alpha} \) implies \(a^1 b_1 \) or \(a^2 b_2 \)
 - Any index that is not a proper repeated index is called a **free index**
 - Free indices take on all the values of the given index; e.g., in the expression \(a^{(\alpha)} b_{\alpha} \), “\(\alpha \)” is a free index (because of the parenthesis) and can take on the values 1 and 2
SET-THEORY NOTATION

- In the following discussion of set notation, sets are denoted by boldface upper-case letters and the elements of a set are denoted by boldface lower-case letters, unless indicated otherwise.

- \(x \in S \) indicates that \(x \) is an element or member of the set \(S \).

- \(x \notin S \) indicates that \(x \) is not an element or member of the set \(S \).

- A set may be specified explicitly by using braces and listing all of the elements.

 - e.g., \(\{2, 4, 6, 8\} \) indicates that the numbers 2, 4, 6, and 8 form a set.

 - This type of set specification is called roster or tabular notation.
In giving a complete description of the elements of a set, one often uses a statement that specifies some **conditions or restrictions**.

A shorthand notation used to indicate a condition in set theory is

\[\{ a \in S \mid \text{condition} \} \]

This notation reads, “**a** is a member of the set **S** such that the specific condition is fulfilled”.

This method is often called the **set-builder** or **property** method.

For example, \[\{ x \in \mathbb{R} \mid x > 0 \} \] indicates that **x** consists of the set of all real numbers \(\mathbb{R} \) that are greater than zero.

An empty set is a set without any elements and is denoted by \(\emptyset \).
A set A is a **subset** of a set B whenever every element of the set A is also an element of the set B.

- This relationship is denoted by $A \subseteq B$.

- In general, the subset A may contain all the elements of the set B; thus, if $A \subseteq B$ and $B \subseteq A$ then $A = B$.

- When the sets A and B are restricted to be unequal, the set A is described as a **proper subset** of the set B - this relationship is denoted by $A \subset B$.

- That is, $A \subset B$ is used to indicate that set A is included in set B.

The common elements of two sets A and B are denoted by $A \cap B$.

When there are no common elements $A \cap B = \emptyset$ and the sets are described as disjoint.

$A \cap B$ is the “largest” set that is a subset of both A and B.

$A \cap \emptyset = \emptyset$ for any set A.

The intersection of two sets, A and B, is defined as the set

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$$
The union of two sets A and B is another set denoted by $A \cup B$ and consists of all elements of both sets A and B; i.e.,

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \} = B \cup A$$

$A \cup B$ can be thought of as "addition" of the sets A and B.

$A \cup \emptyset = A$ for any set A, and $A \cup B$ is the “smallest” set for which A and B are subsets.

The Cartesian product of two sets A and B is denoted by $A \times B$ and consists of the set of all ordered pairs of elements (a, b) such that $a \in A$ and $b \in B$.

SET-THEORY NOTATION - CONTINUED
NOTATION FOR INTERVALS OF REAL NUMBERS

- Let \mathbb{R} denote the set of real numbers and let $\xi \in \mathbb{R}$

- The **open interval** of \mathbb{R} given by $\xi_a < \xi < \xi_b$ is denoted by (ξ_a, ξ_b)

- The **closed interval** of \mathbb{R} given by $\xi_a \leq \xi \leq \xi_b$ is denoted by $[\xi_a, \xi_b]$

- The **half-open interval** of \mathbb{R} given by $\xi_a \leq \xi < \xi_b$ is denoted by $[\xi_a, \xi_b)$

- The **half-open interval** of \mathbb{R} given by $\xi_a < \xi \leq \xi_b$ is denoted by $(\xi_a, \xi_b]$
NOTATION FOR VECTORS

- Vectors are indicated by an arrow above a letter; e.g., \vec{a}

- Unit-magnitude vectors are indicated by a circumflex; e.g., \hat{a}

- The symbolism $\vec{a} \perp \vec{b}$ is used herein to indicate that the vector \vec{a} is perpendicular to the vector \vec{b}

- Similarly, $\vec{a} \parallel \vec{b}$ is used herein to indicate that the vector \vec{a} is parallel to the vector \vec{b}
MATHEMATICAL DESCRIPTION OF AN UNDEFORMED SHELL
THE PREMISE OF CONTINUUM MODELING

- In order to obtain solutions to practical engineering problems, that involve load-carrying structures made of solid materials, the discrete atomic structure of matter is replaced with a mathematical construct known as \textit{continuum modeling}.

- In continuum modeling, a body of material is idealized as contiguous collection of material particles that are placed into a unique correspondence with geometric points of three-dimensional Euclidean space \mathbb{E}^3, referred to herein as \textit{material points}.

 - Thus, one-dimensional chains of material particles can be envisioned that are placed into unique correspondence with geometric curves in \mathbb{E}^3, referred to herein as \textit{material curves}.

 - Likewise, two-dimensional collections of material particles are placed into unique correspondence with geometric surfaces in \mathbb{E}^3, referred to herein as \textit{material surfaces}.
THE PREMISE OF CONTINUUM MODELING
CONTINUED

Furthermore, three-dimensional collections of material particles are envisioned and placed into unique correspondence with geometric regions in \mathbb{R}^3, referred to herein as material regions or material bodies.

With these correspondences, each point of \mathbb{R}^3 can be endowed with the physical attributes of the corresponding material particle, which represents a homogenization of the properties of some corresponding finite collection of discrete atoms.

These “pointwise” properties include scalar quantities such as mass and temperature, which are characterized by magnitudes.

Pointwise properties also include vector quantities such as force and momentum, which are characterized by magnitude and direction, and tensor quantities, such as stress, that are linear functions of vectors.
Thus, the physical behavior of the continuum is fully characterized by a set of points in three-dimensional Euclidean space \mathbb{E}^3 that are endowed with the algebraic structures of scalar, vector, and tensor fields.

The set of points, and corresponding algebraic structures, used to represent a curved, relatively thin-walled surface-like material body is referred to herein as the shell space.

Some particular information regarding the shell space is presented subsequently.
THE SHELL SPACE, \mathcal{R}_0

- A shell structure is described mathematically as a set of material points, \mathcal{B}, that occupy a region, \mathcal{R}_t, of three-dimensional Euclidean space \mathcal{E}^3 at time t.

- Herein, the time $t = 0$ is defined as the reference configuration or reference state of the shell, which occupies $\mathcal{R}_0 \subset \mathcal{E}^3$.

- In the reference configuration, the shell is presumed to be undeformed and unstressed.

- The subset $\mathcal{R}_0 \subset \mathcal{E}^3$ is also referred to herein as the shell space.

- Likewise, the subset $\mathcal{R}_t \subset \mathcal{E}^3$ is referred to herein as the deformed image of the shell space at time t.
THE SHELL SPACE, \mathcal{R}_0 - CONTINUED

Points of the shell space are described parametrically by the Cartesian coordinates (X_1, X_2, X_3), with respect to the frame $O - X_1 - X_2 - X_3$, where the Cartesian coordinates are given by

$$X_1 = X_1(\xi_1, \xi_2, \xi_3), \quad X_2 = X_2(\xi_1, \xi_2, \xi_3), \quad X_3 = X_3(\xi_1, \xi_2, \xi_3)$$

The corresponding basis of the Cartesian coordinate system is denoted herein by $\{\hat{i}_1, \hat{i}_2, \hat{i}_3\}$.

The parameters $\xi_1, \xi_2, \text{ and } \xi_3$ are interpreted as a set of points (ξ_1, ξ_2, ξ_3) that span a cuboid region of a three-dimensional space that gets mapped onto $\mathcal{R}_0 \subset \mathcal{E}^3$ in a unique, one-to-one manner.

The cuboid region is defined as the domain \mathcal{D}_{ξ} of the mapping specified by

$$X_1 = X_1(\xi_1, \xi_2, \xi_3), \quad X_2 = X_2(\xi_1, \xi_2, \xi_3), \quad \text{and} \quad X_3 = X_3(\xi_1, \xi_2, \xi_3)$$
THE SHELL SPACE, \mathbb{R}_0 - CONTINUED

\mathbb{R}^3

\mathbb{R}_0

X_1-axis

X_2-axis

X_3-axis

Mapping

$X_k(\xi_1, \xi_2, \xi_3)$

Domain, \mathcal{D}_ξ

ξ_1-axis

ξ_2-axis

ξ_3-axis

Cartesian coordinate frame
Consider the plane \(\xi_1 = c_1 \) in the domain \(\mathcal{D}_{\xi} \), where \(c_1 \) is a specified constant value.

For this case, the three mapping functions \(X_k = X_k(c_1, \xi_2, \xi_3) \), defined on the implied domain for the points \((\xi_2, \xi_3) \), yield a parametric representation for a surface within the shell space \(\mathcal{R}_0 \subset \mathcal{E}^3 \).

Thus, the plane \(\xi_1 = c_1 \) in the domain is mapped onto a surface in \(\mathcal{R}_0 \).

Likewise, the planes \(\xi_2 = \text{constant} \) and \(\xi_3 = \text{constant} \) in the domain \(\mathcal{D}_{\xi} \) are mapped onto surfaces in \(\mathcal{R}_0 \).
THE SHELL SPACE, \mathcal{R}_0 - CONTINUED

Surface $\xi_1 = \text{constant}$
THE SHELL SPACE, \mathcal{R}_0 - CONTINUED

- Now consider the line in the domain \mathcal{D}_ξ, given by $\xi_1 = c_1$ and $\xi_2 = c_2$, where c_1 and c_2 are specified constant values.

- For this case, the three mapping functions $X_k = X_k(c_1, c_2, \xi_3)$, defined on the implied domain for the points given by ξ_3, yield a parametric representation for a space curve within the shell space.

- Thus, the line given by $\xi_1 = c_1$ and $\xi_2 = c_2$ in the domain is mapped onto a curve in \mathcal{R}_0.

- Moreover, as the numerical values of ξ_3 increase, a positive direction of traversal of the curve is implied by the specific functional form of the three mapping functions.

- Likewise, the line given by $\xi_1 =$ constant and $\xi_3 =$ constant, and the line given by $\xi_2 =$ constant and $\xi_3 =$ constant in the domain are mapped onto space curves in \mathcal{R}_0 with an implied direction of traversal.
Therefore, by requiring the mapping functions $X_k = X_k(\xi_1, \xi_2, \xi_3)$ to map distinct lines in the domain onto distinct curves in the shell space, it follows that the parameters $\xi_1, \xi_2,$ and ξ_3 define a system of curvilinear coordinates for the shell space $\mathcal{R}_0 \subset \mathcal{E}^3$.

In the figure that follows, the symbols $+\xi_1$, $+\xi_2$, and $+\xi_3$ are used to indicate positive directions of curvilinear-coordinate coordinate traversal associated with positive increments in the corresponding parameters.

In addition, the position vector to point P shown in the following figure, with coordinates (X_1, X_2, X_3), defined relative to the Cartesian coordinate frame and basis $\{\hat{i}_1, \hat{i}_2, \hat{i}_3\}$ is given by $\hat{X} = X_k(\xi_1, \xi_2, \xi_3)\hat{i}_k$.

\[34\]
THE SHELL SPACE, \mathcal{R}_0 - CONTINUED

Surface $\xi_2 = \text{constant}$

Surface $\xi_3 = \text{constant}$

Surface $\xi_1 = \text{constant}$

X_3-axis

X_2-axis

X_1-axis

Domain, \mathcal{D}_ξ

ξ_3-axis

ξ_2-axis

ξ_1-axis

\bar{X}

$X_k(\xi_1, \xi_2, \xi_3)$
As an example of a shell space, consider the set of points given by the cylindrical coordinates \((r, \theta, z)\), where \(R_i \leq r \leq R_o\), \(0 \leq \theta < 2\pi\), and \(0 \leq z \leq L\).

These points fill a right circular cylindrical shell with an inner radius \(R_i\), an outer radius \(R_o\), and length \(L\).

Let \(z \rightarrow \xi_1\), \(\theta \rightarrow \xi_2\), and \(r \rightarrow \xi_3\).

The domain \(D_\xi\) with points \((\xi_1, \xi_2, \xi_3)\) is given by \([0, L] \times [0, 2\pi] \times [R_i, R_o]\).

The mapping functions are \(X_1 = \xi_3 \cos \xi_2\), \(X_2 = \xi_3 \sin \xi_2\), and \(X_3 = \xi_1\).
NATURAL BASE-VECTOR FIELDS OF \mathbb{R}_0

- To model pointwise physical attributes of a shell that have **magnitude and direction**, the ability to define vector fields for points of the shell space is needed.

- In courses on differential geometry, it is shown that a space curve is given parametrically by $\mathbf{X} = X_k(\xi)\hat{i}_k$.

- Moreover, it is shown that a vector **tangent to the space curve** is given by

$$\frac{d\mathbf{X}}{d\xi} = \lim_{\Delta\xi \to 0} \left[\frac{X_k(\xi + \Delta\xi) - X_k(\xi)}{\Delta\xi} \right] \hat{i}_k,$$

provided that the limit exists.

- For this limit to exist, $\mathbf{X} = X_k(\xi)\hat{i}_k$ must be continuous and its derivative must also be continuous; that is, it must be **smooth**.

- Thus, a unique set of vectors that are tangent to the curvilinear-coordinate curves can be defined provided that mapping functions $X_k = X_k(\xi_1, \xi_2, \xi_3)$ and their partial derivatives are continuous.
NATURAL BASE-VECTOR FIELDS OF \mathcal{R}_0 - CONTINUED

- Therefore, base-vector fields of the curvilinear coordinates (ξ_1, ξ_2, ξ_3) are defined by
 $$\tilde{g}_k(\xi_1, \xi_2, \xi_3) = \frac{\partial \hat{X}}{\partial \xi_k}$$
 for $k \in \{1, 2, 3\}$

- Each base vector at point P is tangent to the corresponding curvilinear-coordinate curve and points in the direction of positive coordinate-curve traversal, as shown in the figure.
For any legitimate curvilinear coordinate system, the three coordinate surfaces that correspond to constant values of ξ_1, ξ_2, and ξ_3 are noncoincident at every point of $R_0 \subseteq \mathbb{E}^3$, and as a result, the three coordinate curves are distinct.

Thus, the vector fields $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ are linearly independent at every point of R_0, and as a result, they provide a basis for quantitatively representing vector fields associated with the points of R_0.

In addition, the three base-vector fields are mutually orthogonal at every point of R_0 when the curvilinear coordinates are orthogonal.

In general, any three linearly independent vector fields provide a basis for representing all other related vector fields; as a result, the set of three linearly independent vector fields is given the name “basis”.
Because the set \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) appears naturally, or inherently, as partial derivatives of the of shell-space parametric representation, this particular basis is called the **natural basis** of the shell space.

An important subset of \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) is the set \(\{ \hat{i}_1, \hat{i}_2, \hat{i}_3 \} \), which corresponds to planar coordinate surfaces and Cartesian coordinates.

For this special case, the **orientation and magnitude** of \(\{ \hat{i}_1, \hat{i}_2, \hat{i}_3 \} \) are constant throughout the region \(\mathcal{R}_0 \).
NATURAL BASE-VECTOR FIELDS OF \mathbb{R}_0 - CONTINUED
Another convenient form of the natural curvilinear-coordinate basis is the set of unit-magnitude vector fields $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$ defined by

$$
\hat{g}_1(\xi_1, \xi_2, \xi_3) = \frac{\vec{g}_1}{H_1} \quad \hat{g}_2(\xi_1, \xi_2, \xi_3) = \frac{\vec{g}_2}{H_2} \quad \hat{g}_3(\xi_1, \xi_2, \xi_3) = \frac{\vec{g}_3}{H_3}
$$

where

$$
H_1(\xi_1, \xi_2, \xi_3) = |\vec{g}_1| = \sqrt{\vec{g}_1 \cdot \vec{g}_1} \quad H_2(\xi_1, \xi_2, \xi_3) = |\vec{g}_2| = \sqrt{\vec{g}_2 \cdot \vec{g}_2} \quad H_3(\xi_1, \xi_2, \xi_3) = |\vec{g}_3| = \sqrt{\vec{g}_3 \cdot \vec{g}_3}
$$

or $$
H_k(\xi_1, \xi_2, \xi_3) = |\vec{g}_k| = \sqrt{\vec{g}_k \cdot \vec{g}_k}
$$

where the index enclosed by parentheses indicates suspension of the summation convention for repeated indices.
Once a specific parametrization \(\mathbf{X} = X_k(\xi_1, \xi_2, \xi_3) \mathbf{i}_k \) is given, \(\mathbf{g}_k = \frac{\partial \mathbf{X}}{\partial \xi_k} \) is expressed in Cartesian-component form as \(\mathbf{g}_k = \frac{\partial \mathbf{X}_p}{\partial \xi_k} \mathbf{\hat{i}}_p \).

Then, \(H_k = \sqrt{\mathbf{g}_k \cdot \mathbf{g}_k} \) becomes \(H_k = \sqrt{\frac{\partial \mathbf{X}_p}{\partial \xi_k} \mathbf{\hat{i}}_p \cdot \frac{\partial \mathbf{X}_q}{\partial \xi_{(k)}} \mathbf{\hat{i}}_q} = \sqrt{\frac{\partial \mathbf{X}_p}{\partial \xi_k} \frac{\partial \mathbf{X}_p}{\partial \xi_{(k)}}} \).

In particular,

\[
H_1 = \sqrt{\left(\frac{\partial X_1}{\partial \xi_1} \right)^2 + \left(\frac{\partial X_2}{\partial \xi_1} \right)^2 + \left(\frac{\partial X_3}{\partial \xi_1} \right)^2}
\]

\[
H_2 = \sqrt{\left(\frac{\partial X_1}{\partial \xi_2} \right)^2 + \left(\frac{\partial X_2}{\partial \xi_2} \right)^2 + \left(\frac{\partial X_3}{\partial \xi_2} \right)^2}
\]

\[
H_3 = \sqrt{\left(\frac{\partial X_1}{\partial \xi_3} \right)^2 + \left(\frac{\partial X_2}{\partial \xi_3} \right)^2 + \left(\frac{\partial X_3}{\partial \xi_3} \right)^2}
\]
Consider the previous example of a **cylindrical shell space** defined by the mapping functions \(X_1 = \xi_3 \cos \xi_2 \), \(X_2 = \xi_3 \sin \xi_2 \), and \(X_3 = \xi_1 \); where \(0 \leq \xi_1 \leq L \), \(0 \leq \xi_2 < 2\pi \), and \(R_i \leq \xi_3 \leq R_o \).

The partial derivatives are:

\[
\begin{align*}
\frac{\partial X_1}{\partial \xi_1} &= 0, & \frac{\partial X_1}{\partial \xi_2} &= -\xi_3 \sin \xi_2, & \frac{\partial X_1}{\partial \xi_3} &= \cos \xi_2 \\
\frac{\partial X_2}{\partial \xi_1} &= 0, & \frac{\partial X_2}{\partial \xi_2} &= \xi_3 \cos \xi_2, & \frac{\partial X_2}{\partial \xi_3} &= \sin \xi_2 \\
\frac{\partial X_3}{\partial \xi_1} &= 1, & \frac{\partial X_3}{\partial \xi_2} &= 0, & \frac{\partial X_3}{\partial \xi_3} &= 0
\end{align*}
\]

The natural base-vector fields are found to be:

\[
\begin{align*}
\mathbf{g}_1 &= \hat{i}_3, & \mathbf{g}_2 &= \xi_3 \left(\cos \xi_2 \hat{i}_2 - \sin \xi_2 \hat{i}_1 \right), & \mathbf{g}_3 &= \cos \xi_2 \hat{i}_1 + \sin \xi_2 \hat{i}_2
\end{align*}
\]
The magnitudes of the natural base-vector fields are computed as

\[H_1 = |\hat{g}_1| = 1, \quad H_2 = |\hat{g}_2| = \xi_3, \quad \text{and} \quad H_3 = |\hat{g}_3| = 1 \]

With these quantities, the unit-magnitude natural base-vector fields are given by

\[\hat{g}_1 = \frac{|\hat{g}_1|}{H_1} = i_3, \]

\[\hat{g}_2 = \frac{|\hat{g}_2|}{H_2} = \cos \xi_2 \hat{i}_2 - \sin \xi_2 \hat{i}_1, \quad \text{and} \]

\[\hat{g}_3 = \frac{|\hat{g}_3|}{H_3} = \cos \xi_2 \hat{i}_1 + \sin \xi_2 \hat{i}_2 \]
PARALLEL SURFACES OF \mathcal{R}_0

- In formulating a shell theory, it is useful to envision a shell as a two-dimensional reference surface, defined by $x_k(\xi_1, \xi_2) = X_k(\xi_1, \xi_2, 0)$, with characteristic areal dimensions ℓ_1 and ℓ_2, and with a finite thickness distribution $h(\xi_1, \xi_2)$ that has a maximum value h_{max}.

- Typically, the characteristic dimensions ℓ_1 and ℓ_2 are much larger than the maximum shell thickness; that is, $\ell_1, \ell_2 \gg h_{\text{max}}$.

- To facilitate this approach, the ξ_3 coordinate is defined as the distance along a line perpendicular to the plane tangent to the reference surface at the point (ξ_1, ξ_2).

$$\mathcal{R}_0 \subset \mathcal{E}^3$$
PARALLEL SURFACES OF \mathcal{R}_0 - CONTINUED

- For a constant value of the ξ_3 coordinate, given by $\xi_3 = c_3$, the mapping functions $X_k(\xi_1, \xi_2, c_3)$ define a surface that is located a distance c_3 above the reference surface at each of its points.

- A surface of this type is defined herein as a parallel surface.

- Thus, in this approach, a shell is modelled mathematically as a set of contiguous parallel surfaces that fill the three-dimensional region of space occupied by the shell, \mathcal{R}_0.

- Note that the particles of a shell are contained within and on a top and a bottom bounding surface, that are generally not parallel surfaces.
PARALLEL SURFACES OF R_0 - CONTINUED

- For example, consider the cross section of a shell shown in the figure for a constant value of ξ_2

- The reference surface corresponds to $\xi_3 = 0$ and several parallel surfaces are shown that correspond to constant values of the coordinate ξ_3

- For this particular shell, the top and bottom surfaces are not parallel surfaces
PARALLEL SURFACES OF \mathcal{R}_0 - CONTINUED

- Let P denote a generic point of the reference surface with coordinates $(\xi_1, \xi_2, 0)$.

- Likewise, let Q and R denote the corresponding points of the top and bottom bounding surface, respectively.

- The ξ_3 coordinates of points Q and R are denoted by $c_3^+ (\xi_1, \xi_2) > 0$ and $c_3^- (\xi_1, \xi_2) < 0$, respectively, and the thickness is $h(\xi_1, \xi_2) = c_3^+ - c_3^- > 0$.
PARALLEL SURFACES OF \mathcal{R}_0 - CONTINUED

- The bounding surfaces are, in general, defined by two additional mappings $X_k = X_k^+(\xi_1, \xi_2, c_3^+)$ and $X_k = X_k^-(\xi_1, \xi_2, c_3^-)$, where $c_3^+ = c_3^+(\xi_1, \xi_2)$ and $c_3^- = c_3^-(\xi_1, \xi_2)$ are, in general, specified functions of the reference-surface coordinates.

- Typically, the middle surface of the shell is used as the reference surface, but it is not a necessary condition.

- In general, the reference surface can be any surface within the shell or a convenient fictitious surface outside the actual shell.

$\mathcal{R}_0 \subset \mathcal{E}^3$

Top bounding surface
$X_k = X_k^+(\xi_1, \xi_2, c_3^+)$

Bottom bounding surface
$X_k = X_k^-(\xi_1, \xi_2, c_3^-)$
PARALLEL SURFACES OF R_0 - CONTINUED

- The utility of defining a shell in terms of a corresponding reference surface is that it permits the pointwise behavior of the shell to be described completely in terms of the reference surface attributes.

- As shown previously, the coordinates $(\xi_1, \xi_2, 0)$ locate points of the reference surface, and values of the coordinate ξ_3 are measured perpendicular to the reference-surface tangent plane, at the given point of the reference surface.

- For this case, the shell thickness distribution is also given by

$$h(\xi_1, \xi_2) = \left| \hat{X}(\xi_1, \xi_2, c_3^+) - \hat{X}(\xi_1, \xi_2, c_3^-) \right|$$

and $c_3^- \leq \xi_3 \leq c_3^+$

with $c_3^+ = c_3^+(\xi_1, \xi_2)$ and $c_3^- = c_3^-(\xi_1, \xi_2)$
PARALLEL SURFACES OF R_0 - CONCLUDED

Undeformed, reference configuration, R_0

Reference surface, S_0

Thickness at point $P \in S_0$ is given by

$$h(\xi_1, \xi_2) = |\hat{X}(\xi_1, \xi_2, c_3^+) - \hat{X}(\xi_1, \xi_2, c_3^-)|$$
MATHEMATICAL DESCRIPTION OF THE SHELL REFERENCE SURFACE, S_0
MATHEMATICAL DESCRIPTION OF S_0

- The Cartesian coordinates of the two-dimensional set of points, $S_0 \subset \mathbb{R}_0 \subset \mathbb{E}^3$, forming the reference surface are specified parametrically by $x_1 = x_1(\xi_1, \xi_2), \ x_2 = x_2(\xi_1, \xi_2), \text{ and } x_3 = x_3(\xi_1, \xi_2)$.

- The parameters ξ_1 and ξ_2 are typically specified over two generally different intervals of the real line, I_1 and I_2, respectively.

- The domain of the mapping $x_1 = x_1(\xi_1, \xi_2), \ x_2 = x_2(\xi_1, \xi_2), \text{ and } x_3 = x_3(\xi_1, \xi_2)$ is given by the Cartesian product $I_1 \times I_2$.

- The set of ordered parameters (ξ_1, ξ_2) form a coordinate “net” within the surface, as shown in the next figure, and are called Gaussian coordinates of the surface.
MATHEMATICAL DESCRIPTION OF S_0 - CONTINUED

Point P, with Cartesian coordinates (x_1, x_2, x_3)

Domain of S_0, $I_1 \times I_2$
MATHEMATICAL DESCRIPTION OF S_0 - CONCLUDED

● The specific form of the functions $x_k = x_k(\xi_1, \xi_2)$ define implicitly the positive traversal directions of the corresponding curvilinear Gaussian-coordinate curves

● To characterize the deformation of a shell, it is convenient to use a vector description of the reference surface and its deformed image at an arbitrary time $t > 0$

● Therefore, let S_0 be an arbitrary smooth surface in E^3, in proximity of the shell space R_0, that is defined by the position vector $\dot{x} = x_k(\xi_1, \xi_2) \hat{i}_k$

● S_0 is referred to herein as the undeformed reference surface

● Points of S_0 are presumed to have a unique correspondance with material particles of the shell only when $S_0 \subset R_0 \subset E^3$
NATURAL BASE-VECTOR FIELDS OF S_0

- In formulating a two-dimensional shell theory, the properties of a three-dimensional shell are represented in terms of the attributes of a corresponding reference surface S_0.

- Thus, the need arises to define vector fields associated with the points of S_0.
Previously, it was shown that the natural base-vector fields for the shell space are defined by $\mathbf{g}_k(\xi_1, \xi_2, \xi_3) = \frac{\partial \mathbf{X}}{\partial \xi_k}$ and that the reference surface is defined by $\mathbf{x}_k(\xi_1, \xi_2) = \mathbf{X}_k(\xi_1, \xi_2, 0)$.

When S_0 is not a subset of R_0, S_0 is defined by specifying the mapping functions $\mathbf{x}_k(\xi_1, \xi_2, \xi_3)$ to include points outside of R_0.

In addition, the vectors $\mathbf{g}_k(\xi_1, \xi_2, \xi_3)$ are tangent to the coordinate curves at every point of the shell space.

Furthermore, the ξ_3 coordinate has been designated as a rectilinear coordinate that is measured perpendicular to the tangent plane $T_p(S_0)$, at every point $P \in S_0$ of the reference surface with coordinates $(\xi_1, \xi_2, 0)$.
Therefore, the vector fields

\[\mathbf{g}_\alpha(\xi_1, \xi_2, 0) = \frac{\partial \mathbf{X}}{\partial \xi_\alpha} \bigg|_{\xi_3 = 0} = \frac{\partial \mathbf{X}}{\partial \xi_3} \equiv \mathbf{a}_\alpha(\xi_1, \xi_2) \quad \text{and} \quad \mathbf{g}_3(\xi_1, \xi_2, 0) = \frac{\partial \mathbf{X}}{\partial \xi_3} \bigg|_{\xi_3 = 0} \]

form natural base-vector fields for vectors associated with points of the shell reference surface \(S_0 \).

The natural base-vector fields of \(S_0 \), that span the tangent plane, \(T_p(S_0) \), at every point \(P \in S_0 \), are

\[\mathbf{a}_1(\xi_1, \xi_2) = \frac{\partial \mathbf{X}}{\partial \xi_1} \quad \text{and} \quad \mathbf{a}_2(\xi_1, \xi_2) = \frac{\partial \mathbf{X}}{\partial \xi_2} \]

To complete the basis for points of \(S_0 \), it is also convenient to introduce the unit-magnitude vector field

\[\mathbf{\hat{n}}(\xi_1, \xi_2) = \frac{\mathbf{a}_1 \times \mathbf{a}_2}{|\mathbf{a}_1 \times \mathbf{a}_2|} \]

that is perpendicular to the tangent plane at every point \(P \in S_0 \).
At a given point of S_0, the base vectors \mathbf{a}_1 and \mathbf{a}_2 are tangent to the Gaussian-coordinate curves, as shown in the figure.

In general, the base vectors \mathbf{a}_1 and \mathbf{a}_2 are not orthogonal.

The angle between \mathbf{a}_1 and \mathbf{a}_2 is denoted by θ_{12}, as shown in the figure.

Note that generally $\theta_{12} = \theta_{12}(\xi_1, \xi_2)$.
The magnitudes of \hat{a}_1 and \hat{a}_2 are defined by

$$|\hat{a}_\alpha| = A_\alpha(\xi_1, \xi_2) = \sqrt{\hat{a}_\alpha \cdot \hat{a}_\alpha}$$

Noting that $|\hat{a}_\alpha| = |\hat{g}_\alpha(\xi_1, \xi_2, 0)|$, it follows that $A_\alpha(\xi_1, \xi_2) = H_\alpha(\xi_1, \xi_2, 0)$.

With these definitions, the unit-magnitude natural base vector fields of the undeformed reference surface S_0 are defined by

$$\hat{a}_1 = \frac{\hat{a}_1}{|\hat{a}_1|} = \frac{\hat{a}_1}{A_1}$$
and
$$\hat{a}_2 = \frac{\hat{a}_2}{|\hat{a}_2|} = \frac{\hat{a}_2}{A_2}$$

It is important to remember that although the magnitudes of these vector fields are constant, the directions are not - thus, $\hat{a}_\alpha = \hat{a}_\alpha(\xi_1, \xi_2)$.

The angle $\theta_{12}(\xi_1, \xi_2)$ is computed from $\cos \theta_{12} = \hat{a}_1 \cdot \hat{a}_2$.
NATURAL BASE-VECTOR FIELDS OF S_0 - CONTINUED

- The Cartesian-component forms of $\mathbf{a}_1(\xi_1, \xi_2)$ and $\mathbf{a}_2(\xi_1, \xi_2)$ are given by

$$\mathbf{a}_1(\xi_1, \xi_2) = \frac{\partial \mathbf{x}}{\partial \xi_1} \mathbf{i}_1 + \frac{\partial \mathbf{x}}{\partial \xi_1} \mathbf{i}_2 + \frac{\partial \mathbf{x}}{\partial \xi_1} \mathbf{i}_3$$

and

$$\mathbf{a}_2(\xi_1, \xi_2) = \frac{\partial \mathbf{x}}{\partial \xi_2} \mathbf{i}_1 + \frac{\partial \mathbf{x}}{\partial \xi_2} \mathbf{i}_2 + \frac{\partial \mathbf{x}}{\partial \xi_2} \mathbf{i}_3$$

or in indicial form by

$$\mathbf{a}_\alpha(\xi_1, \xi_2) = \frac{\partial \mathbf{x}_k}{\partial \xi_\alpha} \hat{i}_k$$, where $\mathbf{x}_k(\xi_1, \xi_2)$ are known.

- Thus,

$$A_\alpha = \sqrt{\mathbf{a}_\alpha \cdot \mathbf{a}_\alpha}$$

yields

$$A_1 = \sqrt{\left(\frac{\partial \mathbf{x}_1}{\partial \xi_1}\right)^2 + \left(\frac{\partial \mathbf{x}_2}{\partial \xi_1}\right)^2 + \left(\frac{\partial \mathbf{x}_3}{\partial \xi_1}\right)^2}$$

and

$$A_2 = \sqrt{\left(\frac{\partial \mathbf{x}_1}{\partial \xi_2}\right)^2 + \left(\frac{\partial \mathbf{x}_2}{\partial \xi_2}\right)^2 + \left(\frac{\partial \mathbf{x}_3}{\partial \xi_2}\right)^2}$$

or in indicial form

$$A_\alpha = \sqrt{\frac{\partial \mathbf{x}_k}{\partial \xi_\alpha} \frac{\partial \mathbf{x}_k}{\partial \xi_\alpha}}.$$
Similarly,

\[\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2 = \left(\frac{\partial \mathbf{x}_2}{\partial \xi_1} \frac{\partial \mathbf{x}_3}{\partial \xi_2} - \frac{\partial \mathbf{x}_3}{\partial \xi_1} \frac{\partial \mathbf{x}_2}{\partial \xi_2} \right) \mathbf{i}_1 + \left(\frac{\partial \mathbf{x}_3}{\partial \xi_1} \frac{\partial \mathbf{x}_1}{\partial \xi_2} - \frac{\partial \mathbf{x}_1}{\partial \xi_1} \frac{\partial \mathbf{x}_3}{\partial \xi_2} \right) \mathbf{i}_2 \\
+ \left(\frac{\partial \mathbf{x}_1}{\partial \xi_1} \frac{\partial \mathbf{x}_2}{\partial \xi_2} - \frac{\partial \mathbf{x}_2}{\partial \xi_1} \frac{\partial \mathbf{x}_1}{\partial \xi_2} \right) \mathbf{i}_3 \]

The components of the unit-magnitude vector field \(\hat{\mathbf{n}} = n_k \hat{i}_k \) are given in terms of the reference-surface parametrization \(\mathbf{x}_k(\xi_1, \xi_2) \) by

\[n_1 = \frac{1}{|\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2|} \left[\frac{\partial \mathbf{x}_2}{\partial \xi_1} \frac{\partial \mathbf{x}_3}{\partial \xi_2} - \frac{\partial \mathbf{x}_3}{\partial \xi_1} \frac{\partial \mathbf{x}_2}{\partial \xi_2} \right], \quad n_2 = \frac{1}{|\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2|} \left[\frac{\partial \mathbf{x}_1}{\partial \xi_1} \frac{\partial \mathbf{x}_3}{\partial \xi_2} - \frac{\partial \mathbf{x}_3}{\partial \xi_1} \frac{\partial \mathbf{x}_1}{\partial \xi_2} \right], \quad n_3 = \frac{1}{|\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2|} \left[\frac{\partial \mathbf{x}_1}{\partial \xi_1} \frac{\partial \mathbf{x}_2}{\partial \xi_2} - \frac{\partial \mathbf{x}_2}{\partial \xi_1} \frac{\partial \mathbf{x}_1}{\partial \xi_2} \right] \]

where
Note that once \(\hat{n}(\xi_1, \xi_2) = n_k(\xi_1, \xi_2) \hat{i}_k \) is known, points of the shell space are located by using
\[
\tilde{X}(\xi_1, \xi_2, \xi_3) = \tilde{x}(\xi_1, \xi_2) + \xi_3 \hat{n}(\xi_1, \xi_2)
\]

Moreover, the bounding surfaces of the shell space are given by
\[
\tilde{X}(\xi_1, \xi_2, c_3^+) = \tilde{x}(\xi_1, \xi_2) + c_3^+(\xi_1, \xi_2) \hat{n}(\xi_1, \xi_2)
\]
and
\[
\tilde{X}(\xi_1, \xi_2, c_3^-) = \tilde{x}(\xi_1, \xi_2) + c_3^-(\xi_1, \xi_2) \hat{n}(\xi_1, \xi_2)
\]

and the shell thickness is given by
\[
h(\xi_1, \xi_2) = c_3^+ - c_3^- > 0
\]
In this figure, $S_0 \subset R_0 \subset \mathcal{E}^3$
VECTOR FIELDS DEFINED ON S_0

- The set $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ forms a natural basis for vector fields in \mathcal{E}^3 that are associated with points of the reference surface S_0.

- Thus, any vector $\mathbf{V}(\xi_1, \xi_2)$ in \mathcal{E}^3 that is associated with the point $P \in S_0$, can be expressed as a linear combination of the three base vectors.

- In addition, the set of unit vectors $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ forms a basis for vector fields associated with any point $P \in S_0$.

Undeformed surface, S_0

$\mathbf{x} = x_k(\xi_1, \xi_2) \hat{i}_k$
VECTOR FIELDS DEFINED ON S_0 - CONCLUDED

- Thus, any vector $\mathbf{V}(\xi_1, \xi_2)$ in \mathbb{E}^3 that is associated with the point $P \in S_0$, can also be expressed as a linear combination of the vectors $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$.

- In the present study, vectors associated with points of S_0 are expressed as

$$\mathbf{V} = V_\alpha \hat{a}_\alpha + V_3 \hat{n}$$

unless indicated otherwise.
METRIC COEFFICIENTS OF S_0

- Let $S_\varepsilon(P)$ denote a small, *infinitesimal neighborhood* of an arbitrary point P of the undeformed reference surface, S_0.

- Likewise, let point Q be in $S_\varepsilon(P)$ and let C denote a smooth *surface curve* that connects points P and Q.

- The surface curve C is defined generally by a parametrization of the form $\xi_\alpha = \xi_\alpha(\mu)$, where μ is a parameter.

- For convenience, let the parametrization of C be given by $\xi_\alpha = \xi_\alpha(s)$, where $0 \leq s \leq L$ is the arc-length coordinate of C and L is its length.
METRIC COEFFICIENTS OF S_0 - CONTINUED

- As the curve is traversed by an infinitesimal amount ds, from point P to point Q in the previous figure, a differential increment in the surface coordinates $\xi_\alpha = \xi_\alpha(s)$ is induced.

- The position vector to point Q is $\mathbf{x}(\xi_1 + d\xi_1, \xi_2 + d\xi_2) = \mathbf{x}(\xi_1, \xi_2) + d\mathbf{x}$, where $d\mathbf{x}$ is the vector from point P to point Q shown in the previous figure.

- The length of surface arc between points P and Q shown in the previous figure is given by $ds = \overline{PQ}$.

- The differential arc lengths \overline{PR} and \overline{PS} of the coordinate curves, shown in the previous figure, are denoted by $\overline{PR} = ds_1$ and $\overline{PS} = ds_2$.
The arc length ds of the two infinitesimally close points, P and Q, is given by the dot product

$$ds^2 = d\vec{x} \cdot d\vec{x}$$

Noting that $d\vec{x} = \frac{\partial \vec{x}}{\partial \xi_\alpha} d\xi_\alpha$, it follows that

$$ds^2 = \left(\vec{a}_\alpha \cdot \vec{a}_\beta\right) d\xi_\alpha d\xi_\beta$$

The quantities $\vec{a}_\alpha \cdot \vec{a}_\beta = a_{\alpha\beta}$ are called the components of the surface metric tensor.

These metric quantities enable the measurement of surface-curve lengths, surface areas, and angles between the tangent lines of intersecting surface curves.
METRIC COEFFICIENTS OF S_0 - CONTINUED

1. Thus, the arc length ds is expressed as $ds^2 = a_{\alpha\beta} \xi_{\alpha} \xi_{\beta}$, or in expanded form as $ds^2 = a_{11}(d\xi_1)^2 + 2a_{12} d\xi_1 d\xi_2 + a_{22}(d\xi_2)^2$.

2. An alternative representation of the arc length ds used herein is given by

$$ds^2 = (A_1 d\xi_1)^2 + 2A_1 A_2 \cos \theta_{12} d\xi_1 d\xi_2 + (A_2 d\xi_2)^2$$

where

$$A_1(\xi_1, \xi_2) = \sqrt{\hat{a}_1 \cdot \hat{a}_1} = |\hat{a}_1| = \sqrt{a_{11}}, \quad A_2(\xi_1, \xi_2) = \sqrt{\hat{a}_2 \cdot \hat{a}_2} = |\hat{a}_2| = \sqrt{a_{22}},$$

and

$$\cos \theta_{12} = \frac{\hat{a}_1 \cdot \hat{a}_2}{|\hat{a}_1| |\hat{a}_2|} = \frac{a_{12}}{\sqrt{a_{11}a_{22}}}.$$
METRIC COEFFICIENTS OF S_0 - CONCLUDED

- The functions A_1 and A_2 are known as the Lame’ parameters of the undeformed reference surface, but are often referred to as metric coefficients or metric parameters.

- For the special case of orthogonal Gaussian reference-surface coordinates,

$$\theta_{12} = \frac{\pi}{2} \quad \text{and} \quad ds^2 = \left(A_1 \, d\xi_1 \right)^2 + \left(A_2 \, d\xi_2 \right)^2$$
When dealing with general nonorthogonal Gaussian coordinates, it is also convenient to introduce the unit-magnitude vector fields
\[\hat{a}^1 = \hat{a}_2 \times \hat{n} \quad \text{and} \quad \hat{a}^2 = \hat{n} \times \hat{a}_1 \]
for the reference surface such that
\[\hat{a}^1 \cdot \hat{n} = 0, \quad \hat{a}^2 \cdot \hat{n} = 0, \quad \hat{a}^1 \cdot \hat{a}_2 = \hat{a}^2 \cdot \hat{a}_1 = 0, \quad \text{and} \quad \hat{a}^1 \times \hat{a}^2 = \hat{a}_1 \times \hat{a}_2 \]
Noting that these conditions on \(\hat{a}^1 \) and \(\hat{a}^2 \) imply that the angle between \(\hat{a}^1 \) and \(\hat{a}_1 \), and between \(\hat{a}^2 \) and \(\hat{a}_2 \), is \(\frac{\pi}{2} - \theta_{12} \) it follows that
\[\hat{a}^1 \cdot \hat{a}_1 = \sin \theta_{12} \quad \text{and} \quad \hat{a}^2 \cdot \hat{a}_2 = \sin \theta_{12} \]; thus, \[\hat{a}^\alpha \cdot \hat{a}_\beta = \delta^\alpha_\beta \sin \theta_{12} \]
Moreover, it follows that
\[\hat{a}^1 \times \hat{a}_1 = \cos \theta_{12} \hat{n} \quad \hat{a}^1 \times \hat{a}_2 = \hat{n} \quad \hat{a}^1 \times \hat{n} = -\hat{a}_2 \]
\[\hat{a}^2 \times \hat{a}_1 = -\hat{n} \quad \hat{a}^2 \times \hat{a}_2 = -\cos \theta_{12} \hat{n} \quad \hat{a}^2 \times \hat{n} = \hat{a}_1 \]
RECIPROCAL BASIS OF S_0 - CONTINUED

Reference surface, S_0

Tangent plane, $T_p(S_0)$

$\hat{a}^1 \perp \hat{a}^2$ and $\hat{a}^1 \perp \hat{n}$

$\hat{a}^2 \perp \hat{a}^1$ and $\hat{a}^2 \perp \hat{n}$

$\hat{a}^1 \times \hat{a}^2$ and $\hat{a}_1 \times \hat{a}_2$ are parallel to \hat{n}
RECIROCAL BASIS OF S_0 - CONCLUDED

- Expressing \hat{a}^1 and \hat{a}^2 as linear combinations of \hat{a}_1 and \hat{a}_2 and applying these additional relationships yields the results

$$\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12} = \hat{a}_2 \times \hat{n} \quad \text{and} \quad \hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12} = \hat{n} \times \hat{a}_1$$

- Inverting these equations gives

$$\hat{a}_1 = \hat{a}^1 \csc \theta_{12} + \hat{a}^2 \cot \theta_{12} \quad \text{and} \quad \hat{a}_2 = \hat{a}^1 \cot \theta_{12} + \hat{a}^2 \csc \theta_{12}$$

- It is important to note that the vectors $\{\hat{a}^1, \hat{a}^2, \hat{n}\}$ are inherently linearly independent and, as a result, also constitute a basis for vector fields associated with points of the reference surface.

- These vector fields are referred to herein as reciprocal base-vector fields for convenience although they satisfy $\hat{a}^\alpha \cdot \hat{a}_\beta = \delta^\alpha_\beta \sin \theta_{12}$ and not the true reciprocal relation $\hat{a}^\alpha \cdot \hat{a}_\beta = \delta^\alpha_\beta$.

Consider the infinitesimal changes in the base-vector fields associated with the reference surface, depicted in the figure.
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- The changes in the orientation of each base vector initially at point P depends generally on how the surface bends and twists, and how the curve being traversed bends within the surface.

- The term "normal curvature" is used in differential geometry to describe the bending of a surface along a given infinitesimal path of traversal.

- Similarly, the term "surface torsion" is used to describe the twisting of a surface along a given infinitesimal path of traversal.

- The term "geodesic curvature" is used to describe how the infinitesimal path of traversal bends within the surface.

- These descriptive terms are quantified as follows.
Let \(\hat{\mathbf{t}}(P) \), \(\hat{\mathbf{n}}(P) \), and \(\hat{\mathbf{b}}(P) \) be the unit-magnitude tangent, normal, and binormal vector fields, respectively, associated with the surface curve \(C \) and the tangent plane \(T_p(S_\varepsilon) \) at point \(P \) with coordinates \((\xi_1, \xi_2)\).

Likewise, let \(\hat{\mathbf{t}}(Q) \), \(\hat{\mathbf{n}}(Q) \), and \(\hat{\mathbf{b}}(Q) \) be the corresponding unit-magnitude tangent, normal, and binormal vector fields, respectively, associated with the tangent plane \(T_q(S_\varepsilon) \) at a point \(Q \) in the infinitesimal neighborhood and the surface curve \(C \).
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- As the curve C is traversed from point P to point Q, the three vectors at point P come into coincidence with the corresponding ones at point Q, and the tangent plane $T_P(S_0)$ becomes coincident with $T_Q(S_0)$.

![Diagram of a curve and tangent planes](image)
In general, the geometric figure formed by the three orthogonal vectors \(\hat{\mathbf{t}}(P), \hat{\mathbf{n}}(P), \) and \(\hat{\mathbf{b}}(P) \) associated with the tangent plane \(T_p(S) \) undergoes **pitch, roll, and yaw** as the surface curve is traversed by an infinitesimal amount.

- **Pitch** is associated with how the surface curves or bends in the direction of traversal from point \(P \) to point \(Q \).
- **Roll** is associated with how the surface twists from point \(P \) to point \(Q \).
- **Yaw** is associated with how the differential arc \(\overline{PQ} \) bends relative to the tangent plane \(T_p(S) \) as the curve is traversed from \(P \) to \(Q \).

The definitions of the quantities used in **differential geometry** to characterize the geometric properties are described as follows.
The term “normal curvature” is used in differential geometry to describe how pitch forward as a surface curve C is traversed by amount ds. The center of curvature, C, is the point where the normal curvature, C, is parallel to the surface spanned by \hat{n} and \hat{t}.
Note that in the previous figure, the vector \(\hat{n} \) is directed away from the center of curvature.

The normal curvature is defined herein by

\[
\frac{1}{r_n} \equiv \mathbf{t} \cdot \frac{d\hat{n}}{ds},
\]

where \(r_n(\xi_1, \xi_2) \) is called the radius of normal curvature.

Other definitions of the normal curvature appear in the literature in which \(\hat{n} \) is directed toward the center of curvature shown in the previous figure.

The particular definition given above for the normal curvature is used herein so that a sphere with \(\hat{n} \) pointing outward, away from the center of the sphere, has a positive value for the normal curvature.
“Surface torsion” is used to characterize how the set \(\{ \hat{t}, \hat{n}, \hat{b} \} \) rolls as a surface curve \(C \) is traversed by amount \(ds \).

In this figure, \(C_\perp \) is the surface curve that is tangent to \(\hat{b} + d\hat{b} \) at point \(Q \).

The radius of torsion \(r_t(\xi_1, \xi_2) \) is defined by

\[
\frac{1}{r_t} \equiv \frac{\hat{b} \cdot d\hat{n}}{ds}
\]
The term “geodesic curvature” is used to characterize how the set \{\hat{t}, \hat{n}, \hat{b}\} yaws as a surface curve C is traversed by amount ds.
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- The radius of geodesic curvature, $\rho_g(\xi_1, \xi_2)$, is defined by

$$\frac{1}{\rho_g} \equiv - \hat{b} \cdot \frac{d\hat{t}}{ds}$$

- In general, these definitions apply to any arbitrary, smooth surface curve, and when applied to the ξ_1-coordinate curve,

$$\{\hat{t}, \hat{n}, \hat{b}\} \rightarrow \{\hat{a}_1, \hat{n}, - \hat{a}_2^2\}$$

$$\frac{1}{r_n} \equiv \hat{t} \cdot \frac{d\hat{n}}{ds}$$

$$\frac{1}{r_t} \equiv \hat{b} \cdot \frac{d\hat{n}}{ds}$$

$$\frac{1}{\rho_g} \equiv - \hat{b} \cdot \frac{d\hat{t}}{ds}$$

$$\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}$$

$$\frac{1}{r_{12}} = - \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}$$

$$\frac{1}{\rho_{11}} = \hat{a}_2^2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1}$$
Likewise, for the ξ_2- coordinate curve,

\[
\{\hat{t}, \hat{n}, \hat{b}\} \quad \qua
And, the symbols ρ_{11} and ρ_{22} denote the *radii of geodesic curvature* along the ξ_1- and ξ_2- coordinate curves, respectively.

Alternate forms for the surface curvatures are obtained by using

$$\frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\hat{a}_1 \cdot \hat{n}) = 0$$

and

$$\frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\hat{a}_2 \cdot \hat{n}) = 0$$
to get

$$\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = - \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{n}$$

and

$$\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = - \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{n}$$

These results yield

$$\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}$$

$$\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}$$
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- A very useful relationship between the Gaussian-coordinate curvatures and torsions of the reference surface is obtained by using

\[
\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12} \quad \text{and} \quad \hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}
\]

with

\[
\frac{1}{r_{12}} = -\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{1}{r_{21}} = \hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]

to get

\[
\frac{1}{r_{12}} = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) \cot \theta_{12} - \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) \csc \theta_{12}
\]

and

\[
\frac{1}{r_{21}} = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \csc \theta_{12} - \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \cot \theta_{12}
\]

- Next,

\[
\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]

are used to get
CURVATURES AND TORSIONS OF S_0 - CONTINUED

\[\frac{1}{r_{12}} = \cot \theta_{12} \left(\frac{a_1}{A_1} \right) + \left(\frac{1}{A_2} \right) \csc \theta_{12} \]

and

\[\frac{1}{r_{21}} = \left(\frac{a_2}{A_1} \right) \csc \theta_{12} - \cot \theta_{12} \]

- From $\hat{a}_\alpha \cdot \hat{n} = 0$, it follows that

\[\frac{1}{A_{(\beta)}} \frac{\partial \hat{a}_\alpha}{\partial \xi_\beta} \cdot \hat{n} = - \frac{1}{A_{(\beta)}} \frac{\partial \hat{n}}{\partial \xi_\beta} \cdot \hat{a}_\alpha \]

- As a result,

\[\frac{1}{r_{12}} = \cot \theta_{12} \left(\frac{a_1}{A_1} \right) + \left(\frac{1}{A_2} \right) \csc \theta_{12} \]

and

\[\frac{1}{r_{21}} = - \left(\frac{1}{A_2} \right) \csc \theta_{12} - \frac{\cot \theta_{12}}{r_{22}} \]

- Then, noting that for a smooth surface

\[\frac{\partial \hat{a}_1}{\partial \xi_2} = \frac{\partial \hat{a}_2}{\partial \xi_1} \]

or equivalently,

\[\frac{\partial}{\partial \xi_2} (A_1 \hat{a}_1) = \frac{\partial}{\partial \xi_1} (A_2 \hat{a}_2) \]
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- Taking the dot product of both sides of $\frac{\partial}{\partial \xi_2}(A_1 \hat{a}_1) = \frac{\partial}{\partial \xi_1}(A_2 \hat{a}_2)$ with \hat{n} and simplifying gives $\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{n} = \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{n}$

- Using this result with the previous expression for the radii of surface twist gives the relationship

$$\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)$$

- Explicit expressions for the radii of geodesic curvature are obtained by first noting that differentiating $\hat{a}_1 \cdot \hat{a}_1 = 1$ and $\hat{a}_2 \cdot \hat{a}_2 = 1$ gives the results $\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = 0$, $\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = 0$, $\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = 0$, $\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = 0$.
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- In indicial form, these results are expressed as
 \[
 \hat{a}_{(\alpha)} \cdot \frac{1}{A_{(\beta)}} \frac{\partial \hat{a}_{\alpha}}{\partial \xi_{\beta}} = 0
 \]

- Substituting $\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12}$ and $\hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}$ into the previous expressions for the radii of geodesic curvature and using
 \[
 \hat{a}_{(\alpha)} \cdot \frac{1}{A_{(\beta)}} \frac{\partial \hat{a}_{\alpha}}{\partial \xi_{\beta}} = 0 \]
 gives
 \[
 \sin \theta_{12} = \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1}
 \]
 and
 \[
 \sin \theta_{12} = - \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2}
 \]

- Next, taking the dot product of each side of
 \[
 \frac{\partial}{\partial \xi_2} (A_1 \hat{a}_1) = \frac{\partial}{\partial \xi_1} (A_2 \hat{a}_2)
 \]
 with
 \[
 \hat{a}_1 \quad \text{and using} \quad \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_1 = 0
 \]
 gives
 \[
 \frac{1}{A_1 A_2} \left(\frac{\partial A_1}{\partial \xi_2} - \frac{\partial A_2}{\partial \xi_1} \cos \theta_{12} \right) = \frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{a}_1
 \]
Likewise, taking the dot product of each side of
\[\frac{\partial}{\partial \xi_2}(A_1 \hat{a}_1) = \frac{\partial}{\partial \xi_1}(A_2 \hat{a}_2) \]
with \(\hat{a}_2 \) and using \(\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{a}_2 = 0 \) gives
\[\frac{1}{A_1 A_2} \left(\frac{\partial A_1}{\partial \xi_2} \cos \theta_{12} - \frac{\partial A_2}{\partial \xi_1} \right) = -\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_2 \]

From \(\frac{1}{A_1} \frac{\partial}{\partial \xi_1}(\hat{a}_1 \cdot \hat{a}_2) = \frac{1}{A_1} \frac{\partial}{\partial \xi_1}(\cos \theta_{12}) \) and \(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = \frac{\sin \theta_{12}}{\rho_{11}} \) it follows that
\[\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1}(\cos \theta_{12}) - \frac{\sin \theta_{12}}{\rho_{11}} \]
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- Similarly,
 \[
 \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\hat{a}_1 \cdot \hat{a}_2) = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\cos \theta_{12}) \quad \text{and} \quad \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = -\frac{\sin \theta_{12}}{\rho_{22}}
 \]
 yield
 \[
 \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_2 = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\cos \theta_{12}) + \frac{\sin \theta_{12}}{\rho_{22}}
 \]

- Thus,
 \[
 \frac{1}{A_1A_2} \left(\frac{\partial A_1}{\partial \xi_2} - \frac{\partial A_2}{\partial \xi_1} \cos \theta_{12} \right) = \frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{a}_1
 \]
 becomes
 \[
 \frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1A_2} \left(\frac{\partial A_2}{\partial \xi_1} \cos \theta_{12} - \frac{\partial A_1}{\partial \xi_2} \right) + \frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} (\cos \theta_{12})
 \]
CURVATURES AND TORSIONS OF S_0 - CONTINUED

- Likewise, \(\frac{1}{A_1 A_2} \left(\frac{\partial A_1}{\partial \xi_2} \cos_{12} - \frac{\partial A_2}{\partial \xi_1} \right) = - \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_2 \)

- These two expressions for the geodesic curvatures can be solved to obtain the following useful formulas:

\[
\frac{\partial A_1}{\partial \xi_2} = A_1 A_2 \left(\cot_{12} \frac{1}{\rho_{22}} - \csc_{12} \frac{1}{\rho_{11}} - \frac{\csc_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \csc_{12} \frac{\partial \theta_{12}}{\partial \xi_2} \right)
\]

\[
\frac{\partial A_2}{\partial \xi_1} = A_1 A_2 \left(\csc_{12} \frac{1}{\rho_{22}} - \cot_{12} \frac{1}{\rho_{11}} - \frac{\cot_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \csc_{12} \frac{\partial \theta_{12}}{\partial \xi_2} \right)
\]
Compact expressions for the radii of geodesic curvature are given by

\[
\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right)
\]

and

\[
\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right)
\]
For the special case of orthogonal Gaussian reference-surface coordinates,

\[
\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \quad \rightarrow \quad \frac{1}{r_{21}} = - \frac{1}{r_{12}}
\]

\[
\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right) \quad \rightarrow \quad \frac{1}{\rho_{11}} = - \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2}
\]

\[
\frac{1}{\rho_{22}} = - \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right) \quad \rightarrow \quad \frac{1}{\rho_{22}} = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1}
\]
Another special case of practical importance consists of orthogonal Gaussian-coordinate curves whose tangent vectors are aligned with the principal directions of surface normal curvature.

This class of Gaussian coordinates are referred to herein as **principal-curvature coordinates**.

In general, there exists an infinite number of smooth curves that pass through point P of a smooth surface, each of which generally have a different value for the radius of normal curvature at point P.
CURVATURES AND TORSIONS OF S_0 - CONCLUDED

- Sufficient conditions for identifying the coordinate curves that correspond to the directions of principal curvature are that they are orthogonal and that

$$\frac{1}{r_{12}} = \frac{1}{r_{21}} = 0$$

- For this very special case, the following notation is used herein

$r_{11} \rightarrow R_1$ and $r_{22} \rightarrow R_2$
A parametric representation of an elliptic paraboloid is given by

$$x_1 = \xi_1, \quad x_2 = \xi_2, \quad \text{and} \quad x_3 = -\left[2(\xi_1)^2 + (\xi_2)^2\right]$$

where

$$\xi_1 \in I_1 = [-1, 1] \quad \text{and} \quad \xi_2 \in I_2 = [-1, 1]$$
For this parametric representation,
\[\mathbf{x} = \xi_1 \hat{i}_1 + \xi_2 \hat{i}_2 - \left[2(\xi_1)^2 + (\xi_2)^2 \right] \hat{i}_3 \]

The natural base-vector fields are obtained as
\[\hat{a}_1 = \frac{\partial \mathbf{x}}{\partial \xi_1} = \hat{i}_1 - 4\xi_1 \hat{i}_3 \]
and
\[\hat{a}_2 = \frac{\partial \mathbf{x}}{\partial \xi_2} = \hat{i}_2 - 2\xi_2 \hat{i}_3 \]

The corresponding metric coefficients are
\[A_1 = \left| \hat{a}_1 \right| = \sqrt{1 + (4\xi_1)^2} \]
and
\[A_2 = \left| \hat{a}_2 \right| = \sqrt{1 + (2\xi_2)^2} \]

Thus,
\[\hat{a}_1 = \frac{\hat{a}_1}{A_1} = \frac{\hat{i}_1 - 4\xi_1 \hat{i}_3}{\sqrt{1 + (4\xi_1)^2}} \]
and
\[\hat{a}_2 = \frac{\hat{a}_2}{A_2} = \frac{\hat{i}_2 - 2\xi_2 \hat{i}_3}{\sqrt{1 + (2\xi_2)^2}} \]

In addition,
\[\cos \theta_{12} = \hat{a}_1 \cdot \hat{a}_2 = \frac{8\xi_1 \xi_2}{\sqrt{1 + (4\xi_1)^2} \sqrt{1 + (2\xi_2)^2}} \]
S_0 GEOMETRY EXAMPLE - CONTINUED

Contours of θ_{12}

- 135 deg
- 120 deg
- 105 deg
- 90 deg
- 75 deg
- 60 deg
- 45 deg

ξ_1, ξ_2, ξ_3
Next, \(\hat{a}_1 \times \hat{a}_2 = 4\xi_1 \hat{i}_1 + 2\xi_2 \hat{i}_2 + \hat{i}_3 \) and \(|\hat{a}_1 \times \hat{a}_2| = \sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2} \).

Thus, \(\hat{n} = \frac{\hat{a}_1 \times \hat{a}_2}{|\hat{a}_1 \times \hat{a}_2|} = \frac{4\xi_1 \hat{i}_1 + 2\xi_2 \hat{i}_2 + \hat{i}_3}{\sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}} \).

The reciprocal base-vector fields \(\hat{a}^1 = \hat{a}_2 \times \hat{n} \) and \(\hat{a}^2 = \hat{n} \times \hat{a}_1 \) become

\[
\hat{a}^1 = \frac{\left[1 + (2\xi_2)^2\right] \hat{i}_1 - 8\xi_1\xi_2 \hat{i}_2 - 4\xi_1 \hat{i}_3}{\sqrt{1 + (2\xi_2)^2}} \frac{\sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}{\sqrt{1 + (4\xi_1)^2}}
\]

and

\[
\hat{a}^2 = \frac{-8\xi_1\xi_2 \hat{i}_1 + \left[1 + (4\xi_1)^2\right] \hat{i}_2 - 2\xi_2 \hat{i}_3}{\sqrt{1 + (2\xi_2)^2}} \frac{\sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}{\sqrt{1 + (4\xi_1)^2}}
\]

Also,

\[
\sin \theta_{12} = \hat{a}^1 \cdot \hat{a}^1 = \frac{\sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}{\sqrt{1 + (4\xi_1)^2}} \frac{\sqrt{1 + (2\xi_2)^2}}{\sqrt{1 + (2\xi_2)^2}}
\]
\[S_0 \] GEOMETRY EXAMPLE - CONTINUED

- Moreover,
 \[
 \cot \theta_{12} = \frac{8\xi_1\xi_2}{\sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}
 \]

- The curvatures and torsions are given by

\[
\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{4}{\left[1 + (4\xi_1)^2 \right] \sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}
\]

\[
\frac{1}{r_{12}} = -\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{32\xi_1\xi_2}{\left[1 + (4\xi_1)^2 \right] \left[1 + (4\xi_1)^2 + (2\xi_2)^2 \right]}
\]

\[
\frac{1}{r_{21}} = \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{-16\xi_1\xi_2}{\left[1 + (2\xi_2)^2 \right] \left[1 + (4\xi_1)^2 + (2\xi_2)^2 \right]}
\]

\[
\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{2}{\left[1 + (2\xi_2)^2 \right] \sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}
\]
S_0 GEOMETRY EXAMPLE - CONTINUED

Contours of $1/r_{11}$

Contours of $1/r_{22}$
S_0 GEOMETRY EXAMPLE - CONTINUED

Contours of $1/r_{12}$

Contours of $1/r_{21}$
Likewise, the geodesic curvatures are given by

\[
\frac{1}{\rho_{11}} = \hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = \frac{8\xi_2}{\left[1 + (4\xi_1)^2\right]^{3/2} \sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}
\]

\[
\frac{1}{\rho_{22}} = -\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = \frac{-8\xi_1}{\left[1 + (2\xi_2)^2\right]^{3/2} \sqrt{1 + (4\xi_1)^2 + (2\xi_2)^2}}
\]
\mathcal{S}_0 GEOMETRY EXAMPLE - CONCLUDED

Contours of $1/\rho_{11}$

Contours of $1/\rho_{22}$
DERIVATIVES OF BASE-VECTOR FIELDS ON S_0

- The set of vector fields $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ are functions of the Gaussian reference-surface coordinates that form a pointwise basis for representing vector fields associated with the points of the shell reference surface.

- Thus, to determine the derivatives of a reference-surface vector field, the derivatives of $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ are needed.

- Because $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ form a basis at a given point of the reference surface, the partial derivatives of $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$ evaluated at that point can be expressed as a linear combination of $\{\hat{a}_1, \hat{a}_2, \hat{n}\}$; that is,

$$\frac{1}{A_{(\beta)}} \frac{\partial \hat{a}_\alpha}{\partial \xi^\beta} = C_\beta^{\alpha\gamma} \hat{a}_\gamma + C_\beta^{\alpha 3} \hat{n}$$

and

$$\frac{1}{A_{(\beta)}} \frac{\partial \hat{n}}{\partial \xi^\beta} = C_\beta^{3\gamma} \hat{a}_\gamma + C_\beta^{33} \hat{n}$$
DERIVATIVES OF BASE-VECTOR FIELDS ON S_0

CONTINUED

- In expanded form, the linear combinations are given by

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = C_{11}^1 \hat{a}_1 + C_{12}^1 \hat{a}_2 + C_{13}^1 \hat{n} \quad \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = C_{21}^1 \hat{a}_1 + C_{22}^1 \hat{a}_2 + C_{23}^1 \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = C_{11}^2 \hat{a}_1 + C_{12}^2 \hat{a}_2 + C_{13}^2 \hat{n} \quad \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = C_{21}^2 \hat{a}_1 + C_{22}^2 \hat{a}_2 + C_{23}^2 \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = C_{11}^3 \hat{a}_1 + C_{12}^3 \hat{a}_2 + C_{13}^3 \hat{n} \quad \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = C_{21}^3 \hat{a}_1 + C_{22}^3 \hat{a}_2 + C_{23}^3 \hat{n}
\]

- The functions C_{ik}^j are found by using $\hat{a}^\alpha \cdot \hat{a}_\beta = \delta^\alpha_\beta \sin \theta_{12}$ and $\hat{a}^\alpha \cdot \hat{n} = 0$

- In particular,

\[
C_{11}^1 = \left(\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \right) \csc \theta_{12} \quad C_{12}^1 = \left(\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \right) \csc \theta_{12} \quad C_{13}^1 = \frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{n}
\]
DERIVATIVES OF BASE-VECTOR FIELDS ON \mathcal{S}_0

CONTINUED

Likewise,

\[
\begin{align*}
C_2^{11} &= \left(\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \right) \hat{a}^1 \csc \theta \quad C_2^{12} &= \left(\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \right) \hat{a}^2 \csc \theta \quad C_2^{13} &= \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{n} \\
C_2^{21} &= \left(\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \right) \hat{a}^1 \csc \theta \quad C_2^{22} &= \left(\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \right) \hat{a}^2 \csc \theta \quad C_2^{23} &= \frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{n} \\
C_2^{31} &= \left(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \hat{a}^1 \csc \theta \quad C_2^{32} &= \left(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \hat{a}^2 \csc \theta \quad C_2^{33} &= \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{n} \\
C_2^{31} &= \left(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \hat{a}^1 \csc \theta \quad C_2^{32} &= \left(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \hat{a}^2 \csc \theta \quad C_2^{33} &= \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{n}
\end{align*}
\]
Explicit expressions for the functions C^i_k are found by using the following previously derived results:

\[
\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12} \\
\hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}_1 = 0 \\
\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_1 = 0
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}_2 = \frac{\sin \theta_{12}}{\rho_{11}} \\
\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{a}_2 = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\cos \theta_{12}) + \frac{\sin \theta_{12}}{\rho_{22}}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{a}_1 = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\cos \theta_{12}) - \frac{\sin \theta_{12}}{\rho_{11}}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}_1 = 0
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}_2 = - \frac{\sin \theta_{12}}{r_{21}} - \frac{\cos \theta_{12}}{r_{22}}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{a}_1 = \frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}}
\]
DERIVATIVES OF BASE-VECTOR FIELDS ON S_0
CONTINUED

\[
\begin{align*}
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}_1 &= -\frac{\sin \theta_{12}}{\rho_{22}}, \\
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}_2 &= 0, \\
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{n} &= -\frac{1}{r_{22}}.
\end{align*}
\]

\[
\begin{align*}
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}_1 &= \frac{1}{r_{11}}, \\
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}_2 &= \frac{\cos \theta_{12}}{r_{11}} - \frac{\sin \theta_{12}}{r_{12}}, \\
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}_1 &= \frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}}, \\
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}_2 &= \frac{1}{r_{22}}.
\end{align*}
\]

- In addition, differentiating $\hat{n} \cdot \hat{n} = 1$ gives the additional results

\[
\begin{align*}
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{n} &= 0 \quad \text{and} \quad \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{n} = 0.
\end{align*}
\]

- Applying these dot-product relations yields the following results for the dot products involving the reciprocal basis
DERIVATIVES OF BASE-VECTOR FIELDS ON S_0

CONTINUED

\[\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}^1 = -\frac{\cos \theta_{12}}{\rho_{11}} \]

\[\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}^1 = -\frac{\cot \theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{csc \theta_{12}}{A_2} \right) - \frac{\cos \theta_{12}}{\rho_{22}} \]

\[\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}^2 = \frac{1}{\rho_{11}} \]

\[\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}^2 = \frac{\csc \theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{\cos \theta_{12}}{A_2} \right) + \frac{1}{\rho_{22}} \]

\[\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}^1 = \frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{\cos \theta_{12}}{A_1} \right) - \frac{1}{\rho_{11}} \]

\[\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}^1 = -\frac{1}{\rho_{22}} \]

\[\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \hat{a}^2 = \frac{\cos \theta_{12}}{\rho_{11}} - \frac{\cot \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{\cos \theta_{12}}{A_1} \right) \]

\[\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \hat{a}^2 = \frac{\cos \theta_{12}}{\rho_{22}} \]

\[\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}^1 = \frac{\sin \theta_{12}}{r_{11}} + \frac{\cos \theta_{12}}{r_{12}} \]

\[\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}^1 = \frac{1}{r_{21}} \]

\[\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}^2 = -\frac{1}{r_{12}} \]

\[\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}^2 = \frac{\sin \theta_{12}}{r_{22}} - \frac{\cos \theta_{12}}{r_{21}} \]
DERIVATIVES OF BASE-VECTOR FIELDS ON S_0

CONTINUED

In addition,

\[
\begin{align*}
 C_{11}^1 &= - \frac{\cot \theta_{12}}{\rho_{11}} \\
 C_{12}^1 &= \frac{\csc \theta_{12}}{\rho_{11}} \\
 C_{13}^1 &= - \frac{1}{r_{11}} \\
 C_{12}^2 &= \csc^2 \theta_{12} \frac{\partial}{\partial \xi_2} (\cos \theta_{12}) + \frac{\csc \theta_{12}}{\rho_{22}} \\
 C_{11}^2 &= - \left(\frac{\csc \theta_{12} \cot \theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} (\cos \theta_{12}) + \frac{\cot \theta_{12}}{\rho_{22}} \right) \\
 C_{21}^1 &= \frac{\csc^2 \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} (\cos \theta_{12}) - \frac{\csc \theta_{12}}{\rho_{11}} \\
 C_{21}^2 &= \frac{\cot \theta_{12}}{\rho_{11}} - \frac{\csc \theta_{12} \cot \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} (\cos \theta_{12}) \\
 C_{13}^2 &= - \frac{\sin \theta_{12}}{r_{21}} - \frac{\cos \theta_{12}}{r_{22}} \\
 C_{23}^1 &= \frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \\
 C_{23}^2 &= - \frac{\csc \theta_{12}}{r_{22}} \\
 C_{22}^2 &= \cot \theta_{12} \\
 C_{23}^3 &= - \frac{1}{r_{22}} \\
 C_{31}^1 &= \frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \\
 C_{31}^2 &= \frac{\csc \theta_{12}}{r_{21}} \\
 C_{32}^1 &= - \frac{\csc \theta_{12}}{r_{12}} \\
 C_{32}^2 &= \frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \\
 C_{33}^1 &= 0 \\
 C_{33}^2 &= 0 \\
 C_{33}^3 &= 0
\end{align*}
\]
Thus, the derivatives of the unit-magnitude base-vector fields become

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = -\frac{\cot \theta_{12}}{\rho_{11}} \hat{a}_1 + \frac{\csc \theta_{12}}{\rho_{11}} \hat{a}_2 - \frac{1}{r_{11}} \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = -\left(\frac{\csc \theta_{12} \cot \theta_{12} \frac{\partial \cos \theta_{12}}{\partial \xi_2}}{A_2} + \frac{\cot \theta_{12}}{\rho_{22}} \right) \hat{a}_1 + \left(\frac{\csc \theta_{12} \frac{\partial \cos \theta_{12}}{\partial \xi_2}}{A_2} + \frac{\csc \theta_{12}}{\rho_{22}} \right) \hat{a}_2
\]

\[
- \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = \left(\frac{\csc \theta_{12} \cot \theta_{12}}{A_1} \frac{\partial \cos \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \right) \hat{a}_1 + \left(\frac{\cot \theta_{12}}{\rho_{11}} - \frac{\csc \theta_{12} \cot \theta_{12} \frac{\partial \cos \theta_{12}}{\partial \xi_1}}{A_1} \right) \hat{a}_2
\]

\[
+ \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = -\frac{\csc \theta_{12}}{\rho_{22}} \hat{a}_1 + \frac{\cot \theta_{12}}{\rho_{22}} \hat{a}_2 - \frac{1}{r_{22}} \hat{n}
\]
For the special case of orthogonal Gaussian reference-surface coordinates, these expressions reduce to:

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2
\]

\[
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = \frac{1}{\rho_{11}} \hat{a}_2 - \frac{1}{r_{11}} \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = \frac{1}{\rho_{22}} \hat{a}_2 + \frac{1}{r_{12}} \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = -\frac{1}{\rho_{11}} \hat{a}_1 + \frac{1}{r_{12}} \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = -\frac{1}{\rho_{22}} \hat{a}_1 - \frac{1}{r_{22}} \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{1}{r_{11}} \hat{a}_1 - \frac{1}{r_{12}} \hat{a}_2
\]

\[
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = -\frac{1}{r_{12}} \hat{a}_1 + \frac{1}{r_{22}} \hat{a}_2
\]

where \(r_{21} = -r_{12} \), \(\frac{1}{\rho_{11}} = -\frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \), and \(\frac{1}{\rho_{22}} = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \)
DERIVATIVES OF VECTOR FIELDS ON S_0

- Let $\tilde{V}(\xi_1, \xi_2)$ denote any vector field that is associated with the points of the reference surface, $P \in S_0$, and that occupies three-dimensional Euclidean space \mathcal{E}^3.

- In general, $\tilde{V}(\xi_1, \xi_2)$ has several component forms that are convenient for various purposes.

- As indicated previously, $\tilde{V}(\xi_1, \xi_2)$ is expressed herein in terms of the unit-magnitude base vector fields as

$$\tilde{V}(\xi_1, \xi_2) = V_{\alpha}(\xi_1, \xi_2)\hat{a}_{\alpha}(\xi_1, \xi_2) + V_3(\xi_1, \xi_2)\hat{n}(\xi_1, \xi_2)$$

- The derivatives of the vector field are then given by

$$\frac{1}{A^{(\beta)}} \frac{\partial \tilde{V}}{\partial \xi_\beta} = \frac{1}{A^{(\beta)}} \frac{\partial}{\partial \xi_\beta} \left(V_{\alpha}\hat{a}_{\alpha} + V_3\hat{n} \right)$$
The product rule of differentiation gives

\[\frac{1}{A_{(\beta)}} \frac{\partial \hat{V}}{\partial \xi_{\beta}} = \frac{1}{A_{(\beta)}} \frac{\partial V_\alpha}{\partial \xi_{\beta}} \hat{a}_\alpha + V_\alpha \frac{1}{A_{(\beta)}} \frac{\partial \hat{a}_\alpha}{\partial \xi_{\beta}} + \frac{1}{A_{(\beta)}} \frac{\partial V_3}{\partial \xi_{\beta}} \hat{n} + V_3 \frac{1}{A_{(\beta)}} \frac{\partial \hat{n}}{\partial \xi_{\beta}} \]

The previously derived expressions for the derivatives of the reference-surface base vector fields are then used to obtain

\[\frac{1}{A_1} \frac{\partial \hat{V}}{\partial \xi_1} = V^{(1)} |_{\langle 1 \rangle} \hat{a}_1 + V^{(2)} |_{\langle 1 \rangle} \hat{a}_2 + V^{(3)} |_{\langle 1 \rangle} \hat{n} \]

and

\[\frac{1}{A_2} \frac{\partial \hat{V}}{\partial \xi_2} = V^{(1)} |_{\langle 2 \rangle} \hat{a}_1 + V^{(2)} |_{\langle 2 \rangle} \hat{a}_2 + V^{(3)} |_{\langle 2 \rangle} \hat{n} \]

or

\[\frac{1}{A_{(\beta)}} \frac{\partial \hat{V}}{\partial \xi_{\beta}} = V^{(\alpha)} |_{\langle \beta \rangle} \hat{a}_\alpha + V^{(3)} |_{\langle \beta \rangle} \hat{n} \]

where
DERIVATIVES OF VECTOR FIELDS ON S_0 - CONTINUED

\[
V^{(1)}_{\{1\}} = \frac{1}{A_1} \frac{\partial V_1}{\partial \xi_1} - \frac{V_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(V_1 \cos \theta_{12} + V_2 \right) + V_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right)
\]

\[
V^{(2)}_{\{1\}} = \frac{1}{A_1} \frac{\partial V_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(V_1 + V_2 \cos \theta_{12} \right) + \frac{V_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - V_3 \frac{\csc \theta_{12}}{r_{12}}
\]

\[
V^{(3)}_{\{1\}} = \frac{1}{A_1} \frac{\partial V_3}{\partial \xi_1} - \frac{V_1}{r_{11}} + V_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right)
\]

\[
V^{(1)}_{\{2\}} = \frac{1}{A_2} \frac{\partial V_1}{\partial \xi_2} + \frac{V_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(V_1 \cos \theta_{12} + V_2 \right) + V_3 \frac{\csc \theta_{12}}{r_{21}}
\]

\[
V^{(2)}_{\{2\}} = \frac{1}{A_2} \frac{\partial V_2}{\partial \xi_2} - \frac{V_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \left(V_1 + V_2 \cos \theta_{12} \right) + V_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right)
\]

\[
V^{(3)}_{\{2\}} = \frac{1}{A_2} \frac{\partial V_3}{\partial \xi_2} - V_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{V_2}{r_{22}}
\]
DERIVATIVES OF VECTOR FIELDS ON S_0 - CONTINUED

- For orthogonal Gaussian coordinates, these expressions reduce to

\[
V^{(1)}_{\langle 1 \rangle} = \frac{1}{A_1} \frac{\partial V_1}{\partial \xi_1} - \frac{V_2}{\rho_{11}} + \frac{V_3}{r_{11}}
\]

\[
V^{(2)}_{\langle 1 \rangle} = \frac{1}{A_1} \frac{\partial V_2}{\partial \xi_1} + \frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}}
\]

\[
V^{(3)}_{\langle 1 \rangle} = \frac{1}{A_1} \frac{\partial V_3}{\partial \xi_1} - \frac{V_1}{\rho_{11}} + \frac{V_2}{r_{11}}
\]

- Likewise, the expressions for the derivatives reduce to

\[
\frac{1}{A_1} \frac{\partial \hat{\mathbf{V}}}{\partial \xi_1} = \left(\frac{1}{A_1} \frac{\partial V_1}{\partial \xi_1} - \frac{V_2}{\rho_{11}} + \frac{V_3}{r_{11}} \right) \hat{a}_1 + \left(\frac{1}{A_1} \frac{\partial V_2}{\partial \xi_1} + \frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}} \right) \hat{a}_2 + \left(\frac{1}{A_1} \frac{\partial V_3}{\partial \xi_1} - \frac{V_1}{\rho_{11}} + \frac{V_2}{r_{12}} \right) \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{\mathbf{V}}}{\partial \xi_2} = \left(\frac{1}{A_2} \frac{\partial V_1}{\partial \xi_2} - \frac{V_2}{\rho_{22}} - \frac{V_3}{r_{12}} \right) \hat{a}_1 + \left(\frac{1}{A_2} \frac{\partial V_2}{\partial \xi_2} + \frac{V_1}{\rho_{22}} + \frac{V_3}{r_{22}} \right) \hat{a}_2 + \left(\frac{1}{A_2} \frac{\partial V_3}{\partial \xi_2} + \frac{V_1}{r_{12}} - \frac{V_2}{r_{22}} \right) \hat{n}
\]
DERIVATIVES OF VECTOR FIELDS ON S_0 - CONCLUDED

From these derivative expressions, it also follows that

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{V}}{\partial \xi_1} = \frac{1}{A_1} \left(\frac{\partial}{\partial \xi_1} (V_1 + V_2 \cos \theta_{12}) \right) - \frac{V_2 \sin \theta_{12}}{\rho_{11}} + \frac{V_3}{r_{11}}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{V}}{\partial \xi_1} = \left(\frac{1}{A_1} \frac{\partial V_1}{\partial \xi_1} + \frac{V_3}{r_{11}} \right) \cos \theta_{12} + \frac{1}{A_1} \frac{\partial V_2}{\partial \xi_1} + \left(\frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}} \right) \sin \theta_{12}
\]

\[
\hat{n} \cdot \frac{1}{A_1} \frac{\partial \mathbf{V}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial V_3}{\partial \xi_1} - \frac{V_1}{r_{11}} + V_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right)
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial V_1}{\partial \xi_2} + \left(\frac{1}{A_2} \frac{\partial V_2}{\partial \xi_2} + \frac{V_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{V_3}{r_{21}} - \frac{V_2}{\rho_{22}} \right) \sin \theta_{12}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \mathbf{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (V_2 + V_1 \cos \theta_{12}) + \frac{V_1 \sin \theta_{12}}{\rho_{22}} + \frac{V_3}{r_{22}}
\]

\[
\hat{n} \cdot \frac{1}{A_2} \frac{\partial \mathbf{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial V_3}{\partial \xi_2} - V_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{V_2}{r_{22}}
\]
COMPATIBILITY CONDITIONS FOR S_0

- So far in the present study, it has been shown that when a simple surface is given by $\mathbf{x} = x_k(\xi_1, \xi_2) \hat{i}_k$, in order for the vector fields $\hat{a}_1 = \frac{\partial \mathbf{x}}{\partial \xi_1}$ and $\hat{a}_2 = \frac{\partial \mathbf{x}}{\partial \xi_2}$ to exist and be continuous, $\mathbf{x}(\xi_1, \xi_2)$ must have continuous first partial derivatives; denoted by $\mathbf{x}(\xi_1, \xi_2) \in C^1$.

- It follows that $\hat{a}_1 \times \hat{a}_2$ is a continuous vector field and $|\hat{a}_1 \times \hat{a}_2|$ is a continuous function of $$(\xi_1, \xi_2)$$.

- Thus, $\hat{n}(\xi_1, \xi_2) = \frac{\hat{a}_1 \times \hat{a}_2}{|\hat{a}_1 \times \hat{a}_2|}$ is also a continuous vector field when $\mathbf{x}(\xi_1, \xi_2) \in C^1$ is satisfied.
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- For \vec{a}_1 and \vec{a}_2 to be unique at every point of the reference surface, they must also be single-valued vector fields.

- Let $\vec{v}(\xi_1, \xi_2)$ be any arbitrary differentiable vector field associated with the reference surface.

- From the calculus of vector functions, it follows that the value of the vector field at point R is $\vec{v} + \frac{\partial \vec{v}}{\partial \xi_1} d\xi_1$ and the value at point S is $\vec{v} + \frac{\partial \vec{v}}{\partial \xi_2} d\xi_2$.

\[\vec{v} + \frac{\partial \vec{v}}{\partial \xi_1} d\xi_1 \]

\[\vec{v} + \frac{\partial \vec{v}}{\partial \xi_2} d\xi_2 \]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- As the surface is traversed from point R to point Q, the value of the vector field becomes

$$\mathbf{v}_{12} = \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \xi_1} d\xi_1 + \frac{\partial}{\partial \xi_2} \left(\mathbf{v} + \frac{\partial \mathbf{v}}{\partial \xi_1} d\xi_1 \right) d\xi_2$$

- Similarly, as the surface is traversed from point S to point Q, the value of the vector field becomes

$$\mathbf{v}_{21} = \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \xi_2} d\xi_2 + \frac{\partial}{\partial \xi_1} \left(\mathbf{v} + \frac{\partial \mathbf{v}}{\partial \xi_2} d\xi_2 \right) d\xi_1$$

- For the vector field to be single valued, it follows that $\mathbf{v}_{12} = \mathbf{v}_{21}$ is a necessary condition

- Therefore, for $\mathbf{v}(\xi_1, \xi_2)$ to be a single-valued vector field, defined for points of the reference surface, the following necessary condition must be met

$$\frac{\partial}{\partial \xi_1} \left(\frac{\partial \mathbf{v}}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \mathbf{v}}{\partial \xi_1} \right)$$
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Thus, single-valuedness of \hat{a}_1 and \hat{a}_2 requires
 \[
 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_1}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_1}{\partial \xi_1} \right)
 \quad \text{and} \quad
 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_2}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_2}{\partial \xi_1} \right)
 \]
 and ensures single-valuedness of \hat{n}

- In terms of $\hat{x}(\xi_1, \xi_2)$, single-valuedness of \hat{a}_1 and \hat{a}_2 requires
 \[
 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{x}}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{x}}{\partial \xi_1} \right)
 \quad \text{and} \quad
 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{x}}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{x}}{\partial \xi_1} \right);
 \]
 that is, $\hat{x}(\xi_1, \xi_2)$ is required to have continuous third partial derivatives, which is denoted herein by $\hat{x}(\xi_1, \xi_2) \in C^3$

- Note that differentiability of \hat{a}_1 and \hat{a}_2 ensures differentiability of \hat{n}
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Consider the following formulas for the geometric quantities associated with the reference surface, expressed in terms of $\mathbf{x}(\xi_1, \xi_2)$:

\[
A_1(\xi_1, \xi_2) = \sqrt{\mathbf{a}_1 \cdot \mathbf{a}_1}, \quad A_2(\xi_1, \xi_2) = \sqrt{\mathbf{a}_2 \cdot \mathbf{a}_2}
\]

\[
cos\theta_{12} = \frac{\mathbf{a}_1 \cdot \mathbf{a}_2}{A_1 A_2}
\]

\[
\mathbf{n}(\xi_1, \xi_2) = \frac{\mathbf{a}_1 \times \mathbf{a}_2}{|\mathbf{a}_1 \times \mathbf{a}_2|}
\]

\[
\frac{1}{r_{11}} = -\frac{1}{A_1} \frac{\partial \mathbf{a}_1}{\partial \xi_1} \cdot \mathbf{n}
\]

\[
A_1(\xi_1, \xi_2) = \sqrt{\frac{\partial \mathbf{x}}{\partial \xi_1} \cdot \frac{\partial \mathbf{x}}{\partial \xi_1}}
\]

\[
A_2(\xi_1, \xi_2) = \sqrt{\frac{\partial \mathbf{x}}{\partial \xi_2} \cdot \frac{\partial \mathbf{x}}{\partial \xi_2}}
\]

\[
cos\theta_{12} = \frac{1}{A_1 A_2} \left(\frac{\partial \mathbf{x}}{\partial \xi_1} \cdot \frac{\partial \mathbf{x}}{\partial \xi_2} \right)
\]

\[
\mathbf{n}(\xi_1, \xi_2) = \frac{1}{A_1 A_2} \sin\theta_{12} \left(\frac{\partial \mathbf{x}}{\partial \xi_1} \times \frac{\partial \mathbf{x}}{\partial \xi_2} \right)
\]

\[
\frac{1}{r_{11}} = -\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(A_1 \frac{\partial \mathbf{x}}{\partial \xi_1} \right) \cdot \mathbf{n}
\]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

\[
\frac{1}{r_{22}} = -\frac{1}{A_2} \frac{\partial \hat{\alpha}_2}{\partial \xi_2} \cdot \hat{n} \\
\frac{1}{r_{12}} = \frac{\cot \theta_{12}}{r_{11}} + \left(\frac{1}{A_1} \frac{\partial \hat{\alpha}_2}{\partial \xi_1} \cdot \hat{n} \right) \csc \theta_{12} \\
\frac{1}{r_{21}} = -\left(\frac{1}{A_2} \frac{\partial \hat{\alpha}_1}{\partial \xi_2} \cdot \hat{n} \right) \csc \theta_{12} \frac{\cot \theta_{12}}{r_{22}}
\]

\[
\frac{1}{r_{22}} = -\frac{1}{A_2} \frac{\partial \hat{\alpha}_2}{\partial \xi_2} \left(\frac{A_2}{\partial \xi_2} \right) \cdot \hat{n} \\
\frac{1}{r_{12}} = \frac{\cot \theta_{12}}{r_{11}} + \left(\frac{1}{A_1} \frac{\partial \hat{\alpha}_2}{\partial \xi_1} \left(\frac{A_2}{\partial \xi_2} \right) \right) \cdot \hat{n} \left[\csc \theta_{12} \right] \\
\frac{1}{r_{21}} = -\left[\frac{1}{A_2} \frac{\partial \hat{\alpha}_1}{\partial \xi_2} \left(\frac{A_1}{\partial \xi_1} \right) \right] \cdot \hat{n} \left[\csc \theta_{12} \right] - \frac{\cot \theta_{12}}{r_{22}}
\]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- In addition,

$$\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right)$$

and

$$\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right)$$

- Examination of these equations indicates that if $\dot{\mathbf{x}}(\xi_1, \xi_2) \in C^3$, then every element the set of geometric quantities

$$\left\{ A_1, A_2, \theta_{12}, r_{11}, r_{12}, r_{21}, r_{22}, \rho_{11}, \rho_{22} \right\}$$

is differentiable
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Now suppose that $\{A_1, A_2, \theta_{12}, r_{11}, r_{12}, r_{21}, r_{22}, \rho_{11}, \rho_{22}\}$ are given, without any reference to a surface defined by $\tilde{x}(\xi_1, \xi_2)$, but are required to be single-valued functions.

- The issue of surface compatibility is concerned with determining inter-relation requirements for these geometric quantities that must be enforced in order for them to correspond to a well-defined simple smooth surface $\tilde{x}(\xi_1, \xi_2)$.

- First note that ρ_{11} and ρ_{22} are not independent variables, as indicated by their definitions.

- Next, recall that $\tilde{x}(\xi_1, \xi_2) \in C^3$ must be fulfilled for $\tilde{x}(\xi_1, \xi_2)$ to be a valid surface, which implies that the necessary conditions

$$\frac{\partial}{\partial \xi_1} \left(\frac{\partial \tilde{a}_1}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \tilde{a}_1}{\partial \xi_1} \right) \quad \text{and} \quad \frac{\partial}{\partial \xi_1} \left(\frac{\partial \tilde{a}_2}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \tilde{a}_2}{\partial \xi_1} \right)$$

must be satisfied.
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

Therefore, surface compatibility requirements can be obtained by expressing the partial derivatives of \hat{a}_1 and \hat{a}_2 in terms of the geometric quantities $\{A_1, A_2, \theta_{12}, r_{11}, r_{12}, r_{21}, r_{22}\}$ and then enforcing

$$\frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_1}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_1}{\partial \xi_1} \right) \quad \text{and} \quad \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_2}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_2}{\partial \xi_1} \right)$$

In terms of the unit-magnitude vector fields, these expressions are

$$A_1 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_1}{\partial \xi_2} \right) = A_1 \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_1}{\partial \xi_1} \right) + \left[\frac{\partial}{\partial \xi_2} \left(\frac{\partial A_1}{\partial \xi_1} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{\partial A_1}{\partial \xi_2} \right) \right] \hat{a}_1$$

and

$$A_2 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_2}{\partial \xi_2} \right) = A_2 \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_2}{\partial \xi_1} \right) + \left[\frac{\partial}{\partial \xi_2} \left(\frac{\partial A_2}{\partial \xi_1} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{\partial A_2}{\partial \xi_2} \right) \right] \hat{a}_2$$
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Because A_1 and A_2 are required to be single-valued functions, it follows that
 \[
 \frac{\partial}{\partial \xi_2} \left(\frac{\partial A_1}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial A_1}{\partial \xi_2} \right) \quad \text{and} \quad \frac{\partial}{\partial \xi_2} \left(\frac{\partial A_2}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial A_2}{\partial \xi_2} \right)
 \]

- Therefore, compatibility of the surface geometric quantities is also ensured by enforcing
 \[
 \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{A}_1}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{A}_1}{\partial \xi_1} \right) \quad \text{and} \quad \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{A}_2}{\partial \xi_2} \right) = \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{A}_2}{\partial \xi_1} \right)
 \]

- Recall, that the general expressions for the derivatives of \hat{A}_1 and \hat{A}_2 are given by
 \[
 \frac{1}{A_1} \frac{\partial \hat{A}_1}{\partial \xi_1} = -\frac{\cot \theta_{12}}{\rho_{11}} \hat{a}_1 + \frac{\csc \theta_{12}}{\rho_{11}} \hat{a}_2 - \frac{1}{r_{11}} \hat{n}
 \]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

\[
\frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = - \left(\frac{\csc \theta_{12} \cot \theta_{12} \partial \cos \theta_{12}}{A_2} \frac{\partial \xi_2}{\partial \xi_2} + \frac{\cot \theta_{12}}{\rho_{22}} \right) \hat{a}_1 + \left(\frac{\csc^2 \theta_{12} \partial \cos \theta_{12}}{A_2} \frac{\partial \xi_2}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \right) \hat{a}_2
\]

\[
- \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) \hat{n}
\]

\[
\frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} = \left(\frac{\csc^2 \theta_{12} \partial \cos \theta_{12}}{A_1} \frac{\partial \xi_1}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \right) \hat{a}_1 + \left(\frac{\cot \theta_{12}}{\rho_{11}} - \frac{\csc \theta_{12} \cot \theta_{12} \partial \cos \theta_{12}}{A_1} \frac{\partial \xi_1}{\partial \xi_1} \right) \hat{a}_2
\]

\[
+ \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = - \frac{\csc \theta_{12}}{\rho_{22}} \hat{a}_1 + \frac{\cot \theta_{12}}{\rho_{22}} \hat{a}_2 - \frac{1}{r_{22}} \hat{n}
\]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Enforcing the requirement that
 \[\frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_1}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_1}{\partial \xi_2} \right) \]
 yields three nontrivial scalar equations.

- The coefficients of \hat{a}_1 and \hat{a}_2 are identical and reduce to
 \[
 \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) - A_1A_2 \left(\frac{\sin\theta_{12}}{r_{21}} - \frac{\cos\theta_{12}}{r_{22}} \right) - A_1A_2 \left(\frac{\sin\theta_{12}}{r_{21}} + \frac{\cos\theta_{12}}{r_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0
 \]

- The simplified coefficient equation of \hat{n} is given by
 \[
 \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) \cos\theta_{12} + \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{21}} \right) \sin\theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) + A_1A_2 \left(\frac{\cos\theta_{12}}{r_{21}} - \frac{\sin\theta_{12}}{r_{22}} \right)
 \]
 \[
 - \frac{A_1A_2}{\rho_{22} r_{12}} + \left[\frac{A_2}{r_{21}} \cos\theta_{12} - \frac{A_2}{r_{22}} \sin\theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_1} + \left(\frac{A_1}{r_{12}} \right) \frac{\partial \theta_{12}}{\partial \xi_2} = 0
 \]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- Likewise, enforcing the requirement that
 \[
 \frac{\partial}{\partial \xi_2} \left(\frac{\partial \hat{a}_2}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial \hat{a}_2}{\partial \xi_2} \right)
 \]
 also yields three nontrivial scalar equations.

- The coefficients of \hat{a}_1 and \hat{a}_2 are identical and reduce to

\[
\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) - \frac{A_1 A_2}{r_{11}} \left(\frac{\sin \theta_{12}}{r_{22}} - \frac{\cos \theta_{12}}{r_{21}} \right)
- \frac{A_1 A_2}{r_{12}} \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0
\]

- The simplified coefficient equation of \hat{n} is given by

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_1}{r_{22}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{12}} \right) \frac{\sin \theta_{12}}{r_{11}} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) \frac{\cos \theta_{12}}{r_{11}} - \frac{A_1 A_2}{\rho_{22}} \left(\frac{\cos \theta_{12}}{r_{12}} + \frac{\sin \theta_{12}}{r_{11}} \right)
+ \frac{A_1 A_2}{\rho_{11} r_{21}} + \left(A_2 \frac{\partial \theta_{12}}{\partial \xi_1} \right) \frac{\cos \theta_{12} + A_1}{r_{11}} \sin \theta_{12} \right) \frac{\partial \theta_{12}}{\partial \xi_2} = 0
\]
Thus, three independent compatibility equations are obtained:

\[
\begin{align*}
\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) - \frac{A_1 A_2}{r_{11}} \left(\frac{\sin\theta_{12}}{r_{22}} - \frac{\cos\theta_{12}}{r_{21}} \right) \\
- \frac{A_1 A_2}{r_{12}} \left(\frac{\sin\theta_{12}}{r_{21}} + \frac{\cos\theta_{12}}{r_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) \cos\theta_{12} + \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{21}} \right) \sin\theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) + \frac{A_1 A_2}{\rho_{11}} \left(\frac{\cos\theta_{12}}{r_{21}} - \frac{\sin\theta_{12}}{r_{22}} \right) \\
- \frac{A_1 A_2}{\rho_{22} r_{12}} + \left[\frac{A_2}{r_{21}} \cos\theta_{12} - \frac{A_2}{r_{22}} \sin\theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_1} + \left(\frac{A_1}{r_{12}} \right) \frac{\partial \theta_{12}}{\partial \xi_2} &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{12}} \right) \sin\theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) \cos\theta_{12} - \frac{A_1 A_2}{\rho_{22}} \left(\frac{\cos\theta_{12}}{r_{12}} + \frac{\sin\theta_{12}}{r_{11}} \right) \\
+ \frac{A_1 A_2}{\rho_{11} r_{21}} + \left(\frac{A_2}{r_{21}} \right) \frac{\partial \theta_{12}}{\partial \xi_1} + \left[\frac{A_1}{r_{12}} \cos\theta_{12} + \frac{A_1}{r_{11}} \sin\theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_2} &= 0
\end{align*}
\]
COMPATIBILITY CONDITIONS FOR S_0 - CONTINUED

- In addition, recall that previously, $\frac{\partial a_1}{\partial \xi_2} = \frac{\partial a_2}{\partial \xi_1}$ was enforced, which yields

$$\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)$$

- Thus, there are three independent compatibility equations and six independent surface geometry quantities.

- The first compatibility equation, known as Gauss' equation, is sometimes expressed as

$$\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = A_1 A_2 \sin \theta_{12} K_G$$

where

$$K_G \equiv \frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} + \cot \theta_{12} \left(\frac{1}{r_{12} r_{22}} - \frac{1}{r_{11} r_{21}} \right)$$

is called the Gaussian curvature.
COMPATIBILITY CONDITIONS FOR S_0 - CONCLUDED

For orthogonal Gaussian reference-surface coordinates, $\frac{1}{r_{21}} = -\frac{1}{r_{12}}$, and the compatibility equations reduce to

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{12}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) - \frac{1}{r_{22}} \frac{\partial A_1}{\partial \xi_2} + \frac{1}{r_{12}} \frac{\partial A_2}{\partial \xi_1} = 0
\]

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{12}} \right) + \frac{1}{r_{12}} \frac{\partial A_1}{\partial \xi_2} - \frac{1}{r_{11}} \frac{\partial A_2}{\partial \xi_1} = 0
\]

\[
\frac{\partial}{\partial \xi_1} \left(\frac{1}{A_1} \frac{\partial A_2}{\partial \xi_1} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{1}{A_2} \frac{\partial A_1}{\partial \xi_2} \right) + \frac{A_1 A_2}{r_{11} r_{22} - (r_{12})^2} = 0
\]

for the five surface geometric quantities $\{A_1, A_2, r_{11}, r_{12}, r_{22}\}$.
MATHEMATICAL DESCRIPTION OF THE SHELL SPACE, \mathbb{R}_0, IN TERMS OF REFERENCE-SURFACE PROPERTIES
MATHEMATICAL DESCRIPTION OF \mathcal{R}_0

- Previously, a shell was defined herein as a family of contiguous parallel surfaces that fill the three-dimensional region of space occupied by the shell; that is, the region $\mathcal{R}_0 \subset \mathbb{E}^3$

- As such, points of \mathcal{R}_0 are located herein by the position vector
 \[\vec{X} = X_k(\xi_1, \xi_2, \xi_3)\hat{i}_k, \]
 where a specified ordered pair (ξ_1, ξ_2) corresponds to a given point of the reference surface, $P \in \mathcal{S}_0$, and a specified value of the coordinate ξ_3 defines the corresponding parallel parallel surface in \mathcal{R}_0

- Coordinate values of ξ_3 are measured perpendicular to the tangent plane $T_p(\mathcal{S}_0)$, as shown in the following figure

- Thus, a generic point of the shell corresponds to a given point of a parallel surface, $R \in \mathcal{S}_0(\xi_3) \subset \mathcal{R}_0$
The reason for using this approach to locate points of the shell is that the metrical properties, derived from a generic differential arc length emanating from point R in the figure, are determined from base-vector fields associated with the parallel surface, \(S_0(\xi_3) \), and the corresponding normal vector field

These vector fields can then be related to corresponding vector fields for the reference surface, \(S_0 \), which gives the metrical properties of the shell in terms of those of the reference surface.
MATHEMATICAL DESCRIPTION OF \mathcal{R}_0 - CONTINUED

- Thus, points of the parallel surfaces are located by the curvilinear coordinates (ξ_1, ξ_2, ξ_3), where (ξ_1, ξ_2) are specified to be the corresponding Gaussian coordinates of the reference surface.

- A family of parallel surfaces, $\mathcal{S}_0(\xi_3)$, are defined by constant values of the coordinate ξ_3.

- The position vector to a point R of a given parallel surface $\mathcal{S}_0(\xi_3)$ is specified as

$$\hat{X}(\xi_1, \xi_2, \xi_3) = \hat{x}(\xi_1, \xi_2) + \xi_3 \hat{n}(\xi_1, \xi_2) \quad \text{with} \quad c_3^-(\xi_1, \xi_2) \leq \xi_3 \leq c_3^+(\xi_1, \xi_2)$$

- The shell thickness is then given by

$$h(\xi_1, \xi_2) = c_3^+ - c_3^- > 0$$

- With the coordinate ξ_3 held constant, this representation induces curvilinear surface coordinates on the parallel surface $\mathcal{S}_0(\xi_3)$.
MATHEMATICAL DESCRIPTION OF \(\mathcal{R}_0 \) - CONCLUDED

- The corresponding Cartesian coordinates \((X_1, X_2, X_3)\), with respect to the frame \(O - X_1 - X_2 - X_3 \), are given by

\[
X_k(\xi_1, \xi_2, \xi_3) = x_k(\xi_1, \xi_2) + \xi_3 n_k(\xi_1, \xi_2)
\]

where \(n_k \equiv \mathbf{n} \cdot \mathbf{i}_k \)
VECTOR FIELDS DEFINED ON \mathcal{R}_0

- Henceforth, let $S_0(\xi_3) \subset \mathcal{R}_0 \subset \mathbb{E}^3$ be a smooth parallel surface that is defined by the position vector $\mathbf{x}(\xi_1, \xi_2, \xi_3)$.

- The corresponding natural base-vector fields of $S_0(\xi_3)$, that span the tangent plane, $T_R(S_0(\xi_3))$, at every point $R \in S_0(\xi_3)$, are then given by

$$\mathbf{g}_1(\xi_1, \xi_2, \xi_3) = \frac{\partial \mathbf{x}}{\partial \xi_1}$$

and

$$\mathbf{g}_2(\xi_1, \xi_2, \xi_3) = \frac{\partial \mathbf{x}}{\partial \xi_2}$$
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

- At a given point of $S_0(\xi_3)$, the base vectors \mathbf{g}_1 and \mathbf{g}_2 are tangent to the Gaussian-coordinate curves, as shown in the previous figure.

- Using

 \[
 \dot{\mathbf{X}}(\xi_1, \xi_2, \xi_3) = \dot{x}(\xi_1, \xi_2) + \xi_3 \dot{n}(\xi_1, \xi_2)
 \]

 and

 \[
 \mathbf{a}_\alpha(\xi_1, \xi_2) = \frac{\partial \mathbf{X}}{\partial \xi_\alpha},
 \]

 it is found that

 \[
 \mathbf{g}_\alpha(\xi_1, \xi_2, \xi_3) = \hat{\mathbf{a}}_\alpha + \xi_3 \frac{\partial \hat{n}}{\partial \xi_\alpha}
 \]

- Writing the last equation as

 \[
 \mathbf{g}_\alpha = A_{(\alpha)}(\hat{\mathbf{a}}_\alpha + \xi_3 \frac{1}{A_{(\alpha)}} \frac{\partial \hat{n}}{\partial \xi_\alpha})
 \]

 and using the derivative expressions

 \[
 \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2
 \]

 and

 \[
 \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
 \]

 gives
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

\[\mathbf{g}_1 = A_1 \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \widehat{a}_1 - \frac{\xi_3 \csc \theta_{12}}{r_{12}} \widehat{a}_2 \right] \]

\[\mathbf{g}_2 = A_2 \left[\frac{\xi_3 \csc \theta_{12}}{r_{21}} \widehat{a}_1 + \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \widehat{a}_2 \right] \]

Likewise,

\[\mathbf{g}_3(\xi_1, \xi_2, \xi_3) = \frac{\partial \mathbf{X}}{\partial \xi_3} = \hat{n}(\xi_1, \xi_2) \]

for all values of ξ_3 and the cross product is given by

\[\frac{\mathbf{g}_1 \times \mathbf{g}_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right] \hat{n} \]
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

- The cross-product equation verifies that the tangent plane of the parallel surface, spanned by $\hat{\mathbf{g}}_1$ and $\hat{\mathbf{g}}_2$, is indeed parallel to the tangent plane spanned by $\hat{\mathbf{a}}_1$ and $\hat{\mathbf{a}}_2$.

- That is, $T_R(S_0(\xi_3))$ is parallel to $T_P(S_0)$.

\[\mathbf{X} = \mathbf{x}_k(\xi_1, \xi_2) \hat{i}_k \]

\[\mathbf{X} = \mathbf{X}_k(\xi_1, \xi_2, \xi_3) \hat{i}_k \]
Because \(\mathbf{g}_1 \) and \(\mathbf{g}_2 \) span the tangent plane \(T_R(S_0(\xi_3)) \) at every point \(R \in S_0(\xi_3) \), and the vector \(\mathbf{g}_3 = \hat{n}(\xi_1, \xi_2) \) is perpendicular to the tangent plane, it follows that

\[
\{ \mathbf{g}_1, \mathbf{g}_2, \hat{n} \}
\]

form a basis for vector fields associated with the points of the shell space \(\mathcal{R}_0 \).
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

Preceding, unit-magnitude vector fields $\{\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \hat{\mathbf{g}}_3\}$ were defined by

$$\hat{\mathbf{g}}_1(\xi_1, \xi_2, \xi_3) = \frac{\mathbf{g}_1}{H_1} \quad \hat{\mathbf{g}}_2(\xi_1, \xi_2, \xi_3) = \frac{\mathbf{g}_2}{H_2} \quad \hat{\mathbf{g}}_3(\xi_1, \xi_2, \xi_3) = \frac{\mathbf{g}_3}{H_3}$$

where

$$H_\alpha(\xi_1, \xi_2, \xi_3) = |\hat{\mathbf{g}}_\alpha| = \sqrt{\mathbf{g}_\alpha \cdot \hat{\mathbf{g}}_{(\alpha)}}$$

Using

$$\hat{\mathbf{g}}_1 = A_1 \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \hat{\mathbf{a}}_1 - \frac{\xi_3 \cot \theta_{12}}{r_{12}} \hat{\mathbf{a}}_2 \right],$$

$$\hat{\mathbf{g}}_2 = A_2 \left[\frac{\xi_3 \csc \theta_{12}}{r_{21}} \hat{\mathbf{a}}_1 + \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \hat{\mathbf{a}}_2 \right],$$

and

$$\hat{\mathbf{g}}_3 = \hat{\mathbf{n}}(\xi_1, \xi_2)$$
gives
The unit-magnitude vector fields \(\{ \hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \hat{\mathbf{g}}_3 \} \) are now given by

\[
\hat{\mathbf{g}}_1 = \frac{1}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \left(\frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{r_{12}} \right) \hat{\mathbf{a}}_1 - \frac{\xi_3 \csc \theta_{12}}{r_{12}} \hat{\mathbf{a}}_2 - \xi_3 \csc \theta_{12} \hat{\mathbf{a}}_2
\]
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

It is convenient to introduce the following quantities, that are often referred to in the technical literature as "shifters" or "translators," such that the first two unit-magnitude base vectors are given by

$$\hat{g}_1 = \mu_{11} \hat{a}_1 + \mu_{12} \hat{a}_2 \quad \text{and} \quad \hat{g}_2 = \mu_{21} \hat{a}_1 + \mu_{22} \hat{a}_2$$

where

$$\mu_{\alpha\beta} = \mu_{\alpha\beta}(\xi_1, \xi_2, \xi_3)$$
 VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

- The expressions for the shifters are given by

\[
\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]

\[
\mu_{12} = \frac{-\frac{\xi_3 \csc \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]

\[
\mu_{21} = \frac{\frac{\xi_3 \csc \theta_{12}}{r_{21}}}{\sqrt{\left(1 - \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}
\]
Thus, the shifters relate the vectors \(\{\hat{g}_1, \hat{g}_2, \hat{g}_3\} \), at point \(R \) of the parallel surface \(S_0(\xi_3) \), to the corresponding vectors \(\{\hat{a}_1, \hat{a}_2, \hat{n}\} \) of the reference surface, at the corresponding point \(P \).
VECTOR FIELDS DEFINED ON \mathbb{R}_0 - CONTINUED

Reference Surface, S_0

Parallel surface, $S_0(\xi_3)$

$x = x_k(\xi_1, \xi_2) \hat{i}_k$

$\vec{x} = x_k(\xi_1, \xi_2) \hat{i}_k$
The set \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) also forms a basis for vector fields in \(\mathbb{E}^3 \) that are associated with the points of the shell space \(\mathcal{R}_0 \).

Thus, any vector \(\mathbf{V}(\xi_1, \xi_2, \xi_3) \) in \(\mathbb{E}^3 \) that is associated with a point \(R \in \mathcal{R}_0 \) can be expressed as

\[
\mathbf{V} = V_k(\xi_1, \xi_2, \xi_3) \hat{g}_k(\xi_1, \xi_2, \xi_3)
\]
METRIC COEFFICIENTS OF A PARALLEL SURFACE

- Let $S_\varepsilon(R)$ denote a small, *infinitesimal neighborhood* of an arbitrary point R of a parallel surface, $S_0(\xi_3)$.

- Likewise, let point S be in $S_\varepsilon(R)$ and C denote a smooth *surface curve* that connects points R and S.

- The *position vector* to point S is
 \[
 \hat{X}(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \xi_3) = \hat{X}(\xi_1, \xi_2, \xi_3) + d\hat{X}
 \]

- The vector from point R to point S is $d\hat{X}$ and the corresponding length of surface arc is
 \[
 ds(\xi_3) = \hat{R}\hat{S}
 \]
The arc length $ds(\xi_3)$ of the two infinitesimally close points, R and S, is given by the inner product

$$[ds(\xi_3)]^2 = d\vec{X} \cdot d\vec{X}$$

Noting that

$$d\vec{X} = \frac{\partial \vec{X}}{\partial \xi_\alpha} d\xi_\alpha$$

it follows that

$$[ds(\xi_3)]^2 = (\vec{g}_\alpha \cdot \vec{g}_\beta) d\xi_\alpha d\xi_\beta$$

Using the previous definitions

$$H_{\alpha}(\xi_1, \xi_2, \xi_3) = |\vec{g}_\alpha| = \sqrt{\vec{g}_\alpha \cdot \vec{g}_{(\alpha)}}$$

yields

$$[ds(\xi_3)]^2 = (H_1 d\xi_1)^2 + 2H_1H_2 \cos \Theta_{12} d\xi_1 d\xi_2 + (H_2 d\xi_2)^2$$

where it is noted that

$$H_1H_2 \cos \Theta_{12} = \vec{g}_1 \cdot \vec{g}_2 = |\vec{g}_1| |\vec{g}_2| \cos \Theta_{12}$$

and

$$\Theta_{12} = \Theta_{12}(\xi_1, \xi_2, \xi_3)$$

The functions $H_{\alpha}(\xi_1, \xi_2, \xi_3)$ are called the Lame´ parameters of the parallel surface, but are often referred to a metric coefficients
METRIC COEFFICIENTS OF A PARALLEL SURFACE
CONTINUED

- $\Theta_{12}(\xi_1, \xi_2, \xi_3)$ is the angle between $\hat{g}_1(\xi_1, \xi_2, \xi_3)$ and $\hat{g}_2(\xi_1, \xi_2, \xi_3)$, as shown in the following figure.
METRIC COEFFICIENTS OF A PARALLEL SURFACE
CONTINUED

- Noting that \(\cos \Theta_{12} = \hat{g}_1 \cdot \hat{g}_2 \) and using \(\hat{g}_1 = \mu_{11} \hat{a}_1 + \mu_{12} \hat{a}_2 \) and \(\hat{g}_2 = \mu_{21} \hat{a}_1 + \mu_{22} \hat{a}_2 \) gives

\[
\cos \Theta_{12} = \mu_{11} \mu_{21} (\hat{a}_1 \cdot \hat{a}_1) + \left[\mu_{11} \mu_{22} + \mu_{12} \mu_{21} \right] (\hat{a}_1 \cdot \hat{a}_2) + \mu_{12} \mu_{22} (\hat{a}_2 \cdot \hat{a}_2)
\]

- Then, using \(\hat{a}_1 \cdot \hat{a}_1 = 1 \), \(\hat{a}_2 \cdot \hat{a}_2 = 1 \), and \(\hat{a}_1 \cdot \hat{a}_2 = \cos \theta_{12} \) gives

\[
\cos \Theta_{12} = \mu_{11} \mu_{21} + \mu_{12} \mu_{22} + \left[\mu_{11} \mu_{22} + \mu_{12} \mu_{21} \right] \cos \theta_{12}
\]

- Next, using the expressions for the shifters yields

\[
\cos \Theta_{12} = \frac{\left[1 + \frac{\xi_3}{r_{11}}\right] \left[1 + \frac{\xi_3}{r_{22}}\right] \cos \theta_{12} + \left[1 + \frac{\xi_3}{r_{11}}\right] \frac{\xi_3}{r_{21}} - \left[1 + \frac{\xi_3}{r_{22}}\right] \frac{\xi_3}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}
\]
METRIC COEFFICIENTS OF A PARALLEL SURFACE
CONTINUED

In addition, using

\[H_1 = A_1 \sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2} \]

\[H_2 = A_2 \sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2} \]

gives

\[\frac{H_1 H_2}{A_1 A_2} \cos \Theta_{12} = \left[1 + \frac{\xi_3}{r_{11}} \right] \left[1 + \frac{\xi_3}{r_{22}} \right] + \frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{21}} \cos \theta_{12} \]

\[+ \left[1 + \frac{\xi_3}{r_{11}} \right] \frac{\xi_3}{r_{21}} - \left(1 + \frac{\xi_3}{r_{22}} \right) \frac{\xi_3}{r_{12}} \sin \theta_{12} \]
The arc length \(\widehat{RS} \) is expressible as

\[
\left[ds(\xi_3) \right]^2 = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2 \left(A_1 d\xi_1 \right)^2
\]

\[+ \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 \left(A_2 d\xi_2 \right)^2
\]

\[+ 2 \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \left(1 + \frac{\xi_3}{r_{22}} \right) + \frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{21}} \right] \cos \theta_{12} + \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \frac{\xi_3}{r_{21}} - \left(1 + \frac{\xi_3}{r_{22}} \right) \frac{\xi_3}{r_{12}} \right] \sin \theta_{12} \right] A_1 d\xi_1 A_2 d\xi_2
\]

Along the \(\xi_1 \)-coordinate curve, \(\xi_2 \) is a constant value and, as a result

\[d\xi_2 = 0 \; \text{; thus, } ds(\xi_3)_{\{1\}} = H_1 d\xi_1\]

or

\[ds(\xi_3)_{\{1\}} = \sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2} A_1 d\xi_1 \]
LIKEWISE,

For orthogonal Gaussian reference-surface coordinates,

\[
\begin{align*}
H_1 &= A_1 \sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}, \\
H_2 &= A_2 \sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}, \\
\cos\theta_{12} &= \frac{-\frac{\xi_3}{r_{12}} \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}}\right)}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2} \sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}
\end{align*}
\]
METRIC COEFFICIENTS OF A PARALLEL SURFACE
CONTINUED

In addition,

\[
[ds(\xi_3)]^2 = \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] \left(A_1 d\xi_{1}\right)^2 + \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] \left(A_2 d\xi_{2}\right)^2 \\
- 2A_1 A_2 \frac{\xi_3}{r_{12}} \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) d\xi_1 d\xi_2
\]

\[
ds(\xi_3)_{(1)} = \sqrt{\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2} \ A_1 d\xi_1
\]
along the \(\xi_1\)-coordinate curve,

and

\[
ds(\xi_3)_{(2)} = \sqrt{\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2} \ A_2 d\xi_2
\]
along the \(\xi_2\)-coordinate curve.
The shifters reduce to

\[
\begin{align*}
\mu_{11} &= \frac{1 + \frac{\xi_3}{r_{11}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \\
\mu_{12} &= -\frac{\frac{\xi_3}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \\
\mu_{21} &= -\frac{\frac{\xi_3}{r_{22}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \\
\mu_{22} &= \frac{1 + \frac{\xi_3}{r_{22}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}
\end{align*}
\]

Furthermore, the unit-magnitude natural base vector fields reduce to

\[
\begin{align*}
\hat{g}_1 &= \frac{\left(1 + \frac{\xi_3}{r_{11}}\right)\hat{a}_1 - \frac{\xi_3}{r_{12}}\hat{a}_2}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \\
\hat{g}_2 &= \frac{\left(1 + \frac{\xi_3}{r_{22}}\right)\hat{a}_2 - \frac{\xi_3}{r_{12}}\hat{a}_1}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}
\end{align*}
\]
Another useful quantity is the differential surface area \(dA(\xi_3) \) enclosed by the arcs \(RT, RV, TS, \) and \(VS \) shown in the figure.

To a first approximation in differentials, \(dA(\xi_3) \) is given by

\[
dA(\xi_3) = \left| \frac{\partial \mathbf{X}}{\partial \xi_1} d\xi_1 \times \frac{\partial \mathbf{X}}{\partial \xi_2} d\xi_2 \right|
\]

Using \(\mathbf{\dot{g}}_\alpha = \frac{\partial \mathbf{X}}{\partial \xi_\alpha} \) gives

\[
dA(\xi_3) = |\mathbf{\dot{g}}_1 \times \mathbf{\dot{g}}_2| d\xi_1 d\xi_2
\]
Then, using

\[
\frac{\mathbf{g}_1 \times \mathbf{g}_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right] \hat{n} \quad \text{gives}
\]

\[
dA(\xi_3) = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right] A_1 A_2 d\xi_1 d\xi_2
\]

For orthogonal Gaussian reference-surface coordinates,

\[
\frac{\mathbf{g}_1 \times \mathbf{g}_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \left(1 + \frac{\xi_3}{r_{22}} \right) - \left(\frac{\xi_3}{r_{12}} \right)^2 \right] \hat{n} \quad \text{and}
\]

\[
dA(\xi_3) = \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \left(1 + \frac{\xi_3}{r_{22}} \right) - \left(\frac{\xi_3}{r_{12}} \right)^2 \right] A_1 A_2 d\xi_1 d\xi_2
\]
METRIC COEFFICIENTS OF A PARALLEL SURFACE
CONTINUED

- For orthogonal reference-surface Gaussian coordinates with negligible torsion, \(\cos \Theta_{12} = 0 \); thus, the coordinate mesh on every parallel surface is also orthogonal.

- This simplification is why **Principal-Curvature Coordinates**, which are orthogonal and have no torsion, are often used.

- For these coordinates \(\frac{1}{r_{12}} = 0 \), \(r_{11} \to R_1 \), and \(r_{22} \to R_2 \).

- Thus, for **Principal-Curvature Coordinates**, \(\hat{g}_1 = \hat{a}_1 \) and \(\hat{g}_2 = \hat{a}_2 \).
Likewise, for Principal-Curvature Coordinates,

\[
\left[\mathbf{ds}(\xi_3) \right]^2 = \left(1 + \frac{\xi_3}{R_1} \right)^2 (A_1 \mathbf{d}\xi_1)^2 + \left(1 + \frac{\xi_3}{R_2} \right)^2 (A_2 \mathbf{d}\xi_2)^2
\]

\[
\mathbf{ds}(\xi_3)_{(1)} = \left(1 + \frac{\xi_3}{R_1} \right) A_1 \mathbf{d}\xi_1 \quad \text{and}
\]

\[
\mathbf{ds}(\xi_3)_{(2)} = \left(1 + \frac{\xi_3}{R_2} \right) A_2 \mathbf{d}\xi_2 \quad \text{and}
\]

\[
\mathbf{dA}(\xi_3) = \left(1 + \frac{\xi_3}{R_1} \right) \left(1 + \frac{\xi_3}{R_2} \right) A_1 A_2 \mathbf{d}\xi_1 \mathbf{d}\xi_2
\]
METRIC COEFFICIENTS OF \mathcal{R}_0

- **Metric coefficients** for the undeformed-shell configuration, \mathcal{R}_0, are the quantities that are needed to measure the arc length of material particles forming curves, the area of material-particle surfaces, and the volumes of material-particle regions within the undeformed shell.

- In particular, consider a differential element at point $R \in S_0(\xi_3)$, with coordinates (ξ_1, ξ_2, ξ_3), that is bounded by the parallel surfaces $S_0(\xi_3)$ and $S_0(\xi_3 + d\xi_3)$, as shown in the next figure.

- $S_\varepsilon(R)$ denotes a small, *infinitesimal neighborhood* of R.

- The point P shown in the figure is the corresponding point of the reference surface, S_0, and $S_\varepsilon(P)$ denotes a corresponding small, *infinitesimal neighborhood* of the point P.

METRIC COEFFICIENTS OF \mathcal{R}_0 - CONTINUED

Differential volume element, $d\mathcal{V}$

Parallel surface, $s_\varepsilon(R) \subset S_0(\xi_3)$

Reference surface, $s_\varepsilon(P) \subset S_0$
METRIC COEFFICIENTS OF \mathcal{R}_0 - CONTINUED

- The **position vectors** to points P and R are $\vec{x} = x_k(\xi_1, \xi_2) \hat{i}_k$ and $\vec{X}(\xi_1, \xi_2, \xi_3) = \vec{x}(\xi_1, \xi_2) + \xi_3 \hat{n}(\xi_1, \xi_2)$, respectively.

- The **position vector** to point S is $\vec{X}(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \xi_3 + d\xi_3) = \vec{X}(\xi_1, \xi_2, \xi_3) + d\vec{X}$.

- The vector from point R to point S is $d\vec{X}$.

- The arc length of the material curve between points R and S is

 $$dL = RS = |d\vec{X}|,$$

 to a first approximation in differentials.
The chain rule of differentiation gives

\[d\mathbf{X}(\xi_1, \xi_2, \xi_3) = \frac{\partial \mathbf{X}}{\partial \xi_k} d\xi_k = \tilde{g}_k(\xi_1, \xi_2, \xi_3) d\xi_k \]

From \(dL = |d\mathbf{X}| \), it follows that

\[dL^2 = d\mathbf{X} \cdot d\mathbf{X} = (\tilde{g}_j \cdot \tilde{g}_k) d\xi_j d\xi_k \]

Using \(H_k(\xi_1, \xi_2, \xi_3) = \sqrt{\tilde{g}_k \cdot \tilde{g}_{(k)}} \) and the presumption of nonorthogonal coordinates on \(\mathcal{R}_0 \) gives the general form

\[dL^2 = (H_1 d\xi_1)^2 + 2H_1 H_2 \cos\Theta_{12} d\xi_1 d\xi_2 + (H_2 d\xi_2)^2 + \\
2H_1 H_3 \cos\Theta_{13} d\xi_1 d\xi_3 + 2H_2 H_3 \cos\Theta_{23} d\xi_2 d\xi_3 + (H_3 d\xi_3)^2 \]

In this equation, \(\Theta_{jk}(\xi_1, \xi_2, \xi_3) \) are the angles between the generally nonorthogonal intersecting coordinate curves of the undeformed shell that are defined by

\[H_j H_k \cos\Theta_{(jk)} = \tilde{g}_j \cdot \tilde{g}_k \]
Next, recall that $\mathbf{g}_3 = \hat{n}(\xi_1, \xi_2)$ and $H_3 = \sqrt{\mathbf{g}_3 \cdot \mathbf{g}_3} = 1$ for the shell space defined by $\mathbf{x}(\xi_1, \xi_2, \xi_3) = \mathbf{x}(\xi_1, \xi_2) + \xi_3 \hat{n}(\xi_1, \xi_2)$.

In addition, the vectors \mathbf{g}_1 and \mathbf{g}_2 are perpendicular to \mathbf{g}_3; thus,

$$H_1 H_3 \cos \Theta_{13} = \mathbf{g}_1 \cdot \mathbf{g}_3 = 0 \quad \text{and} \quad H_2 H_3 \cos \Theta_{23} = \mathbf{g}_2 \cdot \mathbf{g}_3 = 0$$

Therefore, $\Theta_{13} = \Theta_{23} = \frac{\pi}{2}$ and the general expression for the arc length, $dL \subset \mathcal{R}_0$, of the material curve between points R and S reduces to

$$dL^2 = \left(H_1 d\xi_1 \right)^2 + 2H_1 H_2 \cos \Theta_{12} d\xi_1 d\xi_2 + \left(H_2 d\xi_2 \right)^2 + \left(d\xi_3 \right)^2$$

for this very special coordinate system.
DIFFERENTIAL AREAS AND VOLUMES IN \mathbb{R}_0

- The differential area of the face $\xi_2 = 0$ of the differential volume element shown in the figure is given by

$$dA_{(2)} = \left| \frac{\partial \hat{X}}{\partial \xi_1} d\xi_1 \times \frac{\partial \hat{X}}{\partial \xi_3} d\xi_3 \right|,$$

to a first approximation in differentials.

- Substituting $\hat{g}_k = \frac{\partial \hat{X}}{\partial \xi_k}$ into the previous expression gives

$$dA_{(2)} = \hat{g}_1 \times \hat{g}_3 \, d\xi_1 d\xi_3$$

- Next, $\hat{g}_1 = A_1 \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\xi_3 \csc \theta_{12}}{r_{12}} \hat{a}_2$ and $\hat{g}_3 = \hat{n}$ are used.
Similarly, the differential area of the face of the differential element given by $\xi_1 = 0$ is given by

$$dA_{(1)} = \left| \frac{\partial \hat{X}_{\xi_2}}{\partial \xi_2} d\xi_2 \times \frac{\partial \hat{X}_{\xi_3}}{\partial \xi_3} d\xi_3 \right| = \left| \mathbf{\hat{g}}_2 \times \mathbf{\hat{g}}_3 \right| d\xi_2 d\xi_3$$

Then, $\mathbf{\hat{g}}_2 = A_2 \left[\frac{\xi_3 \csc\theta_{12}}{r_{21}} \hat{a}_1 + \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}} \right) \hat{a}_2 \right]$ and $\mathbf{\hat{g}}_3 = \hat{n}$ are used to get

$$dA_{(1)} = A_2 \sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc\theta_{12}}{r_{21}} \right)^2} \, d\xi_2 d\xi_3$$
DIFFERENTIAL AREAS AND VOLUMES IN \mathbb{R}_0

CONTINUED

The volume of the differential element is given by

$$dV = \left(\hat{g}_1 \times \hat{g}_2 \right) \cdot \hat{g}_3 \, d\xi_1 d\xi_2 d\xi_3$$

Using

$$\frac{\hat{g}_1 \times \hat{g}_2}{A_1 A_2} = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \hat{n}$$

and $\hat{g}_3 = \hat{n}$ gives

$$dV = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} A_1 A_2 \, d\xi_1 d\xi_2 d\xi_3$$
For orthogonal reference-surface Gaussian coordinates,

\[
dA_1 = A_2 \sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2} \, d\xi_2 d\xi_3
\]

\[
dA_2 = A_1 \sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2} \, d\xi_1 d\xi_3
\]

\[
dV = \left[\left(1 + \frac{\xi_3}{r_{11}}\right)\left(1 + \frac{\xi_3}{r_{22}}\right) - \left(\frac{\xi_3}{r_{12}}\right)^2\right] A_1 A_2 \, d\xi_1 d\xi_2 d\xi_3
\]
DIFFERENTIAL AREAS AND VOLUMES IN \mathbb{R}_0

CONCLUDED

- For principal-curvature Gaussian coordinates,

\[
dA^{(1)} = A_2 \left(1 + \frac{\xi_3}{R_2} \right) d\xi_2 d\xi_3 \\
dA^{(2)} = A_1 \left(1 + \frac{\xi_3}{R_1} \right) d\xi_1 d\xi_3 \\
d\forall = \left(1 + \frac{\xi_3}{R_1} \right) \left(1 + \frac{\xi_3}{R_2} \right) A_1 A_2 d\xi_1 d\xi_2 d\xi_3
\]
RECIPROCAL BASIS FOR \mathcal{R}_0

- A reciprocal basis is an algebraic construct that is particularly useful when the curvilinear coordinates for \mathcal{R}_0 are non-orthogonal.

- They are defined to provide orthogonality relations that simplify algebraic computations.

- Let the vector fields $\{\hat{g}^1, \hat{g}^2, \hat{g}^3\}$ be defined such that

\[
\hat{g}_1 \times \hat{g}_2 = \Lambda_3 \hat{g}^3 \quad \hat{g}_3 \times \hat{g}_1 = \Lambda_2 \hat{g}^2 \quad \hat{g}_2 \times \hat{g}_3 = \Lambda_1 \hat{g}^1
\]

and $\hat{g}^m \cdot \hat{g}_n = \delta^m_n$, where δ^m_n is the Kronecker delta symbol.

- Since $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$ form a basis at each point of \mathcal{R}_0, it follows that $\{\hat{g}^1, \hat{g}^2, \hat{g}^3\}$ can be expressed by the linear combinations $\hat{g}^k = g^{kp} \hat{g}_p$.
The orthogonality relations \(\hat{g}_m \cdot \hat{g}_n = \delta^m_n \) and \(\hat{g}^k = g^{kp} \hat{g}_p \) give
\[
\hat{g}^k \cdot \hat{g}^n = g^{kp} \hat{g}_p \cdot \hat{g}^n = g^{kp} \delta_p^n = g^{kn}
\]
In addition, applying the commutative property of dot-product multiplication to \(\hat{g}^k \cdot \hat{g}^n = g^{kn} \) yields the symmetry property \(g^{kn} = g^{nk} \)
Next, the orthogonality relations \(\hat{g}_m \cdot \hat{g}_n = \delta^m_n \) are applied to the previous cross-product definitions to get
\[
(\hat{g}_2 \times \hat{g}_3) \cdot \hat{g}_1 = \Lambda_1 \hat{g}^1 \cdot \hat{g}_1 = \Lambda_1
\]
\[
(\hat{g}_3 \times \hat{g}_1) \cdot \hat{g}_2 = \Lambda_2 \hat{g}^2 \cdot \hat{g}_2 = \Lambda_2
\]
\[
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 = \Lambda_3 \hat{g}^3 \cdot \hat{g}_3 = \Lambda_3
\]
RECIPIROCAL BASIS FOR \mathbb{R}_0 - CONTINUED

- Noting that $\hat{a} \times \hat{b} \cdot \hat{c} = (\hat{b} \times \hat{c}) \cdot \hat{a} = (\hat{c} \times \hat{a}) \cdot \hat{b}$ for any three distinct vectors \hat{a}, \hat{b}, and \hat{c}, it follows that

\[
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 = (\hat{g}_2 \times \hat{g}_3) \cdot \hat{g}_1 = (\hat{g}_3 \times \hat{g}_1) \cdot \hat{g}_2
\]

- Applying the equalities to

\[
(\hat{g}_2 \times \hat{g}_3) \cdot \hat{g}_1 = \Lambda_1 \hat{g}^1 \cdot \hat{g}_1 = \Lambda_1
\]

\[
(\hat{g}_3 \times \hat{g}_1) \cdot \hat{g}_2 = \Lambda_2 \hat{g}^2 \cdot \hat{g}_2 = \Lambda_2
\]

\[
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 = \Lambda_3 \hat{g}^3 \cdot \hat{g}_3 = \Lambda_3
\]

yields $\Lambda_1 = \Lambda_2 = \Lambda_3 = \Lambda$, which is determined as follows
RECIPROCAL BASIS FOR \(\mathcal{R}_0 \) - CONTINUED

- First, consider the Cartesian representations of the basis \(\{ \hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \hat{\mathbf{g}}_3 \} \), given by
 \[
 \hat{g}_k = \frac{\partial \mathbf{X}_p}{\partial \xi_k} \hat{i}_p
 \]

- For any three distinct vectors defined by \(\mathbf{a} = a_p \hat{i}_p \), \(\mathbf{b} = b_p \hat{i}_p \), and \(\mathbf{c} = c_p \hat{i}_p \), the product \((\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \) has the following determinant representation

\[
\begin{align*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} &= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}; \\
(\hat{\mathbf{g}}_1 \times \hat{\mathbf{g}}_2) \cdot \hat{\mathbf{g}}_3 &= \begin{vmatrix} \frac{\partial \mathbf{X}_1}{\partial \xi_1} & \frac{\partial \mathbf{X}_1}{\partial \xi_2} & \frac{\partial \mathbf{X}_1}{\partial \xi_3} \\ \frac{\partial \mathbf{X}_2}{\partial \xi_1} & \frac{\partial \mathbf{X}_2}{\partial \xi_2} & \frac{\partial \mathbf{X}_2}{\partial \xi_3} \\ \frac{\partial \mathbf{X}_3}{\partial \xi_1} & \frac{\partial \mathbf{X}_3}{\partial \xi_2} & \frac{\partial \mathbf{X}_3}{\partial \xi_3} \end{vmatrix}
\end{align*}
\]
Next, consider the general expression for nonorthogonal coordinates on \(\mathcal{R}_0 \) given by

\[
dL^2 = (H_1 d\xi_1)^2 + 2H_1 H_2 \cos\Theta_{12} d\xi_1 d\xi_2 + (H_2 d\xi_2)^2 + 2H_1 H_3 \cos\Theta_{13} d\xi_1 d\xi_3 + 2H_2 H_3 \cos\Theta_{23} d\xi_2 d\xi_3 + (H_3 d\xi_3)^2
\]

This expression is re-written in matrix notation as the quadratic form

\[
dL^2 = \begin{bmatrix} d\xi_1 & d\xi_2 & d\xi_3 \end{bmatrix} \begin{bmatrix} (H_1)^2 & H_1 H_2 \cos\Theta_{12} & H_1 H_3 \cos\Theta_{13} \\ H_1 H_2 \cos\Theta_{12} & (H_2)^2 & H_2 H_3 \cos\Theta_{23} \\ H_1 H_3 \cos\Theta_{13} & H_2 H_3 \cos\Theta_{23} & (H_3)^2 \end{bmatrix} \begin{bmatrix} d\xi_1 \\ d\xi_2 \\ d\xi_3 \end{bmatrix}
\]

The expression for the square of the arc length also has the Cartesian form

\[
dL^2 = (dX_1)^2 + (dX_2)^2 + (dX_3)^2
\]
RECIPROCAL BASIS FOR \mathbb{R}_0 - CONTINUED

- The Cartesian form is expressed in matrix notation as

$$
\begin{align*}
dL^2 &= \{dX_1 \ dX_2 \ dX_3\} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
dX_1 \\
dX_2 \\
dX_3
\end{bmatrix}
\end{align*}
$$

- Next, the chain rule of differentiation gives

$$
\begin{align*}
\begin{bmatrix}
dX_1 \\
dX_2 \\
dX_3
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_1}{\partial \xi_3} \\
\frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_3} \\
\frac{\partial X_3}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_3}
\end{bmatrix}^T
\begin{bmatrix}
d\xi_1 \\
d\xi_2 \\
d\xi_3
\end{bmatrix}
\end{align*}
$$

where the matrix superscript denotes transposition
Reciprocal Basis for \mathbb{R}_0 - Continued

- The Cartesian form is now expressed as

$$dL^2 = \left\{ d\xi_1, d\xi_2, d\xi_3 \right\}^T \begin{pmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_1}{\partial \xi_3} \\
\frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_3} \\
\frac{\partial X_3}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_3}
\end{pmatrix}
\begin{pmatrix}
d\xi_1 \\
d\xi_2 \\
d\xi_3
\end{pmatrix}$$

- Comparing this form with the similar previous one yields

$$\begin{pmatrix}
(H_1)^2 & H_1H_2\cos\Theta_{12} & H_1H_3\cos\Theta_{13} \\
H_1H_2\cos\Theta_{12} & (H_2)^2 & H_2H_3\cos\Theta_{23} \\
H_1H_3\cos\Theta_{13} & H_2H_3\cos\Theta_{23} & (H_3)^2
\end{pmatrix}
\begin{pmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_1}{\partial \xi_3} \\
\frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_3} \\
\frac{\partial X_3}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_3}
\end{pmatrix}
\begin{pmatrix}
d\xi_1 \\
d\xi_2 \\
d\xi_3
\end{pmatrix}$$
Noting that the determinant of a matrix is identical to the determinant of its transpose gives

\[
\begin{vmatrix}
(H_1)^2 & H_1H_2\cos\Theta_{12} & H_1H_3\cos\Theta_{13} \\
H_1H_2\cos\Theta_{12} & (H_2)^2 & H_2H_3\cos\Theta_{23} \\
H_1H_3\cos\Theta_{13} & H_2H_3\cos\Theta_{23} & (H_3)^2
\end{vmatrix}
= \begin{vmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_1} \\
\frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_2} \\
\frac{\partial X_1}{\partial \xi_3} & \frac{\partial X_2}{\partial \xi_3} & \frac{\partial X_3}{\partial \xi_3}
\end{vmatrix}^2
\]

Now, let

\[
H^2 = \begin{vmatrix}
(H_1)^2 & H_1H_2\cos\Theta_{12} & H_1H_3\cos\Theta_{13} \\
H_1H_2\cos\Theta_{12} & (H_2)^2 & H_2H_3\cos\Theta_{23} \\
H_1H_3\cos\Theta_{13} & H_2H_3\cos\Theta_{23} & (H_3)^2
\end{vmatrix}
\]

to get

\[
H = \begin{vmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_1} \\
\frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_2} \\
\frac{\partial X_1}{\partial \xi_3} & \frac{\partial X_2}{\partial \xi_3} & \frac{\partial X_3}{\partial \xi_3}
\end{vmatrix}
\]
Then

\[
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 = \begin{vmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_1} \\
\frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_2} \\
\frac{\partial X_1}{\partial \xi_3} & \frac{\partial X_2}{\partial \xi_3} & \frac{\partial X_3}{\partial \xi_3}
\end{vmatrix}
\]

and

\[
H = \begin{vmatrix}
\frac{\partial X_1}{\partial \xi_1} & \frac{\partial X_2}{\partial \xi_1} & \frac{\partial X_3}{\partial \xi_1} \\
\frac{\partial X_1}{\partial \xi_2} & \frac{\partial X_2}{\partial \xi_2} & \frac{\partial X_3}{\partial \xi_2} \\
\frac{\partial X_1}{\partial \xi_3} & \frac{\partial X_2}{\partial \xi_3} & \frac{\partial X_3}{\partial \xi_3}
\end{vmatrix}
\]

give \(\Lambda = H \)

and

\[
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 = (\hat{g}_2 \times \hat{g}_3) \cdot \hat{g}_1 = (\hat{g}_3 \times \hat{g}_1) \cdot \hat{g}_2 = H
\]

The explicit form for \(H \) is given by

\[
H = H_1H_2H_3 \sqrt{\sin^2 \Theta_{12} + \sin^2 \Theta_{13} + \sin^2 \Theta_{23} + 2(\cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} - 1)}
\]
RECIPROCAL BASIS FOR \mathbb{R}_0 - CONTINUED

- From $\hat{g}^m \cdot \hat{g}_n = \delta^m_n$ and $\hat{g}^k = g^{kp} \hat{g}_p$, it follows that $g^{kp}(\hat{g}_p \cdot \hat{g}_n) = \delta^m_n$.

- The matrix form of $g^{kp}(\hat{g}_p \cdot \hat{g}_n) = \delta^m_n$ is given by

\[
\begin{bmatrix}
g_{11} & g_{12} & g_{13}
g_{12} & g_{22} & g_{23}
g_{13} & g_{23} & g_{33}
g_{21} & g_{22} & g_{23}
g_{31} & g_{32} & g_{33}
g_{31} & g_{32} & g_{33}
\end{bmatrix}
\begin{bmatrix}
\hat{g}_1 \cdot \hat{g}_1 & \hat{g}_1 \cdot \hat{g}_2 & \hat{g}_1 \cdot \hat{g}_3
\hat{g}_2 \cdot \hat{g}_1 & \hat{g}_2 \cdot \hat{g}_2 & \hat{g}_2 \cdot \hat{g}_3
\hat{g}_3 \cdot \hat{g}_1 & \hat{g}_3 \cdot \hat{g}_2 & \hat{g}_3 \cdot \hat{g}_3
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0
0 & 1 & 0
0 & 0 & 1
\end{bmatrix}
\]

- Thus,

\[
\begin{bmatrix}
g_{11} & g_{12} & g_{13}
g_{12} & g_{22} & g_{23}
g_{13} & g_{23} & g_{33}
g_{21} & g_{22} & g_{23}
g_{31} & g_{32} & g_{33}
g_{31} & g_{32} & g_{33}
\end{bmatrix}
\begin{bmatrix}
\hat{g}_1 \cdot \hat{g}_1 & \hat{g}_1 \cdot \hat{g}_2 & \hat{g}_1 \cdot \hat{g}_3
\hat{g}_2 \cdot \hat{g}_1 & \hat{g}_2 \cdot \hat{g}_2 & \hat{g}_2 \cdot \hat{g}_3
\hat{g}_3 \cdot \hat{g}_1 & \hat{g}_3 \cdot \hat{g}_2 & \hat{g}_3 \cdot \hat{g}_3
\end{bmatrix}
= \begin{bmatrix}
\hat{g}_1 \cdot \hat{g}_1 & \hat{g}_1 \cdot \hat{g}_2 & \hat{g}_1 \cdot \hat{g}_3
\hat{g}_2 \cdot \hat{g}_1 & \hat{g}_2 \cdot \hat{g}_2 & \hat{g}_2 \cdot \hat{g}_3
\hat{g}_3 \cdot \hat{g}_1 & \hat{g}_3 \cdot \hat{g}_2 & \hat{g}_3 \cdot \hat{g}_3
\end{bmatrix}
\]
RECIPROCAL BASIS FOR \mathcal{R}_0 - CONTINUED

- Using $H_j H_k \cos \Theta_{(jk)} = \hat{g}_j \cdot \hat{g}_k$, it follows that

$$
\begin{bmatrix}
 g_{11} & g_{12} & g_{13} \\
 g_{12} & g_{22} & g_{23} \\
 g_{13} & g_{23} & g_{33}
\end{bmatrix}
= \begin{bmatrix}
 (H_1)^2 & H_1 H_2 \cos \Theta_{12} & H_1 H_3 \cos \Theta_{13} \\
 H_1 H_2 \cos \Theta_{12} & (H_2)^2 & H_2 H_3 \cos \Theta_{23} \\
 H_1 H_3 \cos \Theta_{13} & H_2 H_3 \cos \Theta_{23} & (H_3)^2
\end{bmatrix}^{-1}
$$

- Since $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$ form a basis at each point of \mathcal{R}_0, and $\hat{g}^k = g^{kp} \hat{g}_p$

yields three distinct linear combinations of $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$, it follows that $\{\hat{g}^1, \hat{g}^2, \hat{g}^3\}$ is also a basis at each point of \mathcal{R}_0.

188
Now, recalling that $H_3 = 1$ and $\Theta_{13} = \Theta_{23} = \frac{\pi}{2}$ for the (\xi_1, \xi_2, \xi_3)
coordinate system based on parallel surfaces, yields $H = H_1H_2 \sin \Theta_{12}$

From $\frac{\vec{g}_1 \times \vec{g}_2}{A_1A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right] \hat{n}$

and $H_1H_2 \sin \Theta_{12} = \left| \vec{g}_1 \times \vec{g}_2 \right|$, it follows that

$H = A_1A_2 \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right]$

Note that the volume of the differential element given by

$d\mathcal{V} = \left(\vec{g}_1 \times \vec{g}_2 \right) \cdot \vec{g}_3 \, d\xi_1 \, d\xi_2 \, d\xi_3$

becomes $d\mathcal{V} = H \, d\xi_1 \, d\xi_2 \, d\xi_3$
RECIPROCAL BASIS FOR \mathcal{R}_0 - CONTINUED

- Additionally,

\[
\begin{bmatrix}
g_{11} & g_{12} & g_{13} \\
g_{12} & g_{22} & g_{23} \\
g_{13} & g_{23} & g_{33}
\end{bmatrix}
= \begin{bmatrix}
(H_1)^2 & H_1H_2\cos\Theta_{12} & 0 \\
H_1H_2\cos\Theta_{12} & (H_2)^2 & 0 \\
0 & 0 & 1
\end{bmatrix}^{-1}
\]

which yields

\[g_{13} = g_{23} = 0, \quad g_{33} = 1,\]

and

\[
\begin{bmatrix}
g_{11} & g_{12} \\
g_{12} & g_{22}
\end{bmatrix}
= \frac{1}{H^2}
\begin{bmatrix}
(H_2)^2 & - H_1H_2\cos\Theta_{12} \\
- H_1H_2\cos\Theta_{12} & (H_1)^2
\end{bmatrix}
\]
RECIPIROCAL BASIS FOR R_0 - CONCLUDED

$\vec{g}^1 \perp \vec{g}_2$ and \vec{g}_3

$\vec{g}^2 \perp \vec{g}_1$ and \vec{g}_3

$\vec{g}^3 \perp \vec{g}_1$ and \vec{g}_2

$\perp = \text{perpendicular}$

Surface $\xi_3 = \text{constant}$
MATHEMATICAL DESCRIPTION OF THE DEFORMED-SHELL REFERENCE-SURFACE GEOMETRY
MATHEMATICAL DESCRIPTION OF THE DEFORMED-SHELL REFERENCE-SURFACE GEOMETRY

- Previously, it was shown that the properties of a parallel surface within the shell space can be given in terms of the properties of a corresponding reference surface.

- In a similar manner, the deformation of the shell space will be related herein to the deformation of the corresponding reference surface.
THE DEFORMED REFERENCE SURFACE, S_t

- Let S_t be a smooth surface that is obtained by displacing and deforming the initial smooth undeformed reference surface S_0 in some manner.

- S_t is referred to herein as the deformed reference surface and it occupies a subset of the same Euclidean space \mathcal{E}^3 at time $t > 0$.

- The undeformed configuration of S_t is the surface S_0 and herein it corresponds to time $t = 0$.

- The Gaussian coordinates of the reference surface S_0 are presumed to be nonorthogonal.

- Points of the deformed surface have the Cartesian coordinates (x_1, x_2, x_3), with respect to the same $O - X_1 - X_2 - X_3$ coordinate frame.
THE DEFORMED REFERENCE SURFACE, S_ξ - CONTINUED

- By using the **Lagrangian description** of motion and deformation, it follows that $x_k = x_k(x_1, x_2, x_3, \xi)$, and as a result, the **deformed surface** has the parametric representation $x_k = x_k(\xi_1, \xi_2, \xi)$.

- In addition, the **Gaussian coordinates** (ξ_1, ξ_2) of a point $P \in S_0$ become coordinates for the image of P in the deformed configuration; that is, $P \in S_\xi$.

- As deformation progresses, the **Gaussian coordinate net** associated with the undeformed surface S_0 gets convected through E^3 as part of the deformed image of S_0, that is, the surface S_ξ.

- It is important to observe that the **convected Gaussian coordinates** are generally nonorthogonal, even if they are orthogonal at $\xi = 0$.

THE DEFORMED REFERENCE SURFACE, **S_ξ - CONTINUED**

- By using the **Lagrangian description** of motion and deformation, it follows that $x_k = x_k(x_1, x_2, x_3, \xi)$, and as a result, the **deformed surface** has the parametric representation $x_k = x_k(\xi_1, \xi_2, \xi)$.

- In addition, the **Gaussian coordinates** (ξ_1, ξ_2) of a point $P \in S_0$ become coordinates for the image of P in the deformed configuration; that is, $P \in S_\xi$.

- As deformation progresses, the **Gaussian coordinate net** associated with the undeformed surface S_0 gets convected through E^3 as part of the deformed image of S_0, that is, the surface S_ξ.

- It is important to observe that the **convected Gaussian coordinates** are generally nonorthogonal, even if they are orthogonal at $\xi = 0$.

THE DEFORMED REFERENCE SURFACE, S_ε - CONTINUED

- This convected nature of the \textbf{Gaussian coordinate net} enables one to define vector fields (and tensor fields) associated with the deformed surface in a manner analogous to that for the undeformed surface S_0

- Mathematically, $x_k = x_k(\xi_1, \xi_2, \varepsilon)$ represents an invertible mapping of the undeformed surface S_0 onto the deformed surface S_ε

- This mapping is referred to herein as the \textbf{deformation mapping} and is denoted herein by $\mathcal{D}_\varepsilon()$

- The invertibility of the mapping is inherent because of the physical requirements that every material point P of the undeformed surface S_0 possess only one material-point image in the corresponding deformed configuration at a given time $\varepsilon > 0$, and that no point of S_0 have more than one image in S_ε, and vice versa
THE DEFORMED REFERENCE SURFACE, S_t - CONCLUDED

Material particle, P at time $t = 0$

$D_t(\)$

$P = D_t(P)$

$S_t = D_t(S_0)$

- Note that $D_0(\)$ is an identity mapping, which yields $S_0 = D_0(S_0)$
NATURAL BASE-VECTOR FIELDS OF S_t

- To characterize the geometry of the deformed reference surface, and any associated vector fields, such as material-point velocity and acceleration, it is convenient to introduce the time-dependent position vector $\mathbf{r} = r_k(\xi_1, \xi_2, t) \hat{i}_k$, with respect to the same $\mathbf{O} - X_1 - X_2 - X_3$ coordinate frame.

- This vector locates the deformed image of a generic material point $P \in S_0$ that is denoted by $P = D_t(P) \in S_t$, and defines the trajectory of point P through \mathcal{E}^3.

- The undeformed and deformed reference surfaces are related by introducing a vector field $\mathbf{u}(\xi_1, \xi_2, t)$ that defines the displacement of each material point $P \in S_0$ such that

$$\mathbf{r}(\xi_1, \xi_2, t) = \mathbf{x}(\xi_1, \xi_2) + \mathbf{u}(\xi_1, \xi_2, t)$$

and

$$\mathbf{r}(\xi_1, \xi_2, 0) = \mathbf{x}(\xi_1, \xi_2)$$
NATURAL BASE-VECTOR FIELDS OF \mathcal{S}_t - CONTINUED

\mathcal{E}^3

\mathcal{E}^3

Undeformed surface, S_0

Deformed surface, S_t

$\hat{n}(\xi_1, \xi_2)$

$\hat{a}_1(\xi_1, \xi_2)$

$\hat{a}_2(\xi_1, \xi_2)$

$\ddot{u}(\xi_1, \xi_2, t)$

$\dot{a}_1(\xi_1, \xi_2, t)$

$\dot{a}_2(\xi_1, \xi_2, t)$

$T_p(S_t)$

$\ddot{x} = x_k(\xi_1, \xi_2, \tau) \hat{i}_k$

$\dot{x} = x_k(\xi_1, \xi_2, \tau) \hat{i}_k$
By direct analogy with the undeformed reference surface S_0, it follows that the natural base-vector fields of S_ε, that span the tangent plane, $T_\varepsilon(S_\varepsilon)$, at every point $P \in S_\varepsilon$, are given by

$$\hat{a}_1(\xi_1, \xi_2, \varepsilon) = \frac{\partial \xi}{\partial \xi_1}$$

and

$$\hat{a}_2(\xi_1, \xi_2, \varepsilon) = \frac{\partial \xi}{\partial \xi_2}$$

In terms of the deformation mapping, the base vectors are given by

$$\hat{a}_\alpha(\xi_1, \xi_2, \varepsilon) = D_\varepsilon(\hat{a}_\alpha(\xi_1, \xi_2)),$$

such that

$$\hat{a}_\alpha(\xi_1, \xi_2, 0) = \hat{a}_\alpha(\xi_1, \xi_2)$$

The unit-magnitude vector field $\hat{n}(\xi_1, \xi_2, \varepsilon)$ shown in the previous figure is perpendicular to the tangent plane at $P = D_\varepsilon(P) \in S_\varepsilon$ and is given by

$$\hat{n}(\xi_1, \xi_2, \varepsilon) = \frac{\hat{a}_1 \times \hat{a}_2}{|\hat{a}_1 \times \hat{a}_2|},$$

where

$$\hat{n}(\xi_1, \xi_2, 0) = \hat{n}(\xi_1, \xi_2)$$
NATURAL BASE-VECTOR FIELDS OF S_{τ} - CONTINUED

- In terms of the displacement vector, the base-vector fields of S_{τ} are expressed as

$$\vec{a}_\alpha(\xi_1, \xi_2, \tau) = \hat{a}_\alpha + \frac{\partial \hat{u}}{\partial \xi_\alpha} = A_{(\alpha)} \left(\hat{a}_\alpha + \frac{1}{A_{(\alpha)}} \frac{\partial \hat{u}}{\partial \xi_\alpha} \right)$$

where the parentheses around the subscript is used to indicate suspension of the repeated-index summation convention.

- In general, the displacement vector field $\hat{u}(\xi_1, \xi_2, \tau)$ has several component forms that are convenient for various purposes.

- Herein, $\hat{u}(\xi_1, \xi_2, \tau)$ is associated with points $P \in S_0$ and is expressed in terms of the unit-magnitude vector fields for S_0 as

$$\hat{u}(\xi_1, \xi_2, \tau) = u_\alpha(\xi_1, \xi_2, \tau) \hat{a}_\alpha(\xi_1, \xi_2) + w(\xi_1, \xi_2, \tau) \hat{n}(\xi_1, \xi_2)$$

- $u_\alpha(\xi_1, \xi_2, \tau)$ and $w(\xi_1, \xi_2, \tau)$ are referred to herein as the tangential displacements and normal displacement, respectively.
Previously, it was shown herein that derivatives of a vector field
\[
\vec{V}(\xi_1, \xi_2) = V_a(\xi_1, \xi_2)\hat{a}_a(\xi_1, \xi_2) + V_3(\xi_1, \xi_2)\hat{n}(\xi_1, \xi_2)
\]
defined on the undeformed reference surface \(S_0 \) are given by
\[
\frac{1}{A_0} \frac{\partial \vec{V}}{\partial \xi_{\beta}} = V^{(\alpha)}_{\beta} \hat{a}_\alpha + V^{(3)}_{\beta} \hat{n}
\]

Thus, it follows that
\[
\frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} = u^{(1)}_{\hat{a}_1} + u^{(2)}_{\hat{a}_2} + u^{(3)}_{\hat{n}}
\]
and
\[
\frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} = u^{(1)}_{\hat{a}_1} + u^{(2)}_{\hat{a}_2} + u^{(3)}_{\hat{n}}
\]
where, for general reference-surface Gaussian coordinates,
NATURAL BASE-VECTOR FIELDS OF S_t - CONTINUED

\[u^{(1)}_{(1)} = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} (u_1 \cos \theta_{12} + u_2) + w \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \]

\[u^{(2)}_{(1)} = \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} (u_1 + u_2 \cos \theta_{12}) + \frac{u_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - w \frac{\csc \theta_{12}}{r_{12}} \]

\[u^{(3)}_{(1)} = \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} - \frac{u_1}{r_{11}} + u_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \]

\[u^{(1)}_{(2)} = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} (u_1 \cos \theta_{12} + u_2) + w \frac{\csc \theta_{12}}{r_{21}} \]

\[u^{(2)}_{(2)} = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} - \frac{u_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} (u_1 + u_2 \cos \theta_{12}) + w \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \]

\[u^{(3)}_{(2)} = \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} - u_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{u_2}{r_{22}} \]
For orthogonal Gaussian coordinates these expressions reduce to

\[
\begin{align*}
\mathbf{u}_{1}^{(1)} & = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - u_2 \frac{1}{\rho_{11}} + \frac{w}{\rho_{11}} \\
\mathbf{u}_{2}^{(1)} & = \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + u_1 \frac{1}{\rho_{11}} - \frac{w}{\rho_{11}} \\
\mathbf{u}_{1}^{(2)} & = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} - u_2 \frac{1}{\rho_{22}} + \frac{w}{\rho_{22}} \\
\mathbf{u}_{2}^{(2)} & = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + u_1 \frac{1}{\rho_{22}} - \frac{w}{\rho_{22}} \\
\mathbf{u}_{3}^{(1)} & = \frac{1}{A_1} \frac{\partial\mathbf{w}}{\partial \xi_1} - u_1 \frac{1}{\rho_{11}} + u_2 \frac{1}{\rho_{11}} \\
\mathbf{u}_{3}^{(2)} & = \frac{1}{A_2} \frac{\partial\mathbf{w}}{\partial \xi_2} + u_1 \frac{1}{\rho_{22}} - u_2 \frac{1}{\rho_{22}} \\
\end{align*}
\]
NATURAL BASE-VECTOR FIELDS OF \mathcal{S}_t - CONCLUDED

- Using the general expressions for $\frac{1}{A_{(\alpha)}} \frac{\partial \tilde{u}}{\partial \xi_\alpha}$ and the expression

$$\hat{\alpha}_\alpha(\xi_1, \xi_2, t) = \hat{\alpha}_\alpha + \frac{\partial \tilde{u}}{\partial \xi_\alpha} = A_{(\alpha)} \left(\hat{\alpha}_\alpha + \frac{1}{A_{(\alpha)}} \frac{\partial \tilde{u}}{\partial \xi_\alpha} \right),$$

the base-vector fields of the deformed surface at time t are given in terms of the displacement components by

$$\frac{\hat{\alpha}_1}{A_1} = \left(1 + u^{(1)} \right) \hat{\alpha}_1 + u^{(2)} \hat{\alpha}_2 + u^{(3)} \hat{n}$$

$$\frac{\hat{\alpha}_2}{A_2} = u^{(1)} \hat{\alpha}_1 + \left(1 + u^{(2)} \right) \hat{\alpha}_2 + u^{(3)} \hat{n}$$
METRIC COEFFICIENTS OF S_t

- Recall that $S_\varepsilon(P)$ denotes a small, *infinitesimal neighborhood* of an arbitrary point P of the undeformed reference surface, S_0.

- Likewise, point Q is a “nearby” point in $S_\varepsilon(P)$ and $ds = PQ$ is a smooth *differential surface arc* connecting points P and Q.

- As the reference surface deforms, material points P and Q become P' and Q', respectively.

- Likewise, the material curve C becomes the curve C', and the *infinitesimal neighborhood* $S_\varepsilon(P)$ becomes $S_\varepsilon(P')$, as shown in the next figure.
METRIC COEFFICIENTS OF S_t - CONTINUED

ε^3

Curve, C

$S_\varepsilon(P)$ for the undeformed reference surface

$\dot{x} = x_k(\xi_1, \xi_2) \hat{i}_k$

$\ddot{x}(\xi_1 + d\xi_1, \xi_2 + d\xi_2)$

Deformed curve, $C = D_t(C)$

$S_\varepsilon(P)$ for the deformed reference surface

$\ddot{x}(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \tau)$

$\dot{x} = x_k(\xi_1, \xi_2, \tau) \hat{i}_k$

$\xi_1 \quad \xi_2$

$\xi_1 \quad \xi_2$

$\xi_1 \quad \xi_2$

\dot{x}

P

Q

\ddot{x}

$ds = \overrightarrow{PQ}$

$d\ddot{x} = \overrightarrow{DZ}$

$X_1 \quad X_2 \quad X_3$

$\hat{i}_1 \quad \hat{i}_2 \quad \hat{i}_3$

207
Just as the reference-surface coordinates \((\xi_1, \xi_2) \) become convected surface coordinates for the deformed reference surface \(S_t \), the arc-length coordinate \(s \) becomes a convected arc-length coordinate for the curve \(C \subset S_t \) shown in the previous figure.

Thus, the differential \(ds = \overrightarrow{PQ} \) becomes the differential \(ds = \overrightarrow{P2} \).

The position vectors to points \(P \) and \(Z \) of the deformed-reference-surface curve \(C \) are given, respectively, by

\[
\overrightarrow{x} = x_k(\xi_1, \xi_2, \tau) \hat{i}_k \quad \text{and} \quad \overrightarrow{x}(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \tau) = \overrightarrow{x}(\xi_1, \xi_2, \tau) + d\overrightarrow{x}
\]

The arc length \(ds \) of the two infinitesimally close points, \(P \) and \(Z \), is given by the dot product \(ds^2 = \overrightarrow{d}\overrightarrow{x} \cdot \overrightarrow{d}\overrightarrow{x} \).
METRIC COEFFICIENTS OF S_t - CONTINUED

- Noting that $d\hat{z} = \frac{\partial \hat{z}}{\partial \xi_\alpha} d\xi_\alpha$ and $\hat{a}_\alpha(\xi_1, \xi_2, t) = \frac{\partial \hat{z}}{\partial \xi_\alpha}$, it follows that the arc length ds is given by $ds^2 = \left(\hat{a}_\alpha \cdot \hat{a}_\beta\right) d\xi_\alpha d\xi_\beta$.

- For the undeformed reference surface, the arc length ds is expressed as $ds^2 = \left(A_1 d\xi_1\right)^2 + 2A_1A_2 \cos \theta_{12} d\xi_1 d\xi_2 + \left(A_2 d\xi_2\right)^2$, where θ_{12} is the angle between the nonorthogonal Gaussian coordinate curves.

- In addition, $A_\alpha(\xi_1, \xi_2) = \sqrt{\hat{a}_\alpha \cdot \hat{a}_\alpha} = |\hat{a}_\alpha|$ and $\hat{a}_1 \cdot \hat{a}_2 = A_1 A_2 \cos \theta_{12}$.

- Again, for the deformed reference surface, it is important to note that the convected-coordinate curves are generally nonorthogonal.

- The angle between the **convected** Gaussian coordinate curves is denoted by $\theta_{12} = \theta_{12}(\xi_1, \xi_2, t)$, where $\theta_{12} = D_t(\theta_{12})$.

METRIC COEFFICIENTS OF S_t - CONTINUED

- Using notation similar to that used for the undeformed reference surface, the arc length $d\xi$ is expressed in terms of Lame parameters of the deformed reference surface as

$$d\xi^2 = \left(A_1 d\xi_1^1 \right)^2 + 2 A_1 A_2 \cos \theta_{12} d\xi_1 d\xi_2 + \left(A_2 d\xi_2 \right)^2$$

- Comparison of $d\xi^2 = (\hat{a}_\alpha \cdot \hat{a}_\beta) d\xi_\alpha d\xi_\beta$ and the previous equation reveals

$$A_1 = \sqrt{\hat{a}_1 \cdot \hat{a}_1} = |\hat{a}_1|$$

$$A_2 = \sqrt{\hat{a}_2 \cdot \hat{a}_2} = |\hat{a}_2|$$

and

$$A_1 A_2 \cos \theta_{12} = \hat{a}_1 \cdot \hat{a}_2$$
METRIC COEFFICIENTS OF S_t - CONTINUED

- Using $\hat{\mathbf{a}}_{\alpha}(\xi_1, \xi_2, t) = A_{(\alpha)}\left(\hat{\mathbf{a}}_{\alpha} + \frac{1}{A_{(\alpha)}} \frac{\partial \mathbf{u}}{\partial \xi_{\alpha}}\right)$ gives

$$
\mathcal{A}_1 = A_1 \sqrt{1 + 2 \left(\hat{\mathbf{a}}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1}\right) + \left(\frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1}\right)}
$$

$$
\mathcal{A}_2 = A_2 \sqrt{1 + 2 \left(\hat{\mathbf{a}}_2 \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2}\right) + \left(\frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2}\right)}
$$

$$
\frac{\mathcal{A}_1 \mathcal{A}_2}{A_1 A_2} \cos \theta_{12} = \cos \theta_{12} + \left(\hat{\mathbf{a}}_1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2}\right) + \left(\hat{\mathbf{a}}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1}\right) + \left(\frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2}\right)
$$

- With the Lame´ parameters of the deformed reference surface defined, a set of convected unit-magnitude base-vector field is defined by

$$
\hat{\mathbf{a}}_1 = \frac{\hat{\mathbf{a}}_1}{|\hat{\mathbf{a}}_1|} = \frac{\hat{\mathbf{a}}_1}{\mathcal{A}_1} \quad \text{and} \quad \hat{\mathbf{a}}_2 = \frac{\hat{\mathbf{a}}_2}{|\hat{\mathbf{a}}_2|} = \frac{\hat{\mathbf{a}}_2}{\mathcal{A}_2}
$$
METRIC COEFFICIENTS OF S_τ - CONTINUED

Using

$$\frac{1}{A_\alpha} \frac{\partial \bar{u}}{\partial \xi_\alpha} = u^{(\beta)} \bigg|_{(\alpha)} \hat{a}_\beta + u^{(3)} \bigg|_{(\alpha)} \hat{n}$$

gives the following complicated expressions for the Lame\' parameters of the deformed reference surface in terms of the displacements

\[
\left(\frac{\mathcal{A}_1}{A_1} \right)^2 = 1 + 2 \left(u^{(1)} \bigg|_{(1)} + u^{(2)} \bigg|_{(1)} \cos \theta_{12} \right) + u^{(1)} \bigg|_{(1)} \left[u^{(1)} \bigg|_{(1)} + u^{(2)} \bigg|_{(1)} \cos \theta_{12} \right] \\
+ u^{(2)} \bigg|_{(1)} \left[u^{(2)} \bigg|_{(1)} + u^{(1)} \bigg|_{(1)} \cos \theta_{12} \right] + u^{(3)} \bigg|_{(1)} u^{(3)} \bigg|_{(1)}
\]

\[
\left(\frac{\mathcal{A}_2}{A_2} \right)^2 = 1 + 2 \left(u^{(1)} \bigg|_{(2)} \cos \theta_{12} + u^{(2)} \bigg|_{(2)} \right) + u^{(1)} \bigg|_{(2)} \left[u^{(1)} \bigg|_{(2)} + u^{(2)} \bigg|_{(2)} \cos \theta_{12} \right] \\
+ u^{(2)} \bigg|_{(2)} \left[u^{(2)} \bigg|_{(2)} + u^{(1)} \bigg|_{(2)} \cos \theta_{12} \right] + u^{(3)} \bigg|_{(2)} u^{(3)} \bigg|_{(2)}
\]
METRIC COEFFICIENTS OF S_ε - CONCLUDED

- In addition,

\[
\frac{A_1A_2}{A_1A_2} \cos \theta_{12} = u^{(1)}_{(2)} + u^{(2)}_{(1)} + \left(1 + u^{(1)}_{(1)} + u^{(2)}_{(2)}\right) \cos \theta_{12}
+ u^{(1)}_{(1)} \left[u^{(1)}_{(2)} + u^{(2)}_{(2)} \cos \theta_{12}\right]
+ u^{(2)}_{(1)} \left[u^{(1)}_{(2)} \cos \theta_{12} + u^{(2)}_{(2)}\right] + u^{(3)}_{(1)} \left[u^{(3)}_{(2)}\right]
\]

- It is important to remember that although the magnitudes of \hat{a}_1 and \hat{a}_2 are constant, the directions are not - thus, $\hat{a}_\alpha = \hat{a}_\alpha(\xi_1, \xi_2, \varepsilon)$
ALTERNATE NORMAL-VECTOR FIELD FOR S_t

- A convenient alternate form of $\hat{\mathbf{v}}(\xi_1, \xi_2, t)$ is given by $\hat{\mathbf{v}} = \frac{\sqrt{a}}{\sqrt{a}} \hat{\mathbf{m}}$ where

$$\sqrt{a} = A_1 A_2 \sin \theta_{12} \quad \text{and} \quad \hat{\mathbf{m}} = m_1 \hat{\mathbf{a}}_1 + m_2 \hat{\mathbf{a}}_2 + m_3 \hat{\mathbf{n}}$$

is free of metric quantities.

- Here, $\sqrt{a} = |\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2|$ is defined such that $\hat{\mathbf{v}}(\xi_1, \xi_2, t) = \frac{\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2}{\sqrt{a}}$.

- Note that the orthogonality relations $\hat{\mathbf{a}}_1 \cdot \hat{\mathbf{a}} = 0$ and $\hat{\mathbf{a}}_2 \cdot \hat{\mathbf{a}} = 0$ imply the orthogonality relations $\hat{\mathbf{a}}_1 \cdot \hat{\mathbf{m}} = 0$ and $\hat{\mathbf{a}}_2 \cdot \hat{\mathbf{m}} = 0$.

- Also, from $\hat{\mathbf{v}} = \frac{\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2}{\sqrt{a}}$ and $\hat{\mathbf{v}} = \frac{\sqrt{a}}{\sqrt{a}} \hat{\mathbf{m}}$ it follows that $\hat{\mathbf{m}} = \frac{\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2}{\sqrt{a}}$.
ALTERNATE NORMAL-VECTOR FIELD FOR S_t

CONTINUED

- In addition; $\sqrt{a} = |\hat{a}_1 \times \hat{a}_2|$, $\hat{a}_1 = \hat{A}_1 \hat{\alpha}_1$, and $\hat{a}_2 = \hat{A}_2 \hat{\alpha}_2$ yield

$$\sqrt{a} = \hat{A}_1 \hat{A}_2 |\hat{a}_1 \times \hat{a}_2| = \hat{A}_1 \hat{A}_2 \sin \theta_{12} |\hat{a}||$$ or $$\sqrt{a} = \hat{A}_1 \hat{A}_2 \sin \theta_{12}$$

- Moreover, $$\sqrt{a} = \frac{A_1 A_2 \sin \theta_{12}}{\hat{A}_1 \hat{A}_2 \sin \theta_{12}}$$ and $$\hat{m} = \frac{A_1 A_2}{A_1 A_2 \sin \theta_{12}} \left(\hat{a}_1 \times \hat{a}_2 \right)$$

- Using this equation for \hat{m} with

$$\hat{a}_1 = \frac{A_1}{\hat{A}_1} \left[\left(1 + u^{(1)} \right) \hat{a}_1 + u^{(2)} \hat{a}_2 + u^{(3)} \hat{n} \right]$$ and

$$\hat{a}_2 = \frac{A_2}{\hat{A}_2} \left[u^{(1)} \hat{a}_1 + \left(1 + u^{(2)} \right) \hat{a}_2 + u^{(3)} \hat{n} \right]$$ gives
ALTERNATE NORMAL-VECTOR FIELD FOR S_t

CONTINUED

$$\vec{m} = \csc\theta_{12} \left[\left(1 + u^{(1)} \right) \left(1 + u^{(2)} \right) \hat{a}_1 \times \hat{a}_2 + \left(1 + u^{(1)} \right) u^{(3)} \right] \hat{a}_1 \times \hat{n}$$

$$+ \csc\theta_{12} \left[u^{(2)} \left(\hat{a}_2 \times \hat{a}_1 + u^{(2)} \hat{a}_1 \times \hat{n} \right) \right]$$

$$+ \csc\theta_{12} \left[u^{(3)} \left(\hat{n} \times \hat{a}_1 + u^{(3)} \right) \left(1 + u^{(2)} \right) \hat{n} \times \hat{a}_2 \right]$$

- Using $\hat{a}_1 \times \hat{a}_2 = \sin\theta_{12} \hat{n}$, $\hat{n} \times \hat{a}_1 = \hat{a}_2 \csc\theta_{12} - \hat{a}_1 \cot\theta_{12}$, and $\hat{a}_2 \times \hat{n} = \hat{a}_1 \csc\theta_{12} - \hat{a}_2 \cot\theta_{12}$, and

$$\hat{n} \times \hat{a}_1 = \hat{a}_2 \csc\theta_{12} - \hat{a}_1 \cot\theta_{12}$$

with $\vec{m} = m_1 \hat{a}_1 + m_2 \hat{a}_2 + m_3 \hat{n}$ yields the following results.
ALTERNATE NORMAL-VECTOR FIELD FOR S_t

CONCLUDED

\[m_1 = \csc \theta_{12} \cot \theta_{12} \left[\left(1 + u^{(1)} \right) u^{(3)} \bigg|_{(1)} - u^{(3)} \bigg|_{(1)} u^{(1)} \bigg|_{(2)} \right] \]
\[+ \csc^2 \theta_{12} \left[u^{(2)} \bigg|_{(1)} u^{(3)} \bigg|_{(2)} - u^{(3)} \bigg|_{(1)} \left(1 + u^{(2)} \bigg|_{(2)} \right) \right] \]

\[m_2 = \csc \theta_{12} \cot \theta_{12} \left[u^{(3)} \bigg|_{(1)} \left(1 + u^{(2)} \bigg|_{(2)} \right) - u^{(2)} \bigg|_{(1)} u^{(3)} \bigg|_{(2)} \right] \]
\[+ \csc^2 \theta_{12} \left[u^{(3)} \bigg|_{(1)} u^{(1)} \bigg|_{(2)} - \left(1 + u^{(1)} \bigg|_{(1)} \right) u^{(3)} \bigg|_{(2)} \right] \]

\[m_3 = \left(1 + u^{(1)} \bigg|_{(1)} \right) \left(1 + u^{(2)} \bigg|_{(2)} \right) - u^{(2)} \bigg|_{(1)} u^{(1)} \bigg|_{(2)} \]

Inspection of the components of \vec{m} given above reveals that they are quadratic in the derivatives of the reference-surface displacements.
As a prelude to characterizing the geometry of the deformed reference surface, it is convenient to introduce the "reciprocal" base-vector fields

\[\hat{\alpha}_1 = \hat{\alpha}_2 \times \hat{\alpha} \quad \text{and} \quad \hat{\alpha}_2 = \hat{\alpha} \times \hat{\alpha}_1 \]

for the deformed reference surface such that

\[\hat{\alpha}_1 \cdot \hat{\alpha}_1 = 0 \quad \hat{\alpha}_2 \cdot \hat{\alpha}_2 = 0 \quad \hat{\alpha}_1 \times \hat{\alpha}_2 = \hat{\alpha}_1 \times \hat{\alpha}_2 \]

\[\hat{\alpha}_1 \cdot \hat{\alpha}_1 = \sin \theta_{12} \quad \hat{\alpha}_2 \cdot \hat{\alpha}_2 = \sin \theta_{12} \quad \hat{\alpha}_1 \cdot \hat{\alpha}_2 = \hat{\alpha}_2 \cdot \hat{\alpha}_1 = 0 \]

These conditions yield

\[\hat{\alpha}_1 = \hat{\alpha}_1 \csc \theta_{12} - \hat{\alpha}_2 \cot \theta_{12} \quad \text{and} \quad \hat{\alpha}_2 = \hat{\alpha}_2 \csc \theta_{12} - \hat{\alpha}_1 \cot \theta_{12} \]
RECIPROCAL BASE-VECTOR FIELDS OF S_t

CONCLUDED

Undeformed surface, S_0

Deformed surface, S_t

$\hat{n}(\xi_1, \xi_2)$

$\hat{a}_1(\xi_1, \xi_2)$

$\hat{a}_2(\xi_1, \xi_2)$

$\hat{a}_1(\xi_1, \xi_2, t)$

$\hat{a}_2(\xi_1, \xi_2, t)$

$\hat{a}(\xi_1, \xi_2, t)$

$\hat{a}^1 \perp \hat{a}^2$ and $\hat{a}^1 \perp \hat{a}$

$\hat{a}^2 \perp \hat{a}_1$ and $\hat{a}^2 \perp \hat{a}$

$\hat{a}^1 \times \hat{a}^2 \parallel \hat{a}_1 \times \hat{a}_2 \parallel \hat{a}$
A useful relationship between the convected base-vector fields is obtained by differentiating the orthogonality conditions \(\hat{a} \cdot \hat{a}_1 = 0 \) and \(\hat{a} \cdot \hat{a}_2 = 0 \) as follows:

\[
\frac{\partial}{\partial \xi_2} (\hat{a} \cdot \hat{a}_1) = 0 \quad \text{gives} \quad \frac{\partial \hat{a}}{\partial \xi_2} \cdot \hat{a}_1 = -\hat{a} \cdot \frac{\partial \hat{a}_1}{\partial \xi_2}
\]

\[
\frac{\partial}{\partial \xi_1} (\hat{a} \cdot \hat{a}_2) = 0 \quad \text{gives} \quad \frac{\partial \hat{a}}{\partial \xi_1} \cdot \hat{a}_2 = -\hat{a} \cdot \frac{\partial \hat{a}_2}{\partial \xi_1}
\]

Because \(\hat{a}_1 = \frac{\partial \hat{z}}{\partial \xi_1} \) and \(\hat{a}_2 = \frac{\partial \hat{z}}{\partial \xi_2} \), continuity of deformation ensures that

\[
\frac{\partial \hat{a}_1}{\partial \xi_2} = \frac{\partial \hat{a}_2}{\partial \xi_1}, \quad \text{or equivalently,} \quad \frac{\partial}{\partial \xi_2} (\mathcal{A}_1 \hat{a}_1) = \frac{\partial}{\partial \xi_1} (\mathcal{A}_2 \hat{a}_2)
\]
DEFORMATION CONTINUITY CONDITION FOR S_i

CONTINUED

- Expanding $\frac{\partial}{\partial \xi_2} \left(\mathcal{A}_1 \hat{a}_1 \right) = \frac{\partial}{\partial \xi_1} \left(\mathcal{A}_2 \hat{a}_2 \right)$ and taking the inner product with \hat{a}

 gives $\mathcal{A}_1 \left(\hat{a} \cdot \frac{\partial \hat{a}_1}{\partial \xi_2} \right) = \mathcal{A}_2 \left(\hat{a} \cdot \frac{\partial \hat{a}_2}{\partial \xi_1} \right)$ or $\hat{a} \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{a}_1}{\partial \xi_2} = \hat{a} \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{a}_2}{\partial \xi_1}$

- Using $\frac{\partial \hat{a}}{\partial \xi_2} \cdot \hat{a}_1 = - \hat{a} \cdot \frac{\partial \hat{a}_1}{\partial \xi_2}$ and $\frac{\partial \hat{a}}{\partial \xi_1} \cdot \hat{a}_2 = - \hat{a} \cdot \frac{\partial \hat{a}_2}{\partial \xi_1}$ with the last equation yields the following alternate expression

$$\frac{1}{\mathcal{A}_2} \frac{\partial \hat{a}}{\partial \xi_2} \cdot \hat{a}_1 = \frac{1}{\mathcal{A}_1} \frac{\partial \hat{a}}{\partial \xi_1} \cdot \hat{a}_2$$
DEFORMATION CONTINUITY CONDITION FOR S_i

CONCLUDED

- Previously, it was shown herein that

$$ \frac{1}{A_1} \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{n} = \frac{1}{A_2} \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{n} $$

for the undeformed reference surface, which yields the identity

$$ \frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) $$

- Thus, by direct analogy,

$$ \hat{\alpha} \cdot \frac{1}{A_2} \frac{\partial \hat{\alpha}_1}{\partial x_2} = \hat{\alpha} \cdot \frac{1}{A_1} \frac{\partial \hat{\alpha}_2}{\partial x_1} $$

requires

$$ \frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) $$

where $r_{\alpha \beta}^{-1}$ are the curvatures and torsions of the deformed reference surface associated with the convected Gaussian-coordinate curves.
CURVATURES AND TORSIONS OF S_t

- For the reference surface S_0, the surface curvatures along the Gaussian-coordinate curves have been given as

\[
\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]

- Likewise, the surface torsions were given as

\[
\frac{1}{r_{12}} = (\hat{a}_1 \times \hat{n}) \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = -\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

\[
\frac{1}{r_{21}} = (\hat{a}_2 \times \hat{n}) \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]

- By direct analogy, the curvatures of the deformed reference surface S_t along the convected Gaussian-coordinate curves are given by

\[
\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]
Similarly, the corresponding torsions of the deformed reference surface S_t along the convected Gaussian-coordinate curves are given by

$$\frac{1}{\tau_{12}} = (\hat{a}_1 \times \hat{a}) \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} = -\hat{a} \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}$$

and

$$\frac{1}{\tau_{21}} = (\hat{a}_2 \times \hat{a}) \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} = \hat{a} \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}$$

These equations illustrate the utility of defining the reciprocal base-vector fields.
CURVATURES AND TORSIONS OF S_t - CONTINUED

- Next, using $\hat{a}_1 = \frac{\sqrt{a}}{\sqrt{a}} \hat{m}$ and $\hat{a}_2 \cdot \hat{m} = 0$ with $\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}$ and
 $$\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}$$
gives

 $$\frac{1}{r_{11}} = \frac{1}{\sqrt{a}} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{m}}{\partial \xi_1} \right)$$
 and
 $$\frac{1}{r_{22}} = \frac{1}{\sqrt{a}} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2} \right)$$

- Likewise, the torsions are expressed as

 $$\frac{1}{r_{12}} = \frac{1}{\sqrt{a}} \left(\hat{a}_1^2 \cdot \frac{1}{A_1} \frac{\partial \hat{m}}{\partial \xi_1} \right)$$
 and
 $$\frac{1}{r_{21}} = \frac{1}{\sqrt{a}} \left(\hat{a}_1^\dagger \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2} \right)$$
CURVATURES AND TORSIONS OF S_t - CONTINUED

Moreover, using the following expressions for the convected reciprocal basis for S_t

\[
\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12}
\]

and

\[
\hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}
\]

gives

\[
\frac{1}{r_{12}} = \sqrt{a} \left(\hat{a}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{m}}{\partial \xi_1} \right) \cot \theta_{12} - \sqrt{a} \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{m}}{\partial \xi_1} \right) \csc \theta_{12}
\]

and

\[
\frac{1}{r_{21}} = \sqrt{a} \left(\hat{a}_1 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{m}}{\partial \xi_2} \right) \csc \theta_{12} - \sqrt{a} \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{m}}{\partial \xi_2} \right) \cot \theta_{12}
\]
The expressions for the derivatives of $\mathbf{m} = m_1 \hat{a}_1 + m_2 \hat{a}_2 + m_3 \hat{n}$ are needed next and are given by

\[
\frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = m^{(1)} \hat{a}_1 + m^{(2)} \hat{a}_2 + m^{(3)} \hat{n}
\]
and

\[
\frac{1}{A_2} \frac{\partial \mathbf{m}}{\partial \xi_2} = m^{(1)} \hat{a}_1 + m^{(2)} \hat{a}_2 + m^{(3)} \hat{n}
\]

where, for general reference-surface Gaussian coordinates,

\[
m^{(1)} = \frac{1}{A_1} \frac{\partial m_1}{\partial \xi_1} - \frac{m_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right)
\]
CURVATURES AND TORSIONS OF S_t - CONTINUED

\[m^{(2)} \big|^{(1)} = \frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 + m_2 \cos \theta_{12} \right) + \frac{m_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - m_3 \frac{\csc \theta_{12}}{r_{12}} \]

\[m^{(3)} \big|^{(1)} = \frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - \frac{m_1}{r_{11}} + m_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \]

\[m^{(1)} \big|^{(2)} = \frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \frac{\csc \theta_{12}}{r_{21}} \]

\[m^{(2)} \big|^{(2)} = \frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} - \frac{m_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \]

\[+ \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 + m_2 \cos \theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \]
and where for orthogonal reference-surface Gaussian coordinates
The curvatures and torsions for the deformed reference surface \(S \) are now given by

\[
\frac{1}{r_{11}} = \frac{A_1}{A_1} \frac{\sqrt{a}}{\sqrt{a}} \left[\mu \begin{pmatrix} m^{(1)} \left(\hat{a}_1 \cdot \hat{a}_1 \right) + m^{(2)} \left(\hat{a}_1 \cdot \hat{a}_2 \right) + m^{(3)} \left(\hat{a}_1 \cdot \hat{n} \right) \end{pmatrix} \right]
\]

\[
\frac{1}{r_{22}} = \frac{A_2}{A_2} \frac{\sqrt{a}}{\sqrt{a}} \left[\mu \begin{pmatrix} m^{(1)} \left(\hat{a}_2 \cdot \hat{a}_1 \right) + m^{(2)} \left(\hat{a}_2 \cdot \hat{a}_2 \right) + m^{(3)} \left(\hat{a}_2 \cdot \hat{n} \right) \end{pmatrix} \right]
\]

\[
\frac{1}{r_{12}} = \frac{A_1 \cot \theta_{12}}{A_1} \frac{\sqrt{a}}{\sqrt{a}} \left[\mu \begin{pmatrix} m^{(1)} \left(\hat{a}_1 \cdot \hat{a}_1 \right) + m^{(2)} \left(\hat{a}_1 \cdot \hat{a}_2 \right) + m^{(3)} \left(\hat{a}_1 \cdot \hat{n} \right) \end{pmatrix} \right] - \frac{A_1 \csc \theta_{12}}{A_1} \frac{\sqrt{a}}{\sqrt{a}} \left[\mu \begin{pmatrix} m^{(1)} \left(\hat{a}_2 \cdot \hat{a}_1 \right) + m^{(2)} \left(\hat{a}_2 \cdot \hat{a}_2 \right) + m^{(3)} \left(\hat{a}_2 \cdot \hat{n} \right) \end{pmatrix} \right]
\]
CURVATURES AND TORSIONS OF S_t - CONTINUED

\[
1 \frac{r_{21}}{r_{21}} = \frac{A_2 \csc \theta_{12}}{A_2} \sqrt{a} \left[\begin{array}{c}
\alpha_1 \left(\hat{a}_1 \cdot \hat{a}_1 \right) + \alpha_2 \left(\hat{a}_1 \cdot \hat{a}_2 \right) + \alpha_3 \left(\hat{a}_1 \cdot \hat{n} \right) \\
\alpha_1 \left(\hat{a}_2 \cdot \hat{a}_1 \right) + \alpha_2 \left(\hat{a}_2 \cdot \hat{a}_2 \right) + \alpha_3 \left(\hat{a}_2 \cdot \hat{n} \right)
\end{array} \right]
\]

\[
- \frac{A_2 \cot \theta_{12}}{A_2} \sqrt{a} \left[\begin{array}{c}
\alpha_1 \left(\hat{a}_1 \cdot \hat{a}_1 \right) + \alpha_2 \left(\hat{a}_1 \cdot \hat{a}_2 \right) + \alpha_3 \left(\hat{a}_1 \cdot \hat{n} \right) \\
\alpha_1 \left(\hat{a}_2 \cdot \hat{a}_1 \right) + \alpha_2 \left(\hat{a}_2 \cdot \hat{a}_2 \right) + \alpha_3 \left(\hat{a}_2 \cdot \hat{n} \right)
\end{array} \right]
\]

- At this point, it is convenient to express $\hat{a}_1 = \frac{\hat{a}_1}{A_1}$ and $\hat{a}_2 = \frac{\hat{a}_2}{A_2}$ as

\[
\hat{a}_1 = \frac{A_1}{A_1} \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \quad \text{and} \quad \hat{a}_2 = \frac{A_2}{A_2} \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right)
\]

and to use $\frac{1}{A} \frac{\partial \hat{u}}{\partial \xi_\alpha} = u^{\beta} \left(\hat{a}_\beta + u^{(3)} \left(\hat{n} \right) \right)$ to get
CURVATURES AND TORSIONS OF S_τ - CONTINUED

\[
\hat{a}_1 = \frac{A_1}{A_1} \left[\left(1 + u^{(1)} \right) \hat{a}_1 + u^{(2)} \hat{a}_2 + u^{(3)} \hat{n} \right]
\]

and

\[
\hat{a}_2 = \frac{A_2}{A_2} \left[u^{(1)} \hat{a}_1 + \left(1 + u^{(2)} \right) \hat{a}_2 + u^{(3)} \hat{n} \right]
\]
Then

\[\hat{a}_1 \cdot \hat{a}_1 = \frac{A_1}{\mathcal{A}_1} \left[1 + u^{(1)}_{(1)} + u^{(2)}_{(1)} \cos \theta_{12} \right] \]

\[\hat{a}_1 \cdot \hat{a}_2 = \frac{A_1}{\mathcal{A}_1} \left[\left(1 + u^{(1)}_{(1)} \right) \cos \theta_{12} + u^{(2)}_{(1)} \right] \]

\[\hat{a}_2 \cdot \hat{a}_1 = \frac{A_2}{\mathcal{A}_2} \left[u^{(1)}_{(2)} + \left(1 + u^{(2)}_{(2)} \right) \cos \theta_{12} \right] \]

\[\hat{a}_2 \cdot \hat{a}_2 = \frac{A_2}{\mathcal{A}_2} \left[1 + u^{(2)}_{(2)} + u^{(1)}_{(2)} \cos \theta_{12} \right] \]

\[\hat{a}_1 \cdot \hat{n} = \frac{A_1}{\mathcal{A}_1} u^{(3)}_{(1)} \]

\[\hat{a}_2 \cdot \hat{n} = \frac{A_2}{\mathcal{A}_2} u^{(3)}_{(2)} \]
The curvatures of the deformed reference surface become

\[
\frac{1}{r_{11}} = \left(\frac{A_1}{A_1} \right)^3 \frac{A_2 \sin \theta_{12}}{A_2 \sin \theta_{12}} \left[m^{(1)} \left(1 + u^{(1)} \right) + m^{(2)} \left(1 + u^{(1)} \right) \cos \theta_{12} + m^{(3)} \left(1 + u^{(1)} \right) \right] + \frac{1}{r_{22}}
\]

\[
\frac{1}{r_{22}} = \left(\frac{A_2}{A_2} \right)^3 \frac{A_1 \sin \theta_{12}}{A_1 \sin \theta_{12}} \left[m^{(2)} \left(1 + u^{(2)} \right) + m^{(3)} \left(1 + u^{(2)} \right) \right] + \frac{m^{(3)}}{A_1 A_2 \sin \theta_{12}}
\]

\[
\sqrt{\frac{a}{a}} = \frac{A_1 A_2 \sin \theta_{12}}{A_1 A_2 \sin \theta_{12}}
\]

has been used
Likewise, the torsions become

\[
\frac{1}{r_{12}} = \left(\frac{A_1}{\mathcal{A}_1} \right)^3 \frac{A_2 \sin \theta_{12} \cot \theta_{12}}{\mathcal{A}_2 \sin \theta_{12}} \left[m^{(1)} \left(1 + u^{(1)} \right)_{(1)} + u^{(2)}_{(1)} \cos \theta_{12} \right]
\]

\[+ m^{(2)} \left(\left(1 + u^{(1)} \right)_{(1)} \cos \theta_{12} + u^{(2)}_{(1)} \right)_{(1)} + m^{(3)} \left(1 + u^{(3)} \right)_{(1)} \]

\[- \left(\frac{A_1 A_2}{\mathcal{A}_1 \mathcal{A}_2} \right)^2 \frac{\sin \theta_{12}}{\sin^2 \theta_{12}} \left[m^{(1)} \left(u^{(1)} \right)_{(1)} + \left(1 + u^{(2)} \right)_{(2)} \cos \theta_{12} \right]
\]

\[+ m^{(2)} \left(1 + u^{(2)} \right)_{(2)} + u^{(1)}_{(2)} \cos \theta_{12} \right)_{(2)} + m^{(3)} \left(1 + u^{(3)} \right)_{(2)} \]

and
where it is recalled that the Lame´ parameters of the deformed surface and the corresponding trigonometric functions of \(\theta_{12} \) are complicated irrational functions of the displacements.
The changes in surface curvature, \(K_{11}^{o}(\xi_1, \xi_2, \varepsilon) \) and \(K_{22}^{o}(\xi_1, \xi_2, \varepsilon) \), and the change in surface torsion, \(K_{12}^{o}(\xi_1, \xi_2, \varepsilon) \), caused by deformation are defined by

\[
K_{11}^{o} \equiv \frac{1}{\varepsilon_{11}} - \frac{1}{r_{11}} \\
K_{22}^{o} \equiv \frac{1}{\varepsilon_{22}} - \frac{1}{r_{22}} \\
K_{12}^{o} \equiv -\frac{1}{2}\left(\frac{1}{\varepsilon_{12}} - \frac{1}{\varepsilon_{21}}\right) - \frac{1}{2}\left(\frac{1}{r_{12}} - \frac{1}{r_{21}}\right)
\]

Examination of the previously derived expressions for \(\varepsilon_{\alpha\beta}^{-1} \) indicates that the changes in surface curvature and torsion are complicated nonlinear functions of the surface displacement field.

Thus, these expressions appear to have very limited practical value.

These expressions also have no implicit limitations on the magnitude of the displacements that may occur during deformation.
For orthogonal Gaussian coordinates the change in surface torsion reduces to

\[
K^o_{12} = -\left[\frac{1}{2} \left(\frac{1}{\kappa_{12}} - \frac{1}{\kappa_{21}} \right) - \frac{1}{r_{12}} \right]
\]

In addition, the components of \(\mathbf{m} \) reduce to

\[
\mathbf{m}_1 = u^{(2)}_{(1)} u^{(3)}_{(2)} - u^{(3)}_{(1)} (1 + u^{(2)}_{(2)})
\]

\[
\mathbf{m}_2 = u^{(3)}_{(1)} u^{(1)}_{(2)} - u^{(3)}_{(2)} (1 + u^{(1)}_{(1)})
\]

\[
\mathbf{m}_3 = (1 + u^{(1)}_{(1)}) (1 + u^{(2)}_{(2)}) - u^{(2)}_{(1)} u^{(1)}_{(2)}
\]
Moreover, the curvatures reduce to

\[
\frac{1}{r_{11}} = \left(\frac{A_1}{A_2} \right)^3 \frac{A_2}{A_2} \frac{a_2}{\sin\theta_{12}} \left[(1 + u^{(1)}_{(1)}) a^{(1)}_{(1)} + u^{(2)}_{(1)} a^{(2)}_{(1)} + u^{(3)}_{(1)} a^{(3)}_{(1)} \right]
\]

\[
\frac{1}{r_{22}} = \left(\frac{A_2}{A_1} \right)^3 \frac{A_1}{A_1} \frac{a_1}{\sin\theta_{12}} \left[u^{(1)}_{(2)} a^{(1)}_{(2)} + (1 + u^{(2)}_{(2)}) a^{(2)}_{(2)} + u^{(3)}_{(2)} a^{(3)}_{(2)} \right]
\]

and the torsions reduce to

\[
\frac{1}{r_{12}} = \left(\frac{A_1}{A_2} \right)^3 \frac{A_2}{A_2} \frac{\csc\theta_{12}}{\cot\theta_{12}} \left[a^{(1)}_{(1)} (1 + u^{(1)}_{(1)}) + a^{(2)}_{(1)} u^{(2)}_{(1)} + a^{(3)}_{(1)} u^{(3)}_{(1)} \right]
\]

\[-\left(\frac{A_1 A_2}{A_1 A_2} \right)^2 \frac{\csc^2\theta_{12}}{\cot\theta_{12}} \left[a^{(1)}_{(2)} (1 + u^{(2)}_{(2)}) + a^{(2)}_{(2)} + a^{(3)}_{(2)} u^{(3)}_{(2)} \right]
\]
CURVATURES AND TORSIONS OF S_ε - CONTINUED

Furthermore, the Lame\' parameters of the deformed surface reduce to

$$\mathcal{A}_1 = A_1 \sqrt{1 + 2 u^{(1)}_{(1)} + u^{(1)}_{(2)} + u^{(2)}_{(1)} + u^{(2)}_{(2)} + u^{(3)}_{(1)} + u^{(3)}_{(2)}}$$

$$\mathcal{A}_2 = A_2 \sqrt{1 + 2 u^{(1)}_{(2)} + u^{(1)}_{(2)} + u^{(2)}_{(2)} + u^{(2)}_{(2)} + u^{(3)}_{(2)} + u^{(3)}_{(2)}}$$

In addition,
To obtain practical expressions that characterize the geometry of the shell reference surface, it is first noted that deformation can be partitioned in strain and rotation of material line segments, areas, and volumes.

Thus, simplification of the previously derived deformed-surface expressions can be obtained by examining practical limitations on the magnitudes of the strains and rotations.
CHARACTERIZATION OF REFERENCE-SURFACE DEFORMATIONS
ELONGATION AND SHEARING OF S_0

- Two primitive aspects of deformation are **elongation** and **shearing**

- Consider the differential reference-surface arc
 \[ds(\mu) = \overrightarrow{PQ} \] shown in the figure

- This arc is part of a surface curve, defined parametrically by
 \[\dot{x}(\mu) = x_k(\xi_1(\mu), \xi_2(\mu))\hat{i}_k \]

 where μ is a parameter

- The corresponding unit-magnitude tangent vector is denoted by \hat{t}
ELONGATION AND SHEARING OF S_0 - CONTINUED

- Other surface curves are given by different parametrizations of the surface coordinates (ξ_1, ξ_2).

- During deformation, the material points forming the reference-surface region in the neighborhood of point P, $S_\epsilon(P)$, generally change their spatial orientation and their relative positions.

- As a result, the arc of material points \overline{PQ} also generally undergoes a rigid-body motion and either elongates or contracts (negative elongation) into the deformed image $\overline{P'Q'}$ shown in the next figure.

- The differential arc length of $\overline{P'Q'}$ is denoted by $d\varepsilon(\mu)$ and the corresponding unit-magnitude tangent vector is denoted by $\hat{\xi}(\mu)$.
ELONGATION AND SHEARING OF S_0 - CONTINUED

Undeformed reference surface, $S_{\varepsilon}(P)$

Deformed reference surface, $S_{\varepsilon}(P)$
ELONGATION AND SHEARING OF S_0 - CONTINUED

- The elongation $e_{\hat{t}(\mu)}(\xi_1(\mu), \xi_2(\mu), \varepsilon)$ of the differential arc \overline{PQ}, as it deforms into the differential arc $\overline{P2}$, is defined as $e_{\hat{t}(\mu)} = \frac{d\varepsilon - ds}{ds}$.

- Note that in this definition, the unit-magnitude vector field $\hat{t}(\xi_1(\mu), \xi_2(\mu)) = \hat{t}(\mu) = \frac{d\hat{x}}{ds}$ defines the initial orientation of \overline{PQ} with respect to the Gaussian coordinates of the point P.

[Diagram showing the elongation and shearing process with vectors and coordinates.]
From the definition \(e_{\hat{t}(\mu)} = \frac{d\varepsilon - ds}{ds} \), it follows that

\[
d\varepsilon = \left(1 + e_{\hat{t}(\mu)}\right)ds
\]

and

\[
\left(1 + e_{\hat{t}(\mu)}\right)^2 - 1 = \frac{d\varepsilon^2 - ds^2}{ds^2}
\]

Using \(d\varepsilon^2 = (\hat{a}_\alpha \cdot \hat{a}_\beta) d\xi_\alpha d\xi_\beta \) and \(ds^2 = (\hat{a}_\alpha \cdot \hat{a}_\beta) d\xi_\alpha d\xi_\beta \) gives

\[
\left(1 + e_{\hat{t}(\mu)}\right)^2 - 1 = \left[(\hat{a}_\alpha \cdot \hat{a}_\beta) - (\hat{a}_\alpha \cdot \hat{a}_\beta)\right] \frac{d\xi_\alpha}{ds} \frac{d\xi_\beta}{ds}
\]

Noting that \(\hat{t}(\mu) = \frac{d\hat{x}}{ds} = \partial_x \frac{d\xi_\alpha}{ds} = \hat{a}_\alpha \frac{d\xi_\alpha}{ds} = A_{(\alpha)} \hat{a}_\alpha \frac{d\xi_\alpha}{ds} \) gives

\[
A_{(\alpha)} \frac{d\xi_\alpha}{ds} = \left(\hat{t}(\mu) \cdot \hat{a}\right) \csc \theta_{12}
\]

and

\[
\hat{t}(\mu) = \left(\hat{t}(\mu) \cdot \hat{a}\right) \csc \theta_{12} \hat{a}_\alpha
\]
Thus,

\[
(1 + e_{\hat{t}(\mu)})^2 - 1 = \left[(\hat{a}_\alpha \cdot \hat{a}_\beta) - (\hat{a}_\alpha \cdot \hat{a}_\beta) \right] \frac{(\hat{t}(\mu) \cdot \hat{a}_\alpha)(\hat{t}(\mu) \cdot \hat{a}_\beta)}{A_\alpha A_\beta \sin^2 \theta_{12}}
\]

The three independent quantities given by

\[
\frac{1}{A_\alpha A_\beta} \left[(\hat{a}_\alpha \cdot \hat{a}_\beta) - (\hat{a}_\alpha \cdot \hat{a}_\beta) \right] = \frac{\hat{a}_\alpha \cdot \hat{a}_\beta}{A_\alpha A_\beta} - \hat{a}_\alpha \cdot \hat{a}_\beta = 2\varepsilon_{\alpha\beta}^\circ \left(\xi_1, \xi_2, \tau \right)
\]

completely define the elongation \(e_{\hat{t}(\mu)}(\xi_1, \xi_2, \tau) \); that is,

\[
e_{\hat{t}(\mu)} = \sqrt{1 + 2\varepsilon_{\alpha\beta}^\circ \left(\hat{t}(\mu) \cdot \hat{a}_\alpha \right) \left(\hat{t}(\mu) \cdot \hat{a}_\beta \right) \csc^2 \theta_{12}} - 1
\]

Also,

\[
(1 + e_{\hat{t}(\mu)})^2 - 1 = \frac{d\varepsilon^2 - ds^2}{ds^2}
\]

gives

\[
\frac{d\varepsilon^2 - ds^2}{ds^2} = 2\varepsilon_{\alpha\beta}^\circ \frac{(\hat{t}(\mu) \cdot \hat{a}_\alpha)(\hat{t}(\mu) \cdot \hat{a}_\beta)}{\sin^2 \theta_{12}}
\]
ELONGATION AND SHEARING OF S_0 - CONTINUED

- Now consider the intersecting differential arcs associated with the two distinct surface curves passing through point P of the undeformed reference surface, as shown in the figure.

- The arc $ds(\mu) = \overrightarrow{PQ}$ is defined parametrically by
 $$\vec{x}(\mu) = x_k(\xi_1(\mu), \xi_2(\mu))\hat{i}_k$$

- The arc $ds(\eta) = \overrightarrow{PR}$ is defined parametrically by
 $$\vec{x}(\eta) = x_k(\xi_1(\eta), \xi_2(\eta))\hat{i}_k$$

- The vectors $\hat{t}(\mu)$ and $\hat{t}(\eta)$ have unit magnitude and are tangent to the arcs \overrightarrow{PQ} and \overrightarrow{PR}, respectively, and are presumed to be distinct.
ELONGATION AND SHEARING OF S_0 - CONTINUED

- The angle $\theta(\xi_1, \xi_2)$ between $\hat{t}(\mu)$ and $\hat{t}(\eta)$ is given by

 $$\cos \theta = \hat{t}(\mu) \cdot \hat{t}(\eta) \quad \text{and} \quad \sin \theta = (\hat{t}(\eta) \times \hat{t}(\mu)) \cdot \hat{n}$$

- As the reference surface deforms, the angle $\theta(\xi_1, \xi_2)$ generally changes into a different angle, given by $\theta(\xi_1, \xi_2, \tau)$

- That is, $\theta = \mathcal{D}_\tau(\theta)$ such that $\theta(\xi_1, \xi_2, 0) = \theta(\xi_1, \xi_2)$

- The arc $ds(\mu) = PQ$ deforms into the arc $d\xi(\mu) = \hat{PQ}$ and the arc $ds(\eta) = PR$ deforms into the arc $d\xi(\eta) = \hat{PR}$

- Unit-magnitude vector fields that are tangent to the deformed arcs \hat{PQ} and \hat{PR} are given by $\hat{\xi}(\mu) = \frac{d\xi(\mu)}{d\xi(\mu)}$ and $\hat{\xi}(\eta) = \frac{d\xi(\eta)}{d\xi(\eta)}$, respectively
ELONGATION AND SHEARING OF S_0 - CONTINUED

$\theta = D_\varepsilon(\theta)$

Deformed reference surface, $S_\varepsilon(P)$

Undeformed reference surface, $S_\varepsilon(P)$
ELONGATION AND SHEARING OF S_0 - CONTINUED

- Using the previously derived relations

\[A_{(\alpha)} \frac{d\xi_\alpha}{ds(\mu)} = \hat{t}(\mu) \cdot \hat{a}^\alpha \text{csc}\theta_{12} \]

and

\[d\varepsilon(\mu) = \left(1 + e_{\hat{t}(\mu)}\right)ds(\mu), \]

it follows by direct analogy that

\[A_{(\alpha)} \frac{d\xi_\alpha}{ds(\eta)} = \hat{t}(\eta) \cdot \hat{a}^\alpha \text{csc}\theta_{12} \]

and

\[d\varepsilon(\eta) = \left(1 + e_{\hat{t}(\eta)}\right)ds(\eta) \]

- Therefore,

\[\hat{\varepsilon}(\mu) = \frac{d\hat{\varepsilon}(\mu)}{d\varepsilon(\mu)} = \frac{\partial \hat{\varepsilon}(\mu)}{\partial \xi_\alpha} \frac{d\xi_\alpha}{d\varepsilon(\mu)} = \frac{\hat{a}_\alpha}{1 + e_{\hat{t}(\mu)}} \frac{d\xi_\alpha}{ds(\mu)} = \frac{\hat{a}_\alpha(\hat{t}(\mu) \cdot \hat{a}^\alpha) \text{csc}\theta_{12}}{A_{(\alpha)} \left[1 + e_{\hat{t}(\mu)}\right]} \]

\[\hat{\varepsilon}(\eta) = \frac{d\hat{\varepsilon}(\eta)}{d\varepsilon(\eta)} = \frac{\partial \hat{\varepsilon}(\eta)}{\partial \xi_\alpha} \frac{d\xi_\alpha}{d\varepsilon(\eta)} = \frac{\hat{a}_\alpha}{1 + e_{\hat{t}(\eta)}} \frac{d\xi_\alpha}{ds(\eta)} = \frac{\hat{a}_\alpha(\hat{t}(\eta) \cdot \hat{a}^\alpha) \text{csc}\theta_{12}}{A_{(\alpha)} \left[1 + e_{\hat{t}(\eta)}\right]} \]
ELONGATION AND SHEARING OF \(S_0 \) - CONTINUED

- Next, noting that \(\cos \theta = \hat{\varepsilon}(\mu) \cdot \hat{\varepsilon}(\eta) \) gives

\[
\cos \theta = \left(\hat{\mathbf{t}}(\mu) \cdot \hat{\mathbf{a}}^\alpha \right) \left(\hat{\mathbf{t}}(\eta) \cdot \hat{\mathbf{a}}^\beta \right) \csc^2 \theta_{12} \frac{\hat{\mathbf{a}}^\alpha \cdot \hat{\mathbf{a}}^\beta}{A_{(\alpha)}A_{(\beta)} \left[1 + e_{\hat{\mathbf{t}}(\mu)} \right] \left[1 + e_{\hat{\mathbf{t}}(\eta)} \right]} \]

- Also, from the definition

\[
\frac{\hat{\mathbf{a}}^\alpha \cdot \hat{\mathbf{a}}^\beta}{A_{(\alpha)}A_{(\beta)}} - \hat{\mathbf{a}}^\alpha \cdot \hat{\mathbf{a}}^\beta = 2 \varepsilon^0_{\alpha\beta}(\xi_1, \xi_2, \xi) \]

and from

\[
\hat{\mathbf{a}}^\alpha \cdot \hat{\mathbf{a}}^\beta = \delta_{\alpha\beta} + (1 - \delta_{\alpha\beta}) \cos \theta_{12}
\]

it follows that

\[
(\hat{\mathbf{a}}^\alpha \cdot \hat{\mathbf{a}}^\beta) = \left[2 \varepsilon^0_{\alpha\beta} + \delta_{\alpha\beta} + (1 - \delta_{\alpha\beta}) \cos \theta_{12} \right] A_{(\alpha)}A_{(\beta)}
\]

- Therefore, \(\cos \theta = \left(\hat{\mathbf{t}}(\mu) \cdot \hat{\mathbf{a}}^\alpha \right) \left(\hat{\mathbf{t}}(\eta) \cdot \hat{\mathbf{a}}^\beta \right) \csc^2 \theta_{12} \frac{2 \varepsilon^0_{\alpha\beta} + \delta_{\alpha\beta} + (1 - \delta_{\alpha\beta}) \cos \theta_{12}}{\left[1 + e_{\hat{\mathbf{t}}(\mu)} \right] \left[1 + e_{\hat{\mathbf{t}}(\eta)} \right]} \]
ELONGATION AND SHEARING OF \(S_0 \) - CONTINUED

- Now, using

\[
e_{t(\mu)} = \sqrt{1 + 2 \varepsilon_{\alpha\beta} \left(\hat{t}(\mu) \cdot \hat{a}^{\alpha} \right) \left(\hat{t}(\mu) \cdot \hat{a}^{\beta} \right) \csc^2 \theta_{12} - 1}
\]

and

\[
e_{t(\eta)} = \sqrt{1 + 2 \varepsilon_{\alpha\beta} \left(\hat{t}(\eta) \cdot \hat{a}^{\alpha} \right) \left(\hat{t}(\eta) \cdot \hat{a}^{\beta} \right) \csc^2 \theta_{12} - 1}
\]

gives

\[
\cos \theta = \frac{\left(\hat{t}(\mu) \cdot \hat{a}^{\alpha} \right) \left(\hat{t}(\eta) \cdot \hat{a}^{\beta} \right) \left[2 \varepsilon_{\alpha\beta} + \delta_{\alpha\beta} + (1 - \delta_{\alpha\beta}) \cos \theta_{12} \right]}{\sqrt{1 + 2 \varepsilon_{\alpha\chi} \left(\hat{t}(\mu) \cdot \hat{a}^{\alpha} \right) \left(\hat{t}(\mu) \cdot \hat{a}^{\chi} \right)} \sqrt{1 + 2 \varepsilon_{\chi\rho} \left(\hat{t}(\eta) \cdot \hat{a}^{\chi} \right) \left(\hat{t}(\eta) \cdot \hat{a}^{\rho} \right)}}
\]

- \(\cos \theta = \hat{t}(\mu) \cdot \hat{t}(\eta) \) and the previous expression show that the three independent quantities \(\varepsilon_{\alpha\beta} \) also completely defined the change in angle

- The shear or scissoring of the arcs, \(\gamma^\circ (\xi_1, \xi_2, \epsilon) \), is defined by \(\gamma^\circ = \theta - \theta \)
ELONGATION AND SHEARING OF S_0 - CONTINUED

- For the special case where $\hat{t}(\eta) = \hat{a}_1$ and $\hat{t}(\mu) = \hat{a}_2$, the two differential arcs of the undeformed reference surface are aligned with the ξ_1 and ξ_2 Gaussian-coordinate curves and are denoted by $ds_{(1)}$ and $ds_{(2)}$, respectively.

- During deformation, $ds_{(1)}$ and $ds_{(2)}$ deform into $d\phi_{(1)}$ and $d\phi_{(2)}$, respectively, as shown in the next figure.

- The angle between intersecting convected differential arcs is given by

$$\cos \theta_{12} = \frac{\sin^2 \theta_{12} \left[2 \varepsilon_{12}^o + \cos \theta_{12} \right]}{\sqrt{1 + 2 \varepsilon_{11}^o \sin^2 \theta_{12}} \sqrt{1 + 2 \varepsilon_{22}^o \sin^2 \theta_{12}}}$$
ELONGATION AND SHEARING OF S_0 - CONTINUED

- Likewise, the elongations of two differential arcs are obtained from

$$e_{\hat{f}[\mu]} = \sqrt{1 + 2\varepsilon^{\alpha\beta} (\hat{t}(\mu) \cdot \hat{a}^\alpha)(\hat{t}(\mu) \cdot \hat{a}^\beta) \csc^2 \theta_{12}} - 1$$

and are given by

$$e_{\hat{a}_1} \equiv e_1 = \sqrt{1 + 2\varepsilon^{11}_1} - 1 \quad \text{and} \quad e_{\hat{a}_2} \equiv e_2 = \sqrt{1 + 2\varepsilon^{22}_2} - 1$$
ELONGATION AND SHEARING OF S_0 - CONCLUDED
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS

- The previous analysis shows that the changes in lengths of material line segments and changes in angles between intersecting material line segments are specified entirely by the three independent quantities $\varepsilon^o_{\alpha\beta}$.

- These three quantities are defined by

$$\frac{d\varphi^2 - ds^2}{ds^2} = 2\varepsilon^o_{\alpha\beta} (\hat{t} \cdot \hat{a}_\alpha)(\hat{t} \cdot \hat{a}_\beta)$$

and constitute the physical components of the Green-Lagrange strain tensor, referred to herein as simply the Green-Lagrange strains.

- The Green-Lagrange strains for the shell reference surface are also given by

$$2\varepsilon^o_{\alpha\beta} (A_\alpha d\xi^\alpha)(A_\beta d\xi^\beta) = d\varphi^2 - ds^2$$

where parentheses around the subscript is used to indicate suspension of the repeated-index summation convention.
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONTINUED

Previously, it was shown that

\[ds^2 = (A_1 d\xi_1)^2 + 2A_1A_2 \cos \theta_{12} \, d\xi_1 d\xi_2 + (A_2 d\xi_2)^2 \]

and

\[d_\delta^2 = (A_1' d\xi_1')^2 + 2A_1'A_2' \cos \theta_{12} \, d\xi_1' d\xi_2' + (A_2' d\xi_2')^2 \]

where \(\theta_{12} = \theta_{12}(\xi_1, \xi_2, t) \) is the angle between the convected Gaussian-coordinate curves.

Thus,

\[d_\delta^2 - ds^2 = (A_1' - A_1) \, d\xi_1 d\xi_1 + (A_2' - A_2) \, d\xi_2 d\xi_2 \]

\[+ 2(\mathcal{A}_1' \mathcal{A}_2' \cos \theta_{12} - A_1A_2 \cos \theta_{12}) \, d\xi_1 d\xi_2 \]

Comparing the previous equation with the strain definition

\[2\varepsilon^{\alpha}_{\beta\gamma}(A_{(\alpha)} d\xi_{\alpha})(A_{(\beta)} d\xi_{\beta}) = d_\delta^2 - ds^2 \]

gives
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONTINUED

Next, the strains are expressed in terms of the displacement-vector field \(\vec{u}(\xi_1, \xi_2, t) \) of the reference surface by using the previously derived relationships:

\[
2\varepsilon_{11}^o = \left(\frac{\mathcal{A}_1}{A_1} \right)^2 - 1
\]

\[
2\varepsilon_{22}^o = \left(\frac{\mathcal{A}_2}{A_2} \right)^2 - 1
\]

\[
2\varepsilon_{12}^o = \frac{\mathcal{A}_1 \mathcal{A}_2}{A_1 A_2} \cos \theta_{12} - \cos \theta_{12}
\]

\[
\mathcal{A}_1 = A_1 \sqrt{1 + 2 \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \right) + \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1}}
\]

\[
\mathcal{A}_2 = A_2 \sqrt{1 + 2 \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} \right) + \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2}}
\]

\[
\frac{\mathcal{A}_1 \mathcal{A}_2}{A_1 A_2} \cos \theta_{12} = \cos \theta_{12} + \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \right) + \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2}
\]
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONTINUED

Therefore,

\[\varepsilon^o_{11} = (\hat{a}_1 \cdot 1 \frac{\partial \hat{u}}{A_1 \partial \xi_1}) + \frac{1}{2} \left(1 \frac{\partial \hat{u}}{A_1 \partial \xi_1} \cdot 1 \frac{\partial \hat{u}}{A_1 \partial \xi_1} \right) \]

\[\varepsilon^o_{22} = (\hat{a}_2 \cdot 1 \frac{\partial \hat{u}}{A_2 \partial \xi_2}) + \frac{1}{2} \left(1 \frac{\partial \hat{u}}{A_2 \partial \xi_2} \cdot 1 \frac{\partial \hat{u}}{A_2 \partial \xi_2} \right) \]

\[2\varepsilon^o_{12} = (\hat{a}_1 \cdot 1 \frac{\partial \hat{u}}{A_2 \partial \xi_2}) + (\hat{a}_2 \cdot 1 \frac{\partial \hat{u}}{A_1 \partial \xi_1}) + \left(1 \frac{\partial \hat{u}}{A_1 \partial \xi_1} \cdot 1 \frac{\partial \hat{u}}{A_2 \partial \xi_2} \right) \]

or, in indicial notation,

\[2\varepsilon^o_{\alpha\beta} = (\hat{a}_\alpha \cdot 1 \frac{\partial \hat{u}}{A_\beta \partial \xi_\beta}) + (1 \frac{\partial \hat{u}}{A_\alpha \partial \xi_\alpha} \cdot \hat{a}_\beta) + \left(1 \frac{\partial \hat{u}}{A_\alpha \partial \xi_\alpha} \cdot 1 \frac{\partial \hat{u}}{A_\beta \partial \xi_\beta} \right) \]

In addition, it follows that

\[\mathcal{A}_1 = A_1 \sqrt{1 + 2\varepsilon^o_{11}} \]
\[\mathcal{A}_2 = A_2 \sqrt{1 + 2\varepsilon^o_{22}} \]
\[\mathcal{A}_1 \mathcal{A}_2 \cos \theta_{12} = A_1 A_2 \left(2\varepsilon^o_{12} + \cos \theta_{12} \right) \]
In addition, using \(\frac{1}{A_{(\alpha)} \partial \xi_{\alpha}} \frac{\partial \tilde{u}}{} = u^{(\beta)}_\beta \hat{a}_\beta + u^{(3)}_\alpha \hat{n} \) gives

\[
\varepsilon_{11}^\circ = u^{(1)}_1 + u^{(2)}_1 \cos \theta_{12} + \frac{1}{2} u^{(1)}_1 \left(u^{(1)}_1 + u^{(2)}_1 \cos \theta_{12}\right) + \frac{1}{2} u^{(2)}_1 \left(u^{(2)}_1 + u^{(1)}_1 \cos \theta_{12}\right) + \frac{1}{2} u^{(3)}_1 \left(u^{(3)}_1 + u^{(1)}_1 \cos \theta_{12}\right)
\]

\[
\varepsilon_{22}^\circ = u^{(2)}_2 + u^{(1)}_2 \cos \theta_{12} + \frac{1}{2} u^{(1)}_2 \left(u^{(1)}_2 + u^{(2)}_2 \cos \theta_{12}\right) + \frac{1}{2} u^{(2)}_2 \left(u^{(2)}_2 + u^{(1)}_2 \cos \theta_{12}\right) + \frac{1}{2} u^{(3)}_2 \left(u^{(3)}_2 + u^{(1)}_2 \cos \theta_{12}\right)
\]

\[
2\varepsilon_{12}^\circ = u^{(1)}_2 + u^{(2)}_2 + \left(u^{(2)}_2 + u^{(1)}_2 \right) \cos \theta_{12} + u^{(1)}_1 \left(u^{(1)}_1 + u^{(2)}_1 \right) \cos \theta_{12} + u^{(2)}_1 \left(u^{(2)}_1 + u^{(1)}_1 \right) \cos \theta_{12} + u^{(3)}_1 \left(u^{(3)}_1 + u^{(1)}_1 \right) \cos \theta_{12}
\]

\[
+ u^{(2)}_1 \left(u^{(1)}_2 \cos \theta_{12} + u^{(2)}_2 \right) + u^{(3)}_1 u^{(3)}_2
\]
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONTINUED

where, for general reference-surface Gaussian coordinates,

\[
\begin{align*}
\left. u^{(1)} \right|_{(1)} &= \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(u_1 \cos \theta_{12} + u_2 \right) + w \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \\
\left. u^{(2)} \right|_{(1)} &= \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(u_1 + u_2 \cos \theta_{12} \right) + \frac{u_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - w \frac{\csc \theta_{12}}{r_{12}} \\
\left. u^{(3)} \right|_{(1)} &= \frac{1}{A_1} \frac{\partial \xi_1}{\partial \xi_1} - \frac{u_1}{r_{11}} + u_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \\
\left. u^{(1)} \right|_{(2)} &= \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(u_1 \cos \theta_{12} + u_2 \right) + w \frac{\csc \theta_{12}}{r_{21}} \\
\left. u^{(2)} \right|_{(2)} &= \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} - \frac{u_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \left(u_1 + u_2 \cos \theta_{12} \right) + w \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \\
\left. u^{(3)} \right|_{(2)} &= \frac{1}{A_2} \frac{\partial \xi_2}{\partial \xi_2} - u_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{u_2}{r_{22}}
\end{align*}
\]
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONTINUED

The corresponding indicial form is

\[2\varepsilon^o_{\alpha\beta} = u^{(\beta)}(\hat{a}_\alpha \cdot \hat{a}_\delta) + u^{(\delta)}(\hat{a}_\alpha \cdot \hat{a}_\beta) + u^{(\mu)}(\hat{a}_\mu \cdot \hat{a}_\beta) + u^{(3)}(\hat{a}_\mu \cdot \hat{a}_\delta) + u^{(3)} \]

For orthogonal reference-surface Gaussian coordinates, the strains expressions reduce to

\[\varepsilon^o_{11} = u^{(1)}(1) + \frac{1}{2} \left[\left(u^{(1)}(1) \right)^2 + \left(u^{(2)}(1) \right)^2 + \left(u^{(3)}(1) \right)^2 \right] \]

\[\varepsilon^o_{22} = u^{(2)}(2) + \frac{1}{2} \left[\left(u^{(1)}(2) \right)^2 + \left(u^{(2)}(2) \right)^2 + \left(u^{(3)}(2) \right)^2 \right] \]

\[2\varepsilon^o_{12} = u^{(1)}(2) + u^{(2)}(1) + u^{(1)}(1)u^{(2)}(2) + u^{(3)}(1)u^{(3)}(2) \]

or

\[2\varepsilon^o_{\alpha\beta} = u^{(\alpha)}(\beta) + u^{(\beta)}(\alpha) + u^{(\rho)}(\alpha)u^{(\rho)}(\beta) + u^{(3)}(\alpha)u^{(3)}(\beta) \]
GREEN-LAGRANGE REFERENCE-SURFACE STRAINS
CONCLUDED

where, for **orthogonal** reference-surface Gaussian coordinates,

\[
\begin{align*}
\mathbf{u}^{(1)}_{(1)} &= \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} + \frac{w}{r_{11}} \\
\mathbf{u}^{(1)}_{(2)} &= \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} - \frac{u_2}{\rho_{22}} - \frac{w}{r_{11}} \\
\mathbf{u}^{(2)}_{(1)} &= \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{u_2}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} + \frac{w}{r_{11}} \\
\mathbf{u}^{(2)}_{(2)} &= \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} + \frac{w}{r_{11}} \\
\mathbf{u}^{(3)}_{(1)} &= \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} - \frac{u_1}{r_{11}} + \frac{u_2}{r_{12}} \\
\mathbf{u}^{(3)}_{(2)} &= \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} + \frac{u_1}{r_{12}} - \frac{u_2}{r_{22}}
\end{align*}
\]
“SMALL” GREEN-LAGRANGE STRAINS

- Up to this point of the present study, the size of the reference-surface strains that occur during deformation have been unrestricted.

- However, a broad range of engineering shell structures exhibit nonlinear deformations for which the magnitude of the strains are very small compared to unity.

- The size of the corresponding reference-surface strains are characterized by $|\varepsilon_{\alpha\beta}^0| \ll 1$ and described herein as “small” strains.

- As will be seen subsequently, it turns out that $|\varepsilon_{\alpha\beta}^0| \ll 1$ provides a means for simplifying the equations characterizing reference-surface deformation by converting irrational quantities into rational quantities.
“SMALL” GREEN-LAGRANGE STRAINS - CONTINUED

For the very important, practical class of deformations that exhibit “small” strains, the Green-Lagrange strains are described as terms of second order, denoted by the symbol $O(\varepsilon^2)$, where ε indicates that the order symbol applies to strain-related quantities.

- In particular, $O(\varepsilon^2)$ means that the strain magnitudes are approximately 10^2 times smaller than unity; i.e., $|\varepsilon_{\alpha\beta}| \ll 1$.

- Hence, for any “small” strain quantity γ, binomial series are used to get

 \[\sqrt{1 + \gamma} = 1 + \frac{1}{2} \gamma + O(\varepsilon^4) \quad \text{and} \quad \frac{1}{\sqrt{1 + \gamma}} = 1 - \frac{1}{2} \gamma + O(\varepsilon^4), \]

 where $O(\varepsilon^4)$ signifies terms 10^4 times smaller than unity.

- Thus, for “small” strains

 \[A_1 = A_1 \sqrt{1 + 2\varepsilon_{11}^o} \quad \rightarrow \quad A_1 = A_1 \left(1 + \varepsilon_{11}^o + O(\varepsilon^4) \right) \quad \text{and} \]

 \[A_2 = A_2 \sqrt{1 + 2\varepsilon_{22}^o} \quad \rightarrow \quad A_2 = A_2 \left(1 + \varepsilon_{22}^o + O(\varepsilon^4) \right). \]
“SMALL” GREEN-LAGRANGE STRAINS - CONTINUED

● In addition, \(A_1 A_2 \cos \theta_{12} = A_1 A_2 \left(2 \varepsilon_1^o + \cos \theta_{12} \right) \) becomes

\[
\cos \theta_{12} = 2 \varepsilon_1^o + \cos \theta_{12} \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o \right) + O(\varepsilon^4)
\]

● Moreover, the elongations along the coordinate curves become

\[
e_1 = \varepsilon_{11}^o + O(\varepsilon^4) \quad \text{and} \quad e_2 = \varepsilon_{22}^o + O(\varepsilon^4)
\]

● Likewise, \(\hat{a}_1 = \frac{A_1}{\mathcal{A}_1} \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \) and \(\hat{a}_2 = \frac{A_2}{\mathcal{A}_2} \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \) become

\[
\hat{a}_1 = \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \left(1 - \varepsilon_{11}^o + O(\varepsilon^4) \right) \quad \text{and} \quad \hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \left(1 - \varepsilon_{22}^o + O(\varepsilon^4) \right)
\]
“SMALL” GREEN-LAGRANGE STRAINS - CONTINUED

- For a positive-valued $O(\varepsilon^2)$ change in angle (shear) between the convected coordinate curves during deformation equal to γ_{12}^o, the resulting angle is given by $\theta_{12} = \theta_{12} - \gamma_{12}^o$.

- Application of trigonometric identities and trigonometric series to $\sin \gamma_{12}^o$ and $\cos \gamma_{12}^o$ yields the results:
 \[
 \sin \theta_{12} = \sin \theta_{12} - \cos \theta_{12} \gamma_{12}^o + O(\varepsilon^4)
 \quad \text{and} \quad
 \cos \theta_{12} = \cos \theta_{12} + \sin \theta_{12} \gamma_{12}^o + O(\varepsilon^6)
 \]

- Combining the last expression with
 \[
 \cos \theta_{12} = 2\varepsilon_{12}^o + \cos \theta_{12} \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o\right) + O(\varepsilon^4)
 \]
 yields the shearing strain as
 \[
 \gamma_{12}^o = 2\varepsilon_{12}^o \csc \theta_{12} - \cot \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o\right) + O(\varepsilon^4)
 \]
 for “small” strains.
“SMALL” GREEN-LAGRANGE STRAINS - CONTINUED

Then, substituting
\[\gamma_{12} = 2\varepsilon_{12} \csc \theta_{12} - \cot \theta_{12} \left(\varepsilon_{11} + \varepsilon_{22} \right) + \mathcal{O}(\varepsilon^4) \]
into
\[\sin \theta_{12} = \sin \theta_{12} - \cos \theta_{12} \gamma_{12} + \mathcal{O}(\varepsilon^4) \]
gives

\[\sin \theta_{12} = \sin \theta_{12} - \cot \theta_{12} \left[2\varepsilon_{12} - \cos \theta_{12} \left(\varepsilon_{11} + \varepsilon_{22} \right) \right] + \mathcal{O}(\varepsilon^4) \]
for “small” strains

In addition, \(\left| \hat{t}(\mu) \cdot \hat{a}^\alpha \right| \leq 1 \) and, as a result, a binomial series expansion gives

\[\sqrt{1 + 2\varepsilon_{\alpha\beta} \left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\mu) \cdot \hat{a}^\beta \right) \csc^2 \theta_{12}} = \]
\[1 + \varepsilon_{\alpha\beta} \left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\mu) \cdot \hat{a}^\beta \right) \csc^2 \theta_{12} + \mathcal{O}(\varepsilon^4) \]
Thus, the general form of the elongation is given by

\[e_{i(\mu)} = \varepsilon_{\alpha\beta}^o \left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\mu) \cdot \hat{a}^\beta \right) \csc^2 \theta_{12} + \mathcal{O}(\varepsilon^4) \]

for “small” strains.

For a positive-valued change in the angle (shear) \(\theta(\xi_1, \xi_2, \tau) \) between intersecting differential surface arcs at a point, that occurs during deformation, the shearing \(\gamma^o(\xi_1, \xi_2, \tau) \), is defined by \(\gamma^o = \theta - \theta \).

Thus, \(\cos \theta = \cos \theta \cos \gamma^o + \sin \theta \sin \gamma^o = \cos \theta + \sin \theta \gamma^o + \mathcal{O}(\varepsilon^4) \)

for “small” strains, which yields

\[\gamma^o = \frac{\cos \theta - \cos \theta}{\sin \theta} + \mathcal{O}(\varepsilon^4) \]
“SMALL” GREEN-LAGRANGE STRAINS - CONTINUED

- Likewise, the previous expression

\[
\cos \theta = \frac{\left[\hat{t}(\mu) \cdot \hat{a}^\alpha \right] \left[\hat{t}(\eta) \cdot \hat{a}^\beta \right] \csc^2 \theta_{12}}{1 + e_{\hat{t}(\mu)} \left[1 + e_{\hat{t}(\eta)} \right]} \left[2 \varepsilon^\circ_{\alpha\beta} + \delta_{\alpha\beta} + \left[1 - \delta_{\alpha\beta} \right] \cos \theta_{12} \right]
\]

is expressed as

\[
\cos \theta = \frac{\left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\eta) \cdot \hat{a}^\beta \right) \csc^2 \theta_{12}}{1 + \varepsilon^\circ_{\alpha\chi} \left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \csc^2 \theta_{12}} \left[1 + \varepsilon^\circ_{\lambda\rho} \left(\hat{t}(\eta) \cdot \hat{a}^\lambda \right) \left(\hat{t}(\eta) \cdot \hat{a}^\rho \right) \csc^2 \theta_{12} \right] + O(\varepsilon^4)
\]

- Furthermore, \(\cos \theta = \hat{t}(\mu) \cdot \hat{t}(\eta) \) and \(\sin \theta = (\hat{t}(\eta) \times \hat{t}(\mu)) \cdot \hat{n} \), and

\[
\hat{t}(\mu) = \left[\hat{t}(\mu) \cdot \hat{a}^\alpha \right] \csc \theta_{12} \hat{a}_\alpha \quad \text{and} \quad \hat{t}(\eta) = \left[\hat{t}(\eta) \cdot \hat{a}^\beta \right] \csc \theta_{12} \hat{a}_\beta
\]

are used with \(\hat{a}_\alpha \cdot \hat{a}_\beta = \delta_{\alpha\beta} + \left[1 - \delta_{\alpha\beta} \right] \cos \theta_{12} \) to get
Thus, for “small” strains,

\[\gamma^o = \frac{\cos \theta - [\hat{t}(\mu) \cdot \hat{a}^\alpha][\hat{t}(\eta) \cdot \hat{a}^\beta](\delta_{\alpha \beta} + (1 - \delta_{\alpha \beta}) \cos \theta_{12}) \csc^2 \theta_{12}}{\left([\hat{t}(\mu) \cdot \hat{a}^1][\hat{t}(\eta) \cdot \hat{a}^2] - [\hat{t}(\mu) \cdot \hat{a}^2][\hat{t}(\eta) \cdot \hat{a}^1] \right) \csc \theta_{12}} + \mathcal{O}(\epsilon^4) \]

where

\[\cos \theta = \frac{\left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\eta) \cdot \hat{a}^\beta \right) \left[2 \epsilon_{\alpha \beta}^o + \delta_{\alpha \beta} + (1 - \delta_{\alpha \beta}) \cos \theta_{12} \right] \csc^2 \theta_{12}}{\left[1 + \epsilon_{\alpha \chi}^o \left(\hat{t}(\mu) \cdot \hat{a}^\alpha \right) \left(\hat{t}(\mu) \cdot \hat{a}^\chi \right) \csc^2 \theta_{12} \right] \left[1 + \epsilon_{\lambda \rho}^o \left(\hat{t}(\eta) \cdot \hat{a}^\lambda \right) \left(\hat{t}(\eta) \cdot \hat{a}^\rho \right) \csc^2 \theta_{12} \right]} + \mathcal{O}(\epsilon^4) \]
“SMALL” GREEN-LAGRANGE STRAINS - CONCLUDED

● In many practical cases, known values of the linearized strains and rotations provide useful measures of the degree of nonlinearity in given problem.

● Thus, it is useful to express the nonlinear Green-Lagrange strains in terms of the linearized strain and rotation measures.

● In addition, for most engineering applications, nonlinear and buckling analyses need only consider the class of deformations in which the strains are $O(\varepsilon^2)$ and the rotations are $O(\varepsilon)$.

● Thus, products of strains and products of strains and rotations can be neglected.

● The nonlinear deformation state of interest is presumed to be “near” the linear deformation state and can be assessed adequately in terms of the strains and rotations of the linear state.
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS

- For infinitesimal displacements, characteristic of linear behavior, the magnitude of the displacement gradients are such that

\[\frac{1}{A_{(\alpha)} \partial \xi_{\alpha}} \frac{\partial \hat{u}}{} \ll 1, \]

which is small enough for their products to be negligible.

- For this class of deformations, linearization of

\[2\hat{\varepsilon}_{\alpha\beta}^o = \left(\hat{a}_\alpha \cdot \frac{1}{A_{(\beta)} \partial \xi_{\beta}} \frac{\partial \hat{u}}{} \right) + \left(\frac{1}{A_{(\alpha)} \partial \xi_{\alpha}} \cdot \hat{a}_\beta \right) + \left(\frac{1}{A_{(\alpha)} \partial \xi_{\alpha}} \cdot \frac{1}{A_{(\beta)} \partial \xi_{\beta}} \frac{\partial \hat{u}}{} \right) \]

results in

\[\hat{\varepsilon}_{\alpha\beta}^o(\xi_1, \xi_2, \tau) = e_{\alpha\beta}^o(\xi_1, \xi_2, \tau) + O(\varepsilon^4), \]

where

\[2e_{\alpha\beta}^o = \left(\hat{a}_\alpha \cdot \frac{1}{A_{(\beta)} \partial \xi_{\beta}} \frac{\partial \hat{u}}{} \right) + \left(\frac{1}{A_{(\alpha)} \partial \xi_{\alpha}} \cdot \hat{a}_\beta \right) \]

- Here, \(e_{\alpha\beta}^o \) are presumed to be “small” quantities of \(O(\varepsilon^2) \)
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

In explicit form,

\[e_{11}^o = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \bar{u}}{\partial \xi_1} \]
\[e_{22}^o = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \bar{u}}{\partial \xi_2} \]
\[2e_{12}^o = \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \bar{u}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \bar{u}}{\partial \xi_1} \]

Now, consider linearization of the unit-magnitude convected base-vector fields obtained from

\[\hat{a}_\alpha(\xi_1, \xi_2, t) = A_{(\alpha)} \left(\hat{a}_\alpha + \frac{1}{A_{(\alpha)}} \frac{\partial \bar{u}}{\partial \xi_\alpha} \right) \]

First, \(\varepsilon_{\alpha\beta}^o = e_{\alpha\beta}^o + O(\varepsilon^4) \) yields

\[\mathcal{A}_1 = A_1 \left(1 + e_{11}^o \right) + O(\varepsilon^4) \quad \text{and} \quad \mathcal{A}_2 = A_2 \left(1 + e_{22}^o \right) + O(\varepsilon^4) \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

- Likewise, \(\cos \theta_{12} = 2e_{12}^o + \cos \theta_{12} \left(1 - e_{11}^o - e_{22}^o \right) + \mathcal{O}(\varepsilon^4) \) and

\[
\sin \theta_{12} = \sin \theta_{12} - \cot \theta_{12} \left[2e_{12}^o - \cos \theta_{12} \left(e_{11}^o + e_{22}^o \right) \right] + \mathcal{O}(\varepsilon^4)
\]

- Next, unit-magnitude convected base-vector fields are defined by

\[
\hat{a}_1 = \frac{\hat{a}_1}{|\hat{a}_1|} = \frac{\hat{a}_1}{A_1} \quad \text{and} \quad \hat{a}_2 = \frac{\hat{a}_2}{|\hat{a}_2|} = \frac{\hat{a}_2}{A_2}
\]

which yield

\[
\hat{a}_1 = \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \left(1 + e_{11}^o + \mathcal{O}(\varepsilon^4) \right)^{-1}
\]

or

\[
\hat{a}_1 = \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \left(1 - e_{11}^o + \mathcal{O}(\varepsilon^4) \right)
\]

and

\[
\hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \left(1 + e_{22}^o + \mathcal{O}(\varepsilon^4) \right)^{-1}
\]

or

\[
\hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \left(1 - e_{22}^o + \mathcal{O}(\varepsilon^4) \right)
\]
As the shell deforms, the vector \(\hat{n}(\xi_1, \xi_2) \) at point \(P \) of the reference surface translates to point \(\mathcal{P} \) of the corresponding deformed surface, and \(\hat{n}(\xi_1, \xi_2) \) undergoes a rigid-body rotation into \(\hat{\mathcal{e}}(\xi_1, \xi_2, \varepsilon) \), as shown in the next figure.

This rotation corresponds to the rotation of the tangent plane at point \(P \) into the tangent plane at point \(\mathcal{P} \).

Now, consider a rigid-body rotation of \(\hat{n}(\xi_1, \xi_2) \) into \(\hat{\mathcal{e}}(\xi_1, \xi_2, \varepsilon) \) that is the same order of magnitude at the strains \(\varepsilon^{\circ}_{\alpha\beta} \).

Thus, for the difference vector \(\hat{\Phi}(\xi_1, \xi_2, \varepsilon) \), defined by \(\hat{\Phi} \equiv \hat{\mathcal{e}} - \hat{n} \), it follows that \(\| \hat{\Phi} \| \) is \(O(\varepsilon^2) \).
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[\tilde{u}(\xi_1, \xi_2, \tau) + \tilde{\phi}(\xi_1, \xi_2, \tau) \]

\[\hat{a} = \frac{\hat{a}_1 \times \hat{a}_2}{|\hat{a}_1 \times \hat{a}_2|} \]

Undeformed reference surface, \(S_0 \)

Deformed reference surface, \(S_0 \)
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

- By using $\hat{\phi} = \vec{\phi} + \vec{n}$ and $\hat{\phi} \cdot \hat{\phi} = 1$, it also follows that $\vec{\phi} \cdot \vec{n} = -\frac{1}{2} |\vec{\phi}|^2$

- Therefore, the linearized difference vector $\vec{\phi}$ is given by

$$\vec{\phi} = \varphi_1 \hat{a}_1 + \varphi_2 \hat{a}_2$$

- Note that $\hat{a}_1 \perp \hat{a}_2$ indicates that the component $\varphi_1 \hat{a}_1$ corresponds to a right-handed rotation of amount φ_1 about the reciprocal base vector \hat{a}_2

- Likewise, the component $\varphi_2 \hat{a}_2$ corresponds to a right-handed rotation of amount φ_2 about the reciprocal base vector $-\hat{a}_1$
By introducing the **linear rotation vector field** \(\vec{\omega}(\xi_1, \xi_2, \tau) \) given by

\[
\vec{\omega} = -\varphi_2 \hat{a}^1 + \varphi_1 \hat{a}^2 + \varphi \hat{n}
\]

and using \(\hat{a}^1 \times \hat{n} = -\hat{a}_2 \) and \(\hat{a}^2 \times \hat{n} = \hat{a}_1 \), it is found that

\[
\vec{\phi} = \vec{\omega} \times \hat{n},
\]

as shown in the next figure, and that

\[
\hat{\phi} = \hat{n} + (\vec{\omega} \times \hat{n})
\]

An important rotation appearing in \(\vec{\omega}(\xi_1, \xi_2, \tau) \) is the rotation about the normal vector \(\hat{n} \), given by the component \(\varphi(\xi_1, \xi_2, \tau) \).

The definition of \(\varphi(\xi_1, \xi_2, \tau) \) is obtained by noting that the rotation field of a continuum undergoing infinitesimal deformations is characterized by the curl of the displacement vector field; that is, \(\vec{\nabla} \times \vec{u} \).
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[\hat{n}(\xi_1, \xi_2) \]

\[\hat{n} \text{ translated to point } P \]

\[\hat{a}_1(\xi_1, \xi_2) \]

\[\hat{a}_2(\xi_1, \xi_2) \]

\[\hat{u}(\xi_1, \xi_2, t) \]

\[\hat{\omega}(\xi_1, \xi_2, t) \]

\[\hat{\nu} = \hat{\omega} \times \hat{n} \]

\[\hat{\nu}(\xi_1, \xi_2, t) \]

\[\hat{\nu}(\xi_1, \xi_2, t) \]

\[\hat{a}_1(\xi_1, \xi_2, t) \]

\[\hat{a}_2(\xi_1, \xi_2, t) \]

Undeformed reference surface, \(S_0 \)

Deformed reference surface, \(S_t \)

\[\hat{\tau} = x_k(\xi_1, \xi_2) \hat{i}_k \]

\[\hat{\tau} = x_k(\xi_1, \xi_2, t) \hat{i}_k \]
To obtain the expression for the surface gradient operator, \(\tilde{\nabla} \), consider the differentiable function \(F(\xi_1, \xi_2) \).

The chain rule of differentiation gives
\[
dF = \frac{\partial F}{\partial \xi_1} \, d\xi_1 + \frac{\partial F}{\partial \xi_2} \, d\xi_2
\]

Noting that the gradient operator has the form
\[
\tilde{\nabla} = \hat{a} \frac{1}{A_1} \frac{\partial}{\partial \xi_1} + \hat{b} \frac{1}{A_2} \frac{\partial}{\partial \xi_2}
\]
and that it must satisfy
\[
dF = \tilde{\nabla} F \cdot d\hat{x},
\]
where
\[
d\hat{x} = \frac{\partial \hat{x}}{\partial \xi_1} \, d\xi_1 + \frac{\partial \hat{x}}{\partial \xi_2} \, d\xi_2 = A_1 \hat{a}_1 \, d\xi_1 + A_2 \hat{a}_2 \, d\xi_2,
\]
yields
\[
\hat{a} = \frac{\hat{a}_1}{\sin \theta_{12}} \quad \text{and} \quad \hat{b} = \frac{\hat{a}_2}{\sin \theta_{12}}
\]
Therefore, the surface gradient operator is given by

\[\hat{\nabla} = \csc \theta_{12} \left(\hat{a}^1 \frac{1}{A_1} \frac{\partial}{\partial \xi_1} + \hat{a}^2 \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \right) \]

In addition,

\[\hat{\nabla} \times \hat{u} = \csc \theta_{12} \left(\hat{a}^1 \times \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} + \hat{a}^2 \times \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \]

The dot products \(\hat{a}^\alpha \cdot \hat{a}_\beta = \delta^\alpha_\beta \sin \theta_{12} \) and \(\hat{a}^\alpha \cdot \hat{n} = 0 \) are used next to get

\[\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \hat{n} \]

\[\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \hat{n} \]
The cross-product terms are given by

\[\hat{a}^1 \times \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \cot \theta_{12} \hat{n} + \left(\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \hat{n} - \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \hat{a}^2 \]

\[\hat{a}^2 \times \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = - \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \hat{n} - \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \cot \theta_{12} \hat{n} + \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \hat{a}^1 \]

Using these equations, \(\nabla \times \hat{u} \) is expressed in component form as

\[\nabla \times \hat{u} = \left(\nabla \times \hat{u} \right)^1 \hat{a}_1 + \left(\nabla \times \hat{u} \right)^2 \hat{a}_2 + \left(\nabla \times \hat{u} \right)^3 \hat{n} \]

where

\[\left(\nabla \times \hat{u} \right)^1 = \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \]

\[\left(\nabla \times \hat{u} \right)^2 = - \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[
(\mathbf{\nabla} \times \mathbf{\hat{u}})^3 = \left[\left(\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{u}}}{\partial \xi_1} \right) - \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{\hat{u}}}{\partial \xi_2} \right) \right] \csc^2 \theta_{12}
+ \left[\left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{u}}}{\partial \xi_1} \right) - \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \mathbf{\hat{u}}}{\partial \xi_2} \right) \right] \csc \theta_{12} \cot \theta_{12}
\]

- By using

\[
\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12} = \hat{a}_2 \times \hat{n} \quad \text{and} \quad \hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12} = \hat{n} \times \hat{a}_1
\]

it is also found that

\[
(\mathbf{\nabla} \times \mathbf{\hat{u}})^3 = \left[\left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{u}}}{\partial \xi} \right) - \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{\hat{u}}}{\partial \xi} \right) \right] \csc \theta_{12}
\]
To obtain a form for \(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \) that is similar to \(\mathbf{\dot{\omega}} = -\varphi_2 \mathbf{\hat{a}}^1 + \varphi_1 \mathbf{\hat{a}}^2 + \varphi \mathbf{\hat{n}} \), \(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \) is expressed as

\[
\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} = \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)_1 \mathbf{\hat{a}}^1 + \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)_2 \mathbf{\hat{a}}^2 + \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)_3 \mathbf{\hat{n}}
\]

where

\[
\left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)_1 = \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)^1 \csc \theta_{12} + \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)^2 \cot \theta_{12}
\]

and

\[
\left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)_2 = \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)^1 \cot \theta_{12} + \left(\mathbf{\dot{\nu}} \times \mathbf{\dot{u}} \right)^2 \csc \theta_{12}
\]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

Using

\[
\left(\nabla \times \hat{u} \right)^1 = \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12}
\]

\[
\left(\nabla \times \hat{u} \right)^2 = - \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12}
\]
gives

\[
\left(\nabla \times \hat{u} \right)_1 = \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc^2 \theta_{12} - \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \cot \theta_{12}
\]

and

\[
\left(\nabla \times \hat{u} \right)_2 = \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \cot \theta_{12} - \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc^2 \theta_{12}
\]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

Now, consider the deformation and rotation of the reference surface...
As the reference surface deforms, the unit-magnitude vectors \hat{a}_1 and \hat{a}_2 are convected into the unit-magnitude vectors \hat{a}_1' and \hat{a}_2', which also rotate as the reference surface deforms.

For the class of very small deformations with $\frac{1}{A_{(\alpha)}^\xi} \frac{\partial \hat{u}}{\partial \xi_{\alpha}} \ll 1$, the rotation of \hat{a}_1 and \hat{a}_2 is represented by the rotation of the corresponding tangent plane and the rotation of each vector within the tangent plane that is caused by deformation.

The rotations φ_1 and φ_2 quantify the rotation of the tangent plane as the reference surface deforms.

Let β_1 and β_2 denote the rotations of $\hat{a}_1(\xi_1, \xi_2, \tau)$ and $\hat{a}_2(\xi_1, \xi_2, \tau)$ within the tangent plane, respectively, as depicted in the next figure.
Tangent plane at point \(P \)

Unit-radius circle

\[\hat{a}_1, \hat{a}_2 \]

\[\beta_1, \beta_2 \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[
\hat{\mathbf{a}} = \frac{\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2}{|\hat{\mathbf{a}}_1 \times \hat{\mathbf{a}}_2|}
\]

\[
- (\varphi_1 + \varphi_2 \cos\theta_{12}) \hat{n}
\]

\[
\hat{n} \text{ translated to point } \mathcal{P}
\]

\[
\hat{\mathbf{a}}_1 \text{ translated to point } \mathcal{P}
\]

\[
\hat{\mathbf{a}}_2 \text{ translated to point } \mathcal{P}
\]

\[
\hat{\mathbf{a}} \text{ translated to point } \mathcal{P}
\]

\[
\varphi_1 \hat{\mathbf{a}}_1 \quad \varphi_2 \hat{\mathbf{a}}_2
\]

\[
\hat{\beta}_1 \hat{\mathbf{a}}^2 \quad \hat{\beta}_2 \hat{\mathbf{a}}^1
\]

\[
\theta_{12}
\]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

In the previous two figures, the base vectors \(\{\hat{a}_1, \hat{a}_2, \hat{n}\} \), associated with point \(P \in S_0 \), have been translated to the corresponding point of the deformed surface, \(P = \mathcal{D}(P) \in S_\varepsilon \).

The positive directions of \(\beta_1 \) and \(\beta_2 \) shown in the figures correspond to a decrease in the angle between \(\hat{a}_1 \) and \(\hat{a}_2 \) as they are convected into \(\hat{a}_1 \) and \(\hat{a}_2 \), consistent with a positive-valued shearing deformation.

Like \(\varphi_1 \) and \(\varphi_2 \), for \(\frac{1}{A_{(\alpha)} \frac{\partial \bar{u}}{\partial \xi_\alpha}} \ll 1 \), the rotations \(\beta_1 \) and \(\beta_2 \) are also presumed to be of \(\mathcal{O}(\varepsilon^2) \).
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

For rotations that are $O(\varepsilon^2)$, it is shown in textbooks on rigid-body dynamics that the rotation of a vector \hat{a} into a vector \hat{b} is given by
\[
\hat{b} = \hat{a} + \hat{r} \times \hat{a}, \quad \text{where} \quad \hat{r} \quad \text{is a rotation vector with} \quad |\hat{r}| \ll 1
\]

Thus, the rotation of \hat{a}_1 into \hat{a}_1 is given by
\[
\hat{a}_1 = \hat{a}_1 + \left(\varphi_1 \hat{a}_2 - \varphi_2 \hat{a}_1 + \beta_1 \hat{n} \right) \times \hat{a}_1
\]

Similarly, the rotation of \hat{a}_2 into \hat{a}_2 is given by
\[
\hat{a}_2 = \hat{a}_2 + \left(\varphi_1 \hat{a}_2 - \varphi_2 \hat{a}_1 - \beta_2 \hat{n} \right) \times \hat{a}_2
\]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

Upon performing the cross-product operations, the convected base-vector fields are obtained as

\[\hat{a}_1 = \hat{a}_1 + \beta_1 \hat{a}^2 - (\varphi_1 + \varphi_2 \cos \theta_{12}) \hat{n} + \mathcal{O}(\varepsilon^3) \]

\[\hat{a}_2 = \beta_2 \hat{a}_1 + \hat{a}_2 - (\varphi_1 \cos \theta_{12} + \varphi_2) \hat{n} + \mathcal{O}(\varepsilon^3) \]

\[\hat{a} = \varphi_1 \hat{a}_1 + \varphi_2 \hat{a}_2 + \hat{n} + \mathcal{O}(\varepsilon^3) \]

Here, \(\mathcal{O}(\varepsilon^3) = \mathcal{O}(\varepsilon^3)(\hat{a}_1 + \hat{a}_2 + \hat{n}) \) is introduced for convenience.

From these expressions, it follows that

\[\sin \theta_{12} - \beta_1 \cos \theta_{12} + \mathcal{O}(\varepsilon^3) = \hat{a}^1 \cdot \hat{a}_1 \]

\[\beta_1 + \mathcal{O}(\varepsilon^3) = \hat{a}_1 \cdot \hat{a}_1 \]

\[\sin \theta_{12} - \beta_2 \cos \theta_{12} + \mathcal{O}(\varepsilon^3) = \hat{a}^2 \cdot \hat{a}_2 \]

\[\beta_2 + \mathcal{O}(\varepsilon^3) = \hat{a}^1 \cdot \hat{a}_2 \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

• Likewise,

\[\varphi_1 + \varphi_2 \cos \theta_{12} + \mathcal{O}(\varepsilon^3) = - \hat{n} \cdot \hat{a}_1 \]

\[\varphi_1 \cos \theta_{12} + \varphi_2 + \mathcal{O}(\varepsilon^3) = - \hat{n} \cdot \hat{a}_2 \]

• Using

\[\hat{a}_1 = \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \left(1 - e_{11}^o + \mathcal{O}(\varepsilon^4) \right) \]

with \(\beta_1 + \mathcal{O}(\varepsilon^3) = \hat{a}_2^2 \cdot \hat{a}_1 \) gives

\[\left[1 - e_{11}^o + \mathcal{O}(\varepsilon^4) \right]^{-1} \left[\beta_1 + \mathcal{O}(\varepsilon^3) \right] = \hat{a}_2^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \]

• Applying the binomial series \(\frac{1}{1-\gamma} = 1 + \gamma + \mathcal{O}(\varepsilon^4) \) to the left-hand-side of the last equation gives

\[\left[1 + e_{11}^o + \mathcal{O}(\varepsilon^4) \right] \left[\beta_1 + \mathcal{O}(\varepsilon^3) \right] = \hat{a}_2^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \]
Similarl \textbf{y}, using gives \[\hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2 \partial \xi_2} \right) \left(1 - e_{22}^o + O(\epsilon^4) \right) \]

\[
\begin{bmatrix} 1 + e_{22}^o + O(\epsilon^4) \end{bmatrix} \begin{bmatrix} \beta_2 + O(\epsilon^3) \end{bmatrix} = \hat{a}^1 \cdot \frac{1}{A_2 \partial \xi_2} \frac{\partial \hat{u}}{}
\]

\[
\begin{bmatrix} 1 + e_{111} + O(\epsilon^4) \end{bmatrix} \begin{bmatrix} \varphi_1 + \varphi_2 \cos \theta_{12} + O(\epsilon^3) \end{bmatrix} = -\hat{n} \cdot \frac{1}{A_1 \partial \xi_1} \frac{\partial \hat{u}}{}
\]

\[
\begin{bmatrix} 1 + e_{22}^o + O(\epsilon^4) \end{bmatrix} \begin{bmatrix} \varphi_1 \cos \theta_{12} + \varphi_2 + O(\epsilon^3) \end{bmatrix} = -\hat{n} \cdot \frac{1}{A_2 \partial \xi_2} \frac{\partial \hat{u}}{}
\]

\[
\begin{bmatrix} 1 + e_{11}^o + O(\epsilon^4) \end{bmatrix} \begin{bmatrix} \sin \theta_{12} - \beta_1 \cos \theta_{12} + O(\epsilon^3) \end{bmatrix} = \sin \theta_{12} + \hat{a}^1 \cdot \frac{1}{A_1 \partial \xi_1} \frac{\partial \hat{u}}{}
\]

\[
\begin{bmatrix} 1 + e_{22}^o + O(\epsilon^4) \end{bmatrix} \begin{bmatrix} \sin \theta_{12} - \beta_2 \cos \theta_{12} + O(\epsilon^3) \end{bmatrix} = \sin \theta_{12} + \hat{a}^2 \cdot \frac{1}{A_2 \partial \xi_2} \frac{\partial \hat{u}}{}
\]
Noting that products of rotations and strains are at most $O(\varepsilon^4)$, the following expressions are obtained:

\[
\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = e_1^u \sin \theta_{12} - \beta_1 \cos \theta_{12} + O(\varepsilon^3)
\]

\[
\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \beta_2 + O(\varepsilon^3)
\]

\[
\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \beta_1 + O(\varepsilon^3)
\]

\[
\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = e_2^u \sin \theta_{12} - \beta_2 \cos \theta_{12} + O(\varepsilon^3)
\]

\[
\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) + O(\varepsilon^3)
\]

\[
\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + O(\varepsilon^3)
\]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

The expressions

\[
\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \hat{n}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \hat{n}
\]

are used next to get

\[
\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \left(e_1^o - \beta_1 \cot \theta_{12} \right) \hat{a}_1 + \beta_1 \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n} + \vec{\Theta} (\varepsilon^3)
\]

\[
\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \beta_2 \csc \theta_{12} \hat{a}_1 + \left(e_2^o - \beta_2 \cot \theta_{12} \right) \hat{a}_2 - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \hat{n} + \vec{\Theta} (\varepsilon^3)
\]
Next, these expressions are used to obtain

\[
\begin{align*}
\n\n\left(\nabla \times \hat{u} \right)_1 &= - \varphi_2 + O(\varepsilon^3) \\
\n\left(\nabla \times \hat{u} \right)_2 &= \varphi_1 + O(\varepsilon^3) \\
\n\left(\nabla \times \hat{u} \right)_3 &= \beta_1 - \beta_2 + \left(e_{11}^{\circ} - e_{22}^{\circ} \right) \cot \theta_{12} + O(\varepsilon^3)
\end{align*}
\]

Thus, \(\left(\nabla \times \hat{u} \right)_1 \) and \(\left(\nabla \times \hat{u} \right)_2 \) define the rotation of \(\hat{n} \) into \(\hat{a} \).

For the convection of \(\hat{a}_1 \) and \(\hat{a}_2 \) into \(\hat{a}_1 \) and \(\hat{a}_2 \), \(\left(\nabla \times \hat{u} \right)_3 \) represents twice the average value of the rotation about \(\hat{n} \) that occurs during deformation; therefore,

\[
\varphi \equiv \frac{1}{2} \left(\nabla \times \hat{u} \right) \cdot \hat{n}
\]
The next step is to eliminate the parameters β_1 and β_2 from the previous expressions for the displacement derivatives.

First, note that

$$\beta_1 + \beta_2 + \mathcal{O}(\varepsilon^3) = \hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} + \hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2}$$

Using $\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12}$ and $\hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}$ gives

$$\beta_1 + \beta_2 + \mathcal{O}(\varepsilon^3) = \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} + \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \csc \theta_{12} - \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} + \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \cot \theta_{12}$$

Then, using the definitions for the linearized strains yields

$$\beta_1 + \beta_2 = 2e_{12}^o \csc \theta_{12} - (e_{11}^o + e_{22}^o) \cot \theta_{12} + \mathcal{O}(\varepsilon^3)$$
Likewise, \[2\varphi = \left(\mathbf{\nabla} \times \mathbf{\hat{u}} \right)^3 = \beta_1 - \beta_2 + (e_{11}^o - e_{22}^o)\cot\theta_{12} + \mathcal{O}(\varepsilon^3) \] gives \[\beta_1 - \beta_2 = 2\varphi - (e_{11}^o - e_{22}^o)\cot\theta_{12} + \mathcal{O}(\varepsilon^3) \]

Therefore, \[\beta_1 = \varphi + e_{12}^o \csc\theta_{12} - e_{11}^o \cot\theta_{12} + \mathcal{O}(\varepsilon^3) \]

\[\beta_2 = e_{12}^o \csc\theta_{12} - \varphi - e_{22}^o \cot\theta_{12} + \mathcal{O}(\varepsilon^3) \]

In addition, \[\mathbf{\nabla} \times \mathbf{\hat{u}} = -\varphi_2 \hat{a}^1 + \varphi_1 \hat{a}^2 + 2\varphi \hat{n} + \mathcal{O}(\varepsilon^3) \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

Using

\[\beta_1 = \left(e_1^o + \varphi \sin \theta_{12} \right) \csc \theta_{12} - e_{11}^o \cot \theta_{12} + O(\varepsilon^3) \]

and

\[\beta_2 = \left(e_2^o - \varphi \sin \theta_{12} \right) \csc \theta_{12} - e_{22}^o \cot \theta_{12} + O(\varepsilon^3) \]

gives

\[\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \left[e_{11}^o \csc \theta_{12} - \left(e_{12}^o + \varphi \sin \theta_{12} \right) \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_1 \]

\[+ \left[\left(e_{12}^o + \varphi \sin \theta_{12} \right) \csc \theta_{12} - e_{11}^o \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n} + \hat{\delta}(\varepsilon^3) \]

\[\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \left[\left(e_{12}^o - \varphi \sin \theta_{12} \right) \csc \theta_{12} - e_{22}^o \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_1 \]

\[+ \left[e_{22}^o \csc \theta_{12} - \left(e_{12}^o - \varphi \sin \theta_{12} \right) \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \hat{n} + \hat{\delta}(\varepsilon^3) \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

- Expressions for the **linearized rotations** in terms of the displacements are obtained by using the previously derived general expressions for the components of the derivatives of a vector field given by

$$ \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \vec{V}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(V_1 + V_2 \cos \theta_{12} \right) - \frac{V_2 \sin \theta_{12}}{\rho_{11}} + \frac{V_3}{r_{11}} $$

$$ \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \vec{V}}{\partial \xi_1} = \left(\frac{1}{A_1} \frac{\partial V_1}{\partial \xi_1} + \frac{V_3}{r_{11}} \right) \cos \theta_{12} + \frac{1}{A_1} \frac{\partial V_2}{\partial \xi_1} + \left(\frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}} \right) \sin \theta_{12} $$

$$ \hat{n} \cdot \frac{1}{A_1} \frac{\partial \vec{V}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial V_3}{\partial \xi_1} - \frac{V_1}{r_{11}} + V_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) $$

$$ \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \vec{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial V_1}{\partial \xi_2} + \left(\frac{1}{A_2} \frac{\partial V_2}{\partial \xi_2} + \frac{V_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{V_3}{r_{21}} - \frac{V_2}{\rho_{22}} \right) \sin \theta_{12} $$
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \vec{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(V_2 + V_1 \cos \theta_{12} \right) + \frac{V_1 \sin \theta_{12}}{\rho_{22}} + \frac{V_3}{r_{22}} \]

\[\hat{n} \cdot \frac{1}{A_2} \frac{\partial \vec{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial V_3}{\partial \xi_2} - V_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{V_2}{r_{22}} \]

along with the identity

\[\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \]

- In particular, using these expressions for the dot products with

\[\hat{n} \cdot \frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) + O(\varepsilon^3) \]

\[\hat{n} \cdot \frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + O(\varepsilon^3) \] gives
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[\varphi_1 = \left(\frac{u_1 - 1}{r_{11}} \frac{1}{A_1 \partial \xi_1} \right) \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12}}{A_2} \frac{\partial w}{\partial \xi_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12} + \mathcal{O}(\varepsilon^3) \]

\[\varphi_2 = \left(\frac{u_2 - 1}{r_{22}} \frac{1}{A_2 \partial \xi_2} \right) \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial w}{\partial \xi_1} - \frac{u_1}{r_{12}} \right) \csc \theta_{12} + \mathcal{O}(\varepsilon^3) \]

- Similarly, using the expressions for the dot products with

\[2\varphi = \left(\nabla \times \mathbf{u} \right)^3 = \left[\left(\hat{a}_2 \cdot \frac{1}{A_1 \partial \xi} \right) - \left(\hat{a}_1 \cdot \frac{1}{A_2 \partial \xi_2} \right) \right] \csc \theta_{12} \]

\[\text{gives} \]
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

$$2\psi = \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cot \theta_{12} + \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} \right) \csc \theta_{12} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} + \mathcal{O}(\varepsilon^3)$$

where

$$\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right)$$

$$\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right)$$

Moreover, the linearized Green-Lagrange strains are obtained in terms of the displacements by using the dot product expressions with

$$e_{11}^o = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1}$$

$$e_{22}^o = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2}$$

$$2e_{12}^o = \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{u}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{u}}{\partial \xi_1}$$

to get
LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

\[e_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(u_1 + u_2 \cos \theta_{12} \right) - \frac{u_2 \sin \theta_{12}}{\rho_{11}} + \frac{w}{r_{11}} + O(\varepsilon^3) \]

\[e_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(u_2 + u_1 \cos \theta_{12} \right) + \frac{u_1 \sin \theta_{12}}{\rho_{22}} + \frac{w}{r_{22}} + O(\varepsilon^3) \]

\[2e_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cos \theta_{12} \]

\[+ \left(\frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} \right) \sin \theta_{12} + w \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} + w \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \sin \theta_{12} + O(\varepsilon^3) \]

- These expressions are in complete agreement with the corresponding tensor equations given in:

LINEARIZED REFERENCE-SURFACE STRAINS AND ROTATIONS - CONTINUED

For the special case of orthogonal reference-surface Gaussian coordinates, the linearized rotations and linearized Green-Lagrange strains reduce to

\[
\varphi_1 = \frac{u_1}{r_{11}} - \frac{u_2}{r_{12}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} + O(\varepsilon^3)
\]

\[
\varphi_2 = \frac{u_2}{r_{22}} - \frac{u_1}{r_{12}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} + O(\varepsilon^3)
\]

\[
\varphi = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \right) + O(\varepsilon^3)
\]

\[
e_{11}^o = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} + \frac{w}{r_{11}} + O(\varepsilon^3)
\]

\[
e_{22}^o = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{\rho_{22}} + \frac{w}{r_{22}} + O(\varepsilon^3)
\]

\[
2e_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} - \frac{2w}{r_{12}} + O(\varepsilon^3)
\]
Furthermore, the derivatives of the displacement-vector field reduce to

\[
\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \delta_{11} \hat{a}_1 + \left(\delta_{12} + \varphi \right) \hat{a}_2 - \varphi_1 \hat{n} + \mathcal{O}(\varepsilon^3)
\]

\[
\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \left(\delta_{12} - \varphi \right) \hat{a}_1 + \delta_{22} \hat{a}_2 - \varphi_2 \hat{n} + \mathcal{O}(\varepsilon^3)
\]

for orthogonal reference-surface Gaussian coordinates, where it is noted that \(\beta_1 = \delta_{12} + \varphi + \mathcal{O}(\varepsilon^3) \) and \(\beta_2 = \delta_{12} - \varphi + \mathcal{O}(\varepsilon^3) \)
LINEARIZED CURVATURES AND TORSIONS OF S_t

- The general expressions for the curvatures and torsions of the deformed reference surface presented previously herein are complicated nonlinear functions of the reference-surface displacement fields.

- To aid in simplification of these expressions, it is convenient to have the corresponding linearized curvatures and torsions, expressed in terms of the linearized strain and rotation parameters.

- Previously, it was shown herein that the normal curvatures of the deformed reference surface, along the convected Gaussian-coordinate curves, are defined by

$$\frac{1}{\nu_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}$$

and

$$\frac{1}{\nu_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}$$
Likewise, the torsions are defined by

\[
\frac{1}{\tau_{12}} = -\hat{\alpha}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{\alpha}}{\partial \xi_1}
\quad \text{and} \quad
\frac{1}{\tau_{21}} = \hat{\alpha}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{\alpha}}{\partial \xi_2}
\]

Consider the first curvature expression given on the previous page

Using \(\hat{\alpha}_1 = \left(\hat{\alpha}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \left(1 - e_1^o + O(\varepsilon^4) \right) \) and \(A_1 = A_1 \left(1 + e_1^o \right) + O(\varepsilon^4) \)

gives

\[
\frac{1}{\tau_{11}} = \left(\hat{\alpha}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) \cdot \frac{1}{A_1} \frac{\partial \hat{\alpha}}{\partial \xi_1} \left(1 - 2e_1^o + O(\varepsilon^4) \right)
\]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

Next, using $\hat{e} = \hat{n} + \hat{\phi}$, where $\hat{\phi} = \varphi_1\hat{a}_1 + \varphi_2\hat{a}_2$ is the linear difference-vector field, gives

$$
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1}
$$

Then, using $\frac{1}{r_{11}} = \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}$ and enforcing the fact that the components of the difference-vector field and the displacement derivatives have magnitudes of $O(\varepsilon^2)$, gives

$$
\frac{1}{\varepsilon_{11}} = \frac{1}{r_{11}} \left(1 - 2e_{11}^0\right) + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} + \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + O(\varepsilon^4)
$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

Now, using

$$\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2$$

and

$$\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi} = \left[e_{11}^o \csc \theta_{12} - \left(e_{12}^o + \varphi \sin \theta_{12} \right) \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_1$$

$$+ \left[\left(e_{12}^o + \varphi \sin \theta_{12} \right) \csc \theta_{12} - e_{11}^o \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n} + \mathcal{O} \left(\varepsilon^3 \right)$$

gives

$$\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi} = \frac{e_{11}^o}{r_{11}} + \frac{e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{12}} - \frac{\varphi}{r_{12}} + \mathcal{O} \left(\varepsilon^3 \right)$$

Thus,

$$\frac{1}{\varepsilon_{11}} = \frac{1}{r_{11}} - \frac{e_{11}^o}{r_{11}} + \frac{e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{12}} - \frac{\varphi}{r_{12}} + \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\varphi}}{\partial \xi} + \mathcal{O} \left(\varepsilon^3 \right)$$
Now consider the curvature expression
\[\frac{1}{v_{zz}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \]

Using \(\hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \left(1 - e_2^0 + O(\varepsilon^4) \right) \)
gives
\[\frac{1}{v_{zz}} = \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \left(1 - 2e_2^0 + O(\varepsilon^4) \right) \]

Also, using \(\hat{a} = \hat{n} + \hat{\phi} \) gives
\[\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} \]
LINEARIZED CURVATURES AND TORSIONS OF S^*_t

CONTINUED

Then, using \(\frac{1}{r_{22}} = \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \) and enforcing the fact that the components of the difference-vector field and the displacement derivatives have magnitudes of \(\mathcal{O}(\varepsilon^2) \), gives

\[
\frac{1}{r_{22}} = \frac{1}{r_{22}} \left(1 - 2e_{22}^o \right) + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} + \mathcal{O}(\varepsilon^4)
\]

Now, using \(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc\theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot\theta_{12}}{r_{21}} \right) \hat{a}_2 \) and

\[
\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \left[\left(e_{12}^o - \varphi \sin\theta_{12} \right) \csc\theta_{12} - e_{22}^o \cot\theta_{12} \right] \csc\theta_{12} \hat{a}_1 \\
+ \left[e_{22}^o \csc\theta_{12} - \left(e_{12}^o - \varphi \sin\theta_{12} \right) \cot\theta_{12} \right] \csc\theta_{12} \hat{a}_2 - \left(\varphi_1 \cos\theta_{12} + \varphi_2 \right) \hat{n} + \mathcal{O}(\varepsilon^3)
\]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

gives

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{e_2^0}{r_{22}} + \frac{e_2^0 \csc \theta_{12} - e_2^0 \cot \theta_{12}}{r_{21}} - \frac{\varphi}{r_{21}} + O(\epsilon^3)$$

Thus,

$$\frac{1}{r_{22}} = \frac{1}{r_{22}} - \frac{e_2^0}{r_{22}} + \frac{e_2^0 \csc \theta_{12} - e_2^0 \cot \theta_{12}}{r_{21}} - \frac{\varphi}{r_{21}} + \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\varphi}}{\partial \xi_2} + O(\epsilon^3)$$

Now consider the torsion expressions written as

$$\frac{1}{r_{12}} = - \frac{A_1}{\mathcal{A}_1} \hat{a}_2^2 \cdot \frac{1}{A_1} \frac{\partial \hat{\varphi}}{\partial \xi_1}$$

and

$$\frac{1}{r_{21}} = \frac{A_2}{\mathcal{A}_2} \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\varphi}}{\partial \xi_2}$$

where

$$\hat{a}_1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12}$$

and

$$\hat{a}_2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12}$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- For linearized strains,

$$\cot \theta_{12} = \cot \theta_{12} + \csc^3 \theta_{12} \left[2e_{12}^o - \cos \theta_{12} \left(e_{11}^o + e_{22}^o \right) \right] + \mathcal{O}(\varepsilon^4)$$

and

$$\csc \theta_{12} = \csc \theta_{12} + \csc^2 \theta_{12} \cot \theta_{12} \left[2e_{12}^o - \cos \theta_{12} \left(e_{11}^o + e_{22}^o \right) \right] + \mathcal{O}(\varepsilon^4)$$

- Using these expressions with

$$\mathcal{A}_1 = A_1 \left(1 + e_{11}^o \right) + \mathcal{O}(\varepsilon^4) \quad \text{and} \quad \mathcal{A}_2 = A_2 \left(1 + e_{22}^o \right) + \mathcal{O}(\varepsilon^4)$$

gives

$$\frac{A_1}{\mathcal{A}_1} \hat{\mathbf{a}}^2 = \left(\csc \theta_{12} - e_{11}^o \csc \theta_{12} \right) \hat{\mathbf{a}}_2 - \left(\cot \theta_{12} - e_{11}^o \cot \theta_{12} \right) \hat{\mathbf{a}}_1 + \hat{\mathcal{O}}(\varepsilon^4)$$

$$\frac{A_2}{\mathcal{A}_2} \hat{\mathbf{a}}^1 = \left(\csc \theta_{12} - e_{22}^o \csc \theta_{12} \right) \hat{\mathbf{a}}_1 - \left(\cot \theta_{12} - e_{22}^o \cot \theta_{12} \right) \hat{\mathbf{a}}_2 + \hat{\mathcal{O}}(\varepsilon^4)$$
LINEARIZED CURVATURES AND TORSIONS OF S_ϵ

CONTINUED

Then, using

$$\hat{a}_1 = \left(\hat{a}_1 + \frac{1}{A_1 \partial \xi_1} \right) \left(1 - e_{11}^0 + O(\varepsilon^4)\right)$$

and

$$\hat{a}_2 = \left(\hat{a}_2 + \frac{1}{A_2 \partial \xi_2} \right) \left(1 - e_{22}^0 + O(\varepsilon^4)\right)$$

gives

$$\frac{1}{\nu_{12}} = \left(\cot\theta_{12} + F_1\right) \left(\hat{a}_1 + \frac{1}{A_1 \partial \xi_1} \right) \cdot \frac{1}{A_1 \partial \xi_1}$$

and

$$+ \left(F_2 - \csc\theta_{12}\right) \left(\hat{a}_2 + \frac{1}{A_2 \partial \xi_2} \right) \cdot \frac{1}{A_1 \partial \xi_1} + O(\varepsilon^4)$$

$$\frac{1}{\nu_{21}} = \left(\csc\theta_{12} - F_2\right) \left(\hat{a}_1 + \frac{1}{A_1 \partial \xi_1} \right) \cdot \frac{1}{A_2 \partial \xi_2}$$

and

$$- \left(\cot\theta_{12} + F_3\right) \left(\hat{a}_2 + \frac{1}{A_2 \partial \xi_2} \right) \cdot \frac{1}{A_2 \partial \xi_2} + O(\varepsilon^4)$$
LINEARIZED CURVATURES AND TORSIONS OF S_t
CONTINUED

where

$$F_1 = \frac{1}{2} \csc^3 \theta_{12} \left[4e_{12}^o - (3e_{11}^o + 2e_{22}^o) \cos \theta_{12} + e_{11}^o \cos 3\theta_{12} \right]$$

$$F_2 = \left(e_{11}^o + e_{22}^o - 2e_{12}^o \cos \theta_{12} \right) \csc^3 \theta_{12}$$

$$F_3 = \frac{1}{2} \csc^3 \theta_{12} \left[4e_{12}^o - (2e_{11}^o + 3e_{22}^o) \cos \theta_{12} + e_{22}^o \cos 3\theta_{12} \right]$$

Next, using $\hat{\phi} = \hat{n} + \phi$ and enforcing the fact that the components of the difference-vector field and the displacement derivatives have magnitudes of $O(\varepsilon^2)$, gives
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

\[\frac{1}{\kappa_{12}} = \left(\cot \theta_{12} + F_1 \right) \left[\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} + \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + A_1 \frac{\partial \hat{u}}{\partial \xi_1} \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right]
+ \left(F_2 - \csc \theta_{12} \right) \left[\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_2} + A_2 \frac{\partial \hat{u}}{\partial \xi_2} \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right] + O(\varepsilon^4) \]

\[\frac{1}{\kappa_{21}} = \left(\csc \theta_{12} - F_2 \right) \left[\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} + \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} + A_1 \frac{\partial \hat{u}}{\partial \xi_2} \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right]
- \left(\cot \theta_{12} + F_3 \right) \left[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} + A_2 \frac{\partial \hat{u}}{\partial \xi_2} \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right] + O(\varepsilon^4) \]

- Noting that products of F_1, F_2, and F_3 with the derivatives of \hat{u} or $\hat{\phi}$ are terms smaller than $O(\varepsilon^2)$ gives
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

$$\frac{1}{\nu_{12}} = \left(\cot \theta_{12} + F_1 \right) \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + \cot \theta_{12} \left[\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right]$$

$$+ \left(F_2 - \csc \theta_{12} \right) \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) - \csc \theta_{12} \left[\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right] + O(\varepsilon^4)$$

$$\frac{1}{\nu_{21}} = \left(\csc \theta_{12} - F_2 \right) \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + \csc \theta_{12} \left[\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right]$$

$$- \left(\cot \theta_{12} + F_3 \right) \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) - \cot \theta_{12} \left[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right] + O(\varepsilon^4)$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

Now, using

$$\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2$$

and

$$\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2$$

gives

$$\frac{1}{r_{12}} = \frac{F_1 + F_2 \cos \theta_{12}}{r_{11}} + \frac{1 - F_2 \sin \theta_{12}}{r_{12}} + \cot \theta_{12} \left[\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right]$$

$$- \csc \theta_{12} \left[\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right] + O(\varepsilon^4)$$

where

$$F_1 + F_2 \cos \theta_{12} = 2e_{12}^\circ \csc \theta_{12} - 2e_{11}^\circ \cot \theta_{12}$$

$$1 - F_2 \sin \theta_{12} = 1 + 2e_{12}^\circ \cot \theta_{12} \csc \theta_{12} - \left(e_{11}^\circ + e_{22}^\circ \right) \csc^2 \theta_{12}$$
Likewise,

\[
\begin{align*}
\frac{1}{\varepsilon_{21}} & = \frac{1 - F_2 \sin \theta_{12}}{r_{21}} - \frac{F_3 + F_2 \cos \theta_{12}}{r_{22}} + \csc \theta_{12} \left[\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \mu}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right] \\
& \quad - \cot \theta_{12} \left[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \mu}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right] + \mathcal{O}(\varepsilon^4)
\end{align*}
\]

where

\[
F_3 + F_2 \cos \theta_{12} = 2e_{12}^\circ \csc \theta_{12} - 2e_{22}^\circ \cot \theta_{12}
\]

Next, using

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2
\]

\[
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
\]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

$$\frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} = \left[e^\circ_{11} \csc \theta_{12} \left(e^\circ_{12} + \varphi \sin \theta_{12} \right) \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_1$$

$$+ \left[\left(e^\circ_{12} + \varphi \sin \theta_{12} \right) \csc \theta_{12} - e^\circ_{11} \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n} + O(\varepsilon^3)$$

$$\frac{1}{A_2} \frac{\partial \vec{u}}{\partial \xi_2} = \left[\left(e^\circ_{12} - \varphi \sin \theta_{12} \right) \csc \theta_{12} - e^\circ_{22} \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_1$$

$$+ \left[e^\circ_{22} \csc \theta_{12} - \left(e^\circ_{12} - \varphi \sin \theta_{12} \right) \cot \theta_{12} \right] \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \hat{n} + O(\varepsilon^3)$$

gives

$$\frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{e^\circ_{11}}{r_{11}} + \frac{e^\circ_{11} \cot \theta_{12} - e^\circ_{12} \csc \theta_{12}}{r_{12}} - \frac{\varphi}{r_{12}} + O(\varepsilon^3)$$

$$\frac{1}{A_1} \frac{\partial \vec{u}}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{e^\circ_{12}}{r_{22}} + \frac{e^\circ_{11} \csc \theta_{12} - e^\circ_{12} \cot \theta_{12}}{r_{21}} + \frac{\varphi}{r_{22}} \sin \theta_{12} - \frac{\varphi}{r_{21}} \cos \theta_{12} + O(\varepsilon^3)$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

Thus,

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \frac{e_{12}^o}{r_{11}} + \frac{e_{12}^o \cot \theta_{12} - e_{22}^o \csc \theta_{12}}{r_{12}} - \frac{\varphi}{r_{11}} \sin \theta_{12} - \frac{\varphi}{r_{12}} \cos \theta_{12} + O(\varepsilon^3)$$

and

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{e_{22}^o}{r_{22}} + \frac{e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12}}{r_{21}} - \frac{\varphi}{r_{21}} + O(\varepsilon^3)$$

$$\frac{1}{r_{12}} - \frac{1}{r_{12}} = \frac{e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12}}{r_{11}} - \frac{e_{11}^o}{r_{12}}$$

$$+ \cot \theta_{12} \left[\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} \right] - \csc \theta_{12} \left[\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} \right] + O(\varepsilon^3)$$
Recall that the changes in reference-surface curvature, $\kappa_{11}^{\circ}(\xi_1, \xi_2, \epsilon)$, and the change in reference-surface torsion, $\kappa_{12}^{\circ}(\xi_1, \xi_2, \epsilon)$, caused by deformation are defined by

\[
\begin{aligned}
\kappa_{11}^{\circ} &= \frac{1}{\nu_{11}} - \frac{1}{r_{11}} \\
\kappa_{22}^{\circ} &= \frac{1}{\nu_{22}} - \frac{1}{r_{22}} \\
\kappa_{12}^{\circ} &= \frac{1}{2} \left[\left(\frac{1}{\nu_{21}} - \frac{1}{r_{21}} \right) - \left(\frac{1}{\nu_{12}} - \frac{1}{r_{12}} \right) \right]
\end{aligned}
\]
These definitions give

\[K_{11}^o = \chi_{11}^o - \frac{e_{11}^o}{r_{11}} + \frac{e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{12}} + \mathcal{O}(\varepsilon^3) \]

\[K_{22}^o = \chi_{22}^o - \frac{e_{22}^o}{r_{22}} + \frac{e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12}}{r_{21}} + \mathcal{O}(\varepsilon^3) \]

and

\[2K_{12}^o = \left[2\chi_{12}^o - e_{12}^o \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \right] \csc \theta_{12} \]

\[- \cot \theta_{12} \left[\chi_{11}^o - \frac{e_{11}^o}{r_{11}} + \chi_{22}^o - \frac{e_{22}^o}{r_{22}} \right] + \frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}} + \mathcal{O}(\varepsilon^3) \]

where the terms involving the linear rotation parameters are defined by
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

$$\chi_{11}^o \equiv \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \bar{\phi}}{\partial \xi_1} \right) - \frac{\varphi}{r_{12}}$$

$$\chi_{22}^o \equiv \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \bar{\phi}}{\partial \xi_2} \right) - \frac{\varphi}{r_{21}}$$

$$2\chi_{12}^o \equiv \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \bar{\phi}}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \bar{\phi}}{\partial \xi_1} \right)$$

$$+ \varphi \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \sin \theta_{12} - \varphi \left(\frac{1}{r_{21}} + \frac{1}{r_{12}} \right) \cos \theta_{12}$$

● In these expressions, $\frac{1}{A_{(\beta)}} \frac{\partial \bar{\phi}}{\partial \xi_{\beta}} = \varphi^{(\alpha)} \bigg|_{(\beta)} \hat{a}_\alpha + \varphi^{(3)} \bigg|_{(\beta)} \hat{n}$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

where, for general Gaussian reference-surface coordinates,

\[\varphi_1^{(1)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \varphi_2 \frac{\partial \varphi_2}{\partial \xi_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} (\varphi_1 \cos \theta_{12} + \varphi_2) \]

\[\varphi_2^{(2)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} (\varphi_1 + \varphi_2 \cos \theta_{12}) + \frac{\varphi_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \]

\[\varphi_3^{(3)} \bigg|_{(1)} = -\varphi_1 \frac{\sin \theta_{12}}{r_{11}} + \varphi_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \]

\[\varphi_1^{(1)} \bigg|_{(2)} = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\varphi_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} (\varphi_1 \cos \theta_{12} + \varphi_2) \]

\[\varphi_2^{(2)} \bigg|_{(2)} = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} - \frac{\varphi_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} (\varphi_1 + \varphi_2 \cos \theta_{12}) \]

\[\varphi_3^{(3)} \bigg|_{(2)} = -\varphi_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{\varphi_2}{r_{22}} \]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- The expressions

\[
\chi_{11}^\circ = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) - \frac{\phi}{r_{12}}
\]

\[
\chi_{22}^\circ = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) - \frac{\phi}{r_{21}}
\]

\[
2\chi_{12}^\circ = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) + \left(\frac{\phi}{r_{22}} - \frac{\phi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\phi}{r_{21}} + \frac{\phi}{r_{12}} \right) \cos \theta_{12}
\]

become

\[
\chi_{11}^\circ = \left. \phi \right|^{(1)}_{(1)} + \left. \phi \right|^{(2)}_{(1)} \cos \theta_{12} - \frac{\phi}{r_{12}}
\]

\[
\chi_{22}^\circ = \left. \phi \right|^{(1)}_{(2)} \cos \theta_{12} + \left. \phi \right|^{(2)}_{(2)} - \frac{\phi}{r_{21}}
\]

\[
2\chi_{12}^\circ = \left. \phi \right|^{(1)}_{(2)} + \left. \phi \right|^{(2)}_{(1)} + \left(\left. \phi \right|^{(1)}_{(1)} + \left. \phi \right|^{(2)}_{(2)} \right) \cos \theta_{12}
\]

\[
+ \left(\frac{\phi}{r_{22}} - \frac{\phi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\phi}{r_{21}} + \frac{\phi}{r_{12}} \right) \cos \theta_{12}
\]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- In contrast, using the previously derived general expressions for the components of the derivatives of a vector field given by

\[\hat{a}_1 \cdot 1 \frac{\partial \vec{V}}{A_1 \partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(V_1 + V_2 \cos \theta_{12} \right) - \frac{V_2 \sin \theta_{12}}{\rho_{11}} + \frac{V_3}{r_{11}} \]

\[\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \vec{V}}{\partial \xi_1} = \left(1 \frac{\partial V_1}{A_1 \partial \xi_1} + \frac{V_3}{r_{11}} \right) \cos \theta_{12} + \left(1 \frac{\partial V_2}{A_1 \partial \xi_1} + \frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}} \right) \sin \theta_{12} \]

\[\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \vec{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial V_1}{\partial \xi_2} + \left(\frac{1}{A_2} \frac{\partial V_2}{\partial \xi_2} + \frac{V_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{V_3}{r_{21}} - \frac{V_2}{\rho_{22}} \right) \sin \theta_{12} \]

\[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \vec{V}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(V_2 + V_1 \cos \theta_{12} \right) + \frac{V_1 \sin \theta_{12}}{\rho_{22}} + \frac{V_3}{r_{22}} \]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

yields the simpler forms

\[
\chi_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}}
\]

\[
\chi_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}}
\]

\[
2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1}
\]

\[
+ \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} + \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12}
\]
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- These expressions for $\mathbf{\chi}^o_{ab}(\xi_1, \xi_2, t)$ are in complete agreement with the corresponding tensor equations given in:

- For orthogonal Gaussian reference-surface coordinates, these expressions reduce to

 $$\chi^o_{11} = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \frac{\varphi_2}{\rho_{11}} - \frac{\varphi}{r_{12}}$$

 $$\chi^o_{22} = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\varphi_1}{\rho_{22}} + \frac{\varphi}{r_{12}}$$

 $$2\chi^o_{12} = \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\varphi_1}{\rho_{11}} + \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} - \frac{\varphi_2}{\rho_{22}} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- The expressions

$$\chi_{11}^o = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) - \frac{\phi}{r_{12}} \quad \chi_{22}^o = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) - \frac{\phi}{r_{21}}$$

$$2\chi_{12}^o = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) + \left(\frac{\phi}{r_{22}} - \frac{\phi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\phi}{r_{21}} + \frac{\phi}{r_{12}} \right) \cos \theta_{12}$$

are expressed in terms of the rotation-vector field

$$\vec{\omega} = - \phi_2 \hat{a}_1 + \phi_1 \hat{a}_2 + \phi \hat{n} \quad \text{by using} \quad \vec{\phi} = \vec{\omega} \times \hat{n}$$

- In particular, differentiating the cross product yields

$$\frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \vec{\omega}}{\partial \xi_1} \times \hat{n} + \vec{\omega} \times \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}$$

and

$$\frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \vec{\omega}}{\partial \xi_2} \times \hat{n} + \vec{\omega} \times \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}$$
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

- Next, from \(\vec{\omega} = -\varphi_2 \hat{a}^1 + \varphi_1 \hat{a}^2 + \varphi \hat{a} \) it follows that

\[
\vec{\omega} \times \hat{a}_1 = - \left(\varphi + \varphi_2 \cos \theta_{12} \right) \hat{a} + \varphi \hat{a}^2
\]

and

\[
\vec{\omega} \times \hat{a}_2 = - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \hat{a} - \varphi \hat{a}^1
\]

- Thus, from

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2
\]

and

\[
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
\]

it follows that

\[
\vec{\omega} \times \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \varphi \frac{\csc \theta_{12}}{r_{12}} \hat{a}^1 + \left(\frac{\varphi}{r_{11}} + \frac{\varphi \cot \theta_{12}}{r_{12}} \right) \hat{a}^2
\]

\[
+ \left[\frac{\varphi_2}{r_{12}} \sin \theta_{12} - \frac{1}{r_{11}} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \right] \hat{n}
\]

and
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

Next, the derivatives of the rotation-vector field are expressed as

$$\vec{\omega} \times \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = - \left(\frac{\varphi}{r_{22}} - \frac{\varphi \cot \theta_{12}}{r_{21}} \right) \hat{a}^1 + \frac{\varphi \csc \theta_{12}}{r_{21}} \hat{a}^2$$

$$- \left[\frac{\varphi_1}{r_{21}} \sin \theta_{12} + \frac{1}{r_{22}} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \right] \hat{n}$$

$$\frac{1}{A_1} \frac{\partial \vec{\omega}}{\partial \xi_1} = \left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \vec{\omega}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \vec{\omega}}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \vec{\omega}}{\partial \xi_1} \right) \hat{n}$$

$$\frac{1}{A_2} \frac{\partial \vec{\omega}}{\partial \xi_2} = \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \vec{\omega}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_1 + \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \vec{\omega}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}_2 + \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \vec{\omega}}{\partial \xi_2} \right) \hat{n}$$
These expressions yield

\[
\frac{1}{A_1} \frac{\partial \omega}{\partial \xi_1} \times \hat{n} = \left(\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \omega}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}^1 - \left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \omega}{\partial \xi_1} \right) \csc \theta_{12} \hat{a}^2
\]

and

\[
\frac{1}{A_2} \frac{\partial \omega}{\partial \xi_2} \times \hat{n} = \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \omega}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}^1 - \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \omega}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}^2
\]

The derivatives of the linear difference-vector field given by

\[
\frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \omega}{\partial \xi_1} \times \hat{n} + \hat{\omega} \times \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \omega}{\partial \xi_2} \times \hat{n} + \hat{\omega} \times \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]

become
LINEARIZED CURVATURES AND TORSIONS OF S_t

CONTINUED

$$\frac{1}{A_1} \frac{\partial \hat{\varphi}}{\partial \xi_1} = \left[\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{\omega}}{\partial \xi_1} + \frac{\varphi}{r_{12}} \right] \csc \theta_{12} \hat{a}^1$$

and

$$+ \left[\left(\frac{\varphi}{r_{11}} + \frac{\varphi \cot \theta_{12}}{r_{12}} - \left(\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \hat{\omega}}{\partial \xi_1} \right) \csc \theta_{12} \right) \left(\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{\omega}}{\partial \xi_2} \right) + \frac{\varphi_2}{r_{12}} \sin \theta_{12} - \frac{1}{r_{11}} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n} \right]$$

$$= \left[\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{\omega}}{\partial \xi_2} \csc \theta_{12} \hat{a}^1 - \left(\frac{\varphi}{r_{22}} - \frac{\varphi \cot \theta_{12}}{r_{21}} \right) \hat{a}^1 \right]$$

$$+ \left[\frac{\varphi}{r_{21}} - \left(\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{\omega}}{\partial \xi_2} \right) \csc \theta_{12} \hat{a}^2 \right]$$

$$- \left[\frac{\varphi_1}{r_{21}} \sin \theta_{12} + \frac{1}{r_{22}} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \hat{n} \right]$$
LINEARIZED CURVATURES AND TORSIONS OF \mathcal{S}_t

CONCLUDED

- Using these expressions for the derivatives of the linear difference-vector field, the following expressions become

\[
\begin{align*}
\chi_{11}^o &= \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) - \frac{\varphi}{r_{12}} \\
\chi_{22}^o &= \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) - \frac{\varphi}{r_{21}} \\
2\chi_{12}^o &= \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) + \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12}
\end{align*}
\]
“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES

● In *elasticity theory*, the Green-Lagrange strains are often expressed exactly by equations that are quadratic in the strains and rotations of linear theory, for deformations associated with “small” strains.

● Nonlinear “small” strains in terms of linear deformation measures are obtained by using the following exact expressions:

\[
\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = e_{11}^o \sin \theta_{12} - \beta_1 \cos \theta_{12}
\]

\[
\hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \beta_1
\]

\[
\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)
\]

\[
\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \beta_2
\]

\[
\hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = e_{22}^o \sin \theta_{12} - \beta_2 \cos \theta_{12}
\]

\[
\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)
\]
“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES - CONTINUED

where (see also pp. 75 and 285-288)

\[
\begin{align*}
e_{11}^o &= \hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \\
e_{22}^o &= \hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \\
2e_{12}^o &= \hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} + \hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1}
\end{align*}
\]

\[
\begin{align*}
\varphi_1 &= \csc \theta_{12} \left(\nabla \times \hat{u} \right) \cdot \hat{a}_2 \\
\varphi_2 &= -\csc \theta_{12} \left(\nabla \times \hat{u} \right) \cdot \hat{a}_1 \\
\varphi &= \frac{1}{2} \left(\nabla \times \hat{u} \right) \cdot \hat{n}
\end{align*}
\]

\[
\begin{align*}
\beta_1 &= \varphi + e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12} \\
\beta_2 &= e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12}
\end{align*}
\]

Likewise, the exact expressions for the derivatives of the displacement vector in terms of these quantities are

\[
\begin{align*}
\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} &= \left(e_{11}^o - \beta_1 \cot \theta_{12} \right) \hat{a}_1 + \beta_1 \csc \theta_{12} \hat{a}_2 - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \hat{n}
\end{align*}
\]

\[
\begin{align*}
\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} &= \beta_2 \csc \theta_{12} \hat{a}_1 + \left(e_{22}^o - \beta_2 \cot \theta_{12} \right) \hat{a}_2 - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \hat{n}
\end{align*}
\]
“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES - CONTINUED

By substituting these expressions into

\[\varepsilon_{11}^o = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} \right) + \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} \right) \]

\[\varepsilon_{22}^o = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \right) + \frac{1}{2} \left(\frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \right) \]

\[2\varepsilon_{12}^o = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} \right) + \left(\frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \right) \]

the “small” nonlinear Green-Lagrange strains are expressed exactly, in terms of the linear strain and rotation measures as follows

\[\varepsilon_{11}^o = \varepsilon_{11} + \frac{1}{2} \left[(\varepsilon_{11}^o)^2 + \beta_1^2 + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 \right] + O(\varepsilon^4) \]

\[\varepsilon_{22}^o = \varepsilon_{22} + \frac{1}{2} \left[(\varepsilon_{22}^o)^2 + \beta_2^2 + \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)^2 \right] + O(\varepsilon^4) \]
“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES - CONTINUED

\[2\varepsilon_{12}^o = (e_{11}^o + e_{22}^o)\cos\theta_{12} + (\beta_1 + \beta_2)\sin\theta_{12} + (e_{11}^o\beta_2 + e_{22}^o\beta_1)\sin\theta_{12} + (e_{11}^o - \beta_1\beta_2)\cos\theta_{12} + (\varphi_1 + \varphi_2\cos\theta_{12})\left(\varphi_1\cos\theta_{12} + \varphi_2\right) + \mathcal{O}(\varepsilon^4) \]

- Using the expressions for \(\beta_1\) and \(\beta_2\) gives

\[\varepsilon_{11}^o = e_{11}^o + \frac{1}{2}\left[(e_{11}^o\csc\theta_{12})^2 + (e_{12}^o\csc\theta_{12} + \varphi)^2 \right] - 2e_{11}^o(e_{12}^o\csc\theta_{12} + \varphi)\cot\theta_{12} + (\varphi_1 + \varphi_2\cos\theta_{12})^2 + \mathcal{O}(\varepsilon^4) \]

\[\varepsilon_{22}^o = e_{22}^o + \frac{1}{2}\left[(e_{22}^o\csc\theta_{12})^2 + (e_{12}^o\csc\theta_{12} - \varphi)^2 \right] - 2e_{22}^o(e_{12}^o\csc\theta_{12} - \varphi)\cot\theta_{12} + (\varphi_1\cos\theta_{12} + \varphi_2)^2 + \mathcal{O}(\varepsilon^4) \]
“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES - CONTINUED

\[
2\varepsilon^o_{12} = 2e^o_{12} + \left[e^o_{11}(e^o_{12} - \varphi \sin\theta_{12}) + e^o_{22}(e^o_{12} + \varphi \sin\theta_{12}) \right] \csc^2 \theta_{12}

- \left[e^o_{11}e^o_{22} + (e^o_{12} + \varphi \sin\theta_{12})(e^o_{12} - \varphi \sin\theta_{12}) \right] \csc \theta_{12} \cot \theta_{12}

+ \left(\varphi_1 + \varphi_2 \cos\theta_{12} \right) \left(\varphi_1 \cos\theta_{12} + \varphi_2 \right) + O(\varepsilon^4)
\]

- These strain expressions are in complete agreement with the corresponding tensor equations given in:

“SMALL GREEN-LAGRANGE STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES - CONCLUDED

- For orthogonal reference-surface Gaussian coordinates, these expressions reduce to

\[
\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left[(e_{11}^o)^2 + (e_{12}^o + \varphi)^2 + \varphi_1^2 \right] + \mathcal{O}(\varepsilon^4) \\
\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left[(e_{12}^o - \varphi)^2 + (e_{22}^o)^2 + \varphi_2^2 \right] + \mathcal{O}(\varepsilon^4) \\
2\varepsilon_{12}^o = 2e_{12}^o + e_{11}^o(e_{12}^o - \varphi) + e_{22}^o(e_{12}^o + \varphi) + \varphi_1\varphi_2 + \mathcal{O}(\varepsilon^4)
\]
GEOMETRY OF S FOR "SMALL" STRAINS IN TERMS OF LINEAR DEFORMATION MEASURES
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S

To obtain the desired expressions for the metric coefficients and base vector fields of the deformed reference surface, it is convenient to write the exact expressions for the derivatives of the displacement vector field in terms of the linear deformation measures as

$$\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \Delta_{11} \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n}$$

and

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \Delta_{21} \hat{a}_1 + \Delta_{22} \hat{a}_2 + \Delta_{23} \hat{n}$$

where

$$\Delta_{11} = e_{11}^\circ \csc^2 \theta_{12} - (e_{12}^\circ \csc \theta_{12} + \varphi) \cot \theta_{12}$$

$$\Delta_{12} = (e_{12}^\circ \csc \theta_{12} + \varphi - e_{11}^\circ \cot \theta_{12}) \csc \theta_{12}$$

$$\Delta_{13} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)$$

$$\Delta_{21} = (e_{12}^\circ \csc \theta_{12} - \varphi - e_{22}^\circ \cot \theta_{12}) \csc \theta_{12}$$

$$\Delta_{22} = e_{22}^\circ \csc^2 \theta_{12} - (e_{12}^\circ \csc \theta_{12} - \varphi) \cot \theta_{12}$$

$$\Delta_{23} = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

By substituting these expressions into the "small" nonlinear Green-Lagrange strains are expressed exactly, in terms of linear deformation measures as follows

$$\varepsilon_{11}^o = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) + \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right)$$

$$\varepsilon_{22}^o = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) + \frac{1}{2} \left(\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right)$$

$$2\varepsilon_{12}^o = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \right) + \left(\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} \right)$$

the "small" nonlinear Green-Lagrange strains are expressed exactly, in terms of linear deformation measures as follows

$$\varepsilon_{11} = \Delta_{11} + \Delta_{12} \cos \theta_{12} + \frac{1}{2} \left(\Delta_{11}^2 + 2\Delta_{11}\Delta_{12}\cos \theta_{12} + \Delta_{12}^2 + \Delta_{13}^2 \right) + O(\varepsilon^4)$$

$$\varepsilon_{22} = \Delta_{21} \cos \theta_{12} + \Delta_{22} + \frac{1}{2} \left(\Delta_{21}^2 + 2\Delta_{21}\Delta_{22}\cos \theta_{12} + \Delta_{22}^2 + \Delta_{23}^2 \right) + O(\varepsilon^4)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_s - CONTINUED

$$2\varepsilon^o_{12} = \Delta_{12} + \Delta_{21} + \left(\Delta_{11} + \Delta_{22} \right) \cos\theta_{12}$$
$$+ \Delta_{11}\Delta_{21} + \Delta_{12}\Delta_{22} + \Delta_{13}\Delta_{23} + \left(\Delta_{11}\Delta_{22} + \Delta_{12}\Delta_{21} \right) \cos\theta_{12} + \mathcal{O}(\varepsilon^4)$$

- These strain expressions are equivalent to the previous ones given:

$$\varepsilon^o_{11} = e_{11}^o + \frac{1}{2}\left[\left(e_{11}^o \csc\theta_{12} \right)^2 + \left(e_{12}^o \csc\theta_{12} + \varphi \right)^2 \right]$$

$$- 2e_{11}^o \left(e_{12}^o \csc\theta_{12} + \varphi \right) \cot\theta_{12} + \left(\varphi_1 + \varphi_2 \cos\theta_{12} \right)^2 + \mathcal{O}(\varepsilon^4)$$

$$\varepsilon^o_{22} = e_{22}^o + \frac{1}{2}\left[\left(e_{22}^o \csc\theta_{12} \right)^2 + \left(e_{12}^o \csc\theta_{12} - \varphi \right)^2 \right]$$

$$- 2e_{22}^o \left(e_{12}^o \csc\theta_{12} - \varphi \right) \cot\theta_{12} + \left(\varphi_1 \cos\theta_{12} + \varphi_2 \right)^2 + \mathcal{O}(\varepsilon^4)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_ϵ - CONTINUED

\[
2\varepsilon_{12}^o = 2e_{12}^o + \left[e_{11}^o (e_{12}^o - \varphi \sin \theta_{12}) + e_{22}^o (e_{12}^o + \varphi \sin \theta_{12}) \right] \csc^2 \theta_{12}
\]

\[
- \left[e_{11}e_{22} + (e_{12}^o + \varphi \sin \theta_{12})(e_{12}^o - \varphi \sin \theta_{12}) \right] \csc \theta_{12} \cot \theta_{12}
\]

\[
+ (\varphi_1 + \varphi_2 \cos \theta_{12})(\varphi_1 \cos \theta_{12} + \varphi_2) + O(\varepsilon^4)
\]

● Using these expressions for the “small” Green-Lagange strains, the metric coefficients of the deformed reference surface, given by,

\[
\mathcal{A}_1 = A_1 \left[1 + \varepsilon_{11}^o + O(\varepsilon^4) \right] \quad \text{and} \quad \mathcal{A}_2 = A_2 \left[1 + \varepsilon_{22}^o + O(\varepsilon^4) \right]
\]

become

\[
\mathcal{A}_1 = A_1 \left\{ 1 + \Delta_{11} + \Delta_{12} \cos \theta_{12} + \frac{1}{2} \left(\Delta_{11}^2 + 2\Delta_{11}\Delta_{12} \cos \theta_{12} + \Delta_{12}^2 + \Delta_{13}^2 \right) \right\} + O(\varepsilon^4)
\]

\[
\mathcal{A}_2 = A_2 \left\{ 1 + \Delta_{21} \cos \theta_{12} + \Delta_{22} + \frac{1}{2} \left(\Delta_{21}^2 + 2\Delta_{21}\Delta_{22} \cos \theta_{12} + \Delta_{22}^2 + \Delta_{23}^2 \right) \right\} + O(\varepsilon^4)
\]
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

Likewise, $\cos \theta_{12} = 2\varepsilon_{12} + \cos \theta_{12} \left(1 - \varepsilon_{11} - \varepsilon_{22}\right) + \mathcal{O}(\varepsilon^4)$ becomes

$$\cos \theta_{12} = \Delta_{12} + \Delta_{21} + \left(\Delta_{11} + \Delta_{22}\right) \cos \theta_{12}$$

$$+ \Delta_{11}\Delta_{21} + \Delta_{12}\Delta_{22} + \Delta_{13}\Delta_{23} + \left(\Delta_{11}\Delta_{22} + \Delta_{12}\Delta_{21}\right) \cos \theta_{12} + \mathcal{O}(\varepsilon^4)$$

Then, by using the exact representations

$$\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = \Delta_{11} \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n}$$

and

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = \Delta_{21} \hat{a}_1 + \Delta_{22} \hat{a}_2 + \Delta_{23} \hat{n}$$

it follows that

$$\mathbf{\hat{a}}_1(\xi_1, \xi_2, \tau) = A_1 \left(\hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1}\right)$$

becomes

$$\mathbf{\hat{a}}_1(\xi_1, \xi_2, \tau) = A_1 \left[\left(1 + \Delta_{11}\right) \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n}\right]$$

and

and
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

\[\hat{a}_2(\xi_1, \xi_2, t) = A_2 \left(\hat{a}_2 + \frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} \right) \]

becomes

\[\hat{a}_2(\xi_1, \xi_2, t) = A_2 \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22}) \hat{a}_2 + \Delta_{23} \hat{n} \right] \]

Next, using $\hat{a}_\alpha = \frac{\hat{a}_\alpha}{\mathcal{A}_\alpha}$ and

\[
\frac{1}{\mathcal{A}_\alpha} = \frac{1}{A_\alpha} \left[1 - \varepsilon_\alpha^o + \mathcal{O}(\epsilon^4) \right]
\]

yields

\[
\hat{a}_1 = \left[(1 + \Delta_{11}) \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n} \right] \left(1 - \varepsilon_{11}^o + \mathcal{O}(\epsilon^4) \right)
\]

and

\[
\hat{a}_2 = \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22}) \hat{a}_2 + \Delta_{23} \hat{n} \right] \left(1 - \varepsilon_{22}^o + \mathcal{O}(\epsilon^4) \right)
\]
Recall, that the unit-magnitude vector field perpendicular to the tangent plane at $P = \mathcal{D}(P) \in \mathcal{S}_{\text{t}}$ of the deformed reference surface is given by

$$
\hat{a}(\xi_1, \xi_2, \tau) = \frac{\hat{a}_1 \times \hat{a}_2}{|\hat{a}_1 \times \hat{a}_2|} = \frac{\hat{a}_1 \times \hat{a}_2}{\sqrt{a}}
$$

Using

$$
\hat{a}_1(\xi_1, \xi_2, \tau) = A_1 \left[(1 + \Delta_{11})\hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n} \right]
$$

and

$$
\hat{a}_2(\xi_1, \xi_2, \tau) = A_2 \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22})\hat{a}_2 + \Delta_{23} \hat{n} \right]
$$

gives

$$
\frac{\hat{a}_1 \times \hat{a}_2}{A_1 A_2} = \left[\Delta_{12} \Delta_{23} - \Delta_{13} (1 + \Delta_{22}) \right] \hat{a}^1 + \left[\Delta_{13} \Delta_{21} - (1 + \Delta_{11}) \Delta_{23} \right] \hat{a}^2
$$

$$
+ \left[(1 + \Delta_{11})(1 + \Delta_{22}) - \Delta_{12} \Delta_{21} \right] \sin \theta_{12} \hat{n}
$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND
BASE-VECTOR FIELDS OF S_i - CONTINUED

• Because $\sqrt{a} = \|\hat{a}_1 \times \hat{a}_2\|$, $\sqrt{a} = \|\hat{a}_1 \| \|\hat{a}_2\|\sin\theta_{12} = A_1A_2\sin\theta_{12}$

• Using $\sin\theta_{12} = \sin\theta_{12} - \cot\theta_{12}\left[2\varepsilon_{12}^o - \cos\theta_{12}\left(\varepsilon_{11}^o + \varepsilon_{22}^o\right)\right] + O(\varepsilon^4)$,

\[A_1 = A_1\left[1 + \varepsilon_{11}^o + O(\varepsilon^4)\right], \text{ and } A_2 = A_2\left[1 + \varepsilon_{22}^o + O(\varepsilon^4)\right] \text{ gives}

\[
\sqrt{a} = A_1A_2\sin\theta_{12}\left[1 - 2\varepsilon_{12}^o\cot\theta_{12}\csc\theta_{12} + \left(\varepsilon_{11}^o + \varepsilon_{22}^o\right)\csc^2\theta_{12}\right] + O(\varepsilon^4)
\]

for “small strains”

• In addition,

\[
\frac{\sqrt{a}}{\sqrt{a}} = 1 + 2\varepsilon_{12}^o\cot\theta_{12}\csc\theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o\right)\csc^2\theta_{12} + O(\varepsilon^4)
\]
Thus, \(\hat{\mathbf{a}}(\xi_1, \xi_2, \mathbf{t}) \) is now expressible as \(\hat{\mathbf{a}} = \frac{\sqrt{a}}{\sqrt{a}} \hat{\mathbf{m}} \), where

\[
\hat{\mathbf{m}} = m_1 \hat{\mathbf{a}}_1 + m_2 \hat{\mathbf{a}}_2 + m_3 \hat{\mathbf{n}}
\]

and

\[
m_1 = \left[\Delta_{12} \Delta_{23} - \Delta_{13} \left(1 + \Delta_{22} \right) \right] \csc^2 \theta_{12} - \left[\Delta_{13} \Delta_{21} - \left(1 + \Delta_{11} \right) \Delta_{23} \right] \csc \theta_{12} \cot \theta_{12}
\]

\[
m_2 = \left[\Delta_{13} \Delta_{21} - \left(1 + \Delta_{11} \right) \Delta_{23} \right] \csc^2 \theta_{12} - \left[\Delta_{12} \Delta_{23} - \Delta_{13} \left(1 + \Delta_{22} \right) \right] \csc \theta_{12} \cot \theta_{12}
\]

\[
m_3 = \left(1 + \Delta_{11} \right) \left(1 + \Delta_{22} \right) - \Delta_{12} \Delta_{21}
\]

and where \(\hat{\mathbf{a}}^1 = \hat{\mathbf{a}}_1 \csc \theta_{12} - \hat{\mathbf{a}}_2 \cot \theta_{12} \) and \(\hat{\mathbf{a}}^2 = \hat{\mathbf{a}}_2 \csc \theta_{12} - \hat{\mathbf{a}}_1 \cot \theta_{12} \) have been used.
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

- Substituting the expressions for Δ_{ij} in terms of the linear deformation measures into \mathbb{m} and simplifying gives

$$\mathbb{m}_1 = \varphi_1 - \left(e^o_{12} \csc \theta_{12} + \varphi \right) \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right)$$

$$+ e^o_{22} \csc \theta_{12} \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right)$$

$$\mathbb{m}_2 = \varphi_2 - \left(e^o_{12} \csc \theta_{12} - \varphi \right) \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right)$$

$$+ e^o_{11} \csc \theta_{12} \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right)$$

$$\mathbb{m}_3 = 1 + \varphi^2 + \left(e^o_{11} + e^o_{22} + e^o_{11} e^o_{22} - (e^o_{12})^2 \right) \csc^2 \theta_{12}$$

$$- 2e^o_{12} \cot \theta_{12} \csc \theta_{12}$$

- Note that $\hat{a}_1 \cdot \hat{a} = 0$ and $\hat{a}_2 \cdot \hat{a} = 0$ imply $\hat{a}_1 \cdot \hat{m} = 0$ and $\hat{a}_2 \cdot \hat{m} = 0$
The reciprocal base-vector fields for the deformed surface are obtained by using \(\hat{\mathbf{a}}^1 = \mathbf{a}_2 \times \hat{\mathbf{e}} \) and \(\hat{\mathbf{a}}^2 = \mathbf{a} \times \hat{\mathbf{a}}_1 \) with \(\hat{\mathbf{a}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{m}}} \) to get

\[
\hat{\mathbf{a}}^1 = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{m}}} (\mathbf{a}_2 \times \hat{\mathbf{e}}) \quad \text{and} \quad \hat{\mathbf{a}}^2 = \frac{\sqrt{\mathbf{a}}}{\sqrt{\mathbf{m}}} (\hat{\mathbf{e}} \times \mathbf{a}_1)
\]

To obtain the desired expressions for the reciprocal base-vector fields, \(\hat{\mathbf{a}}_1 \) and \(\hat{\mathbf{a}}_2 \) are expressed in the form

\[
\hat{\mathbf{a}}_1 = \frac{\mathbf{A}_1}{\mathcal{A}_1} \left[(1 + \Delta_{11})\mathbf{a}_1 + \Delta_{12} \mathbf{a}_2 + \Delta_{13} \hat{\mathbf{e}} \right] \quad \text{and}
\]

\[
\hat{\mathbf{a}}_2 = \frac{\mathbf{A}_2}{\mathcal{A}_2} \left[\Delta_{21} \mathbf{a}_1 + (1 + \Delta_{22})\mathbf{a}_2 + \Delta_{23} \hat{\mathbf{e}} \right]
\]
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_ε - CONTINUED

Then, it follows that

$$\hat{a}^1 = \sqrt{a} \frac{A_2}{\sqrt{a} A_2} \left[\Delta_{21} (\hat{a}_1 \times \hat{m}) + (1 + \Delta_{22}) (\hat{a}_2 \times \hat{m}) + \Delta_{23} (\hat{n} \times \hat{m}) \right]$$

and

$$\hat{a}^2 = \sqrt{a} \frac{A_1}{\sqrt{a} A_1} \left[(1 + \Delta_{11}) (\hat{m} \times \hat{a}_1) + \Delta_{12} (\hat{m} \times \hat{a}_2) + \Delta_{13} (\hat{m} \times \hat{n}) \right]$$

where

$$\sqrt{a} \frac{A_1}{\sqrt{a} A_1} = 1 - \varepsilon_{11}^0 + 2\varepsilon_{12}^0 \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2 \theta_{12} + O(\varepsilon^4)$$

and

$$\sqrt{a} \frac{A_2}{\sqrt{a} A_2} = 1 - \varepsilon_{22}^0 + 2\varepsilon_{12}^0 \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2 \theta_{12} + O(\varepsilon^4)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

Then, using $\hat{a}_1 \times \vec{m} = -m_3 \hat{a}_1 + m_2 \sin \theta_{12} \hat{n}$, $\hat{a}_2 \times \vec{m} = m_3 \hat{a}_2 - m_1 \sin \theta_{12} \hat{n}$, and $\hat{n} \times \vec{m} = -m_2 \hat{a}_1 + m_1 \hat{a}_2$ gives the following desired equations

\[
\hat{a}_1 = \frac{\sqrt{a}}{\sqrt{\hat{a} \cdot \hat{a}}} A_2 \left[\left(m_3 (1 + \Delta_{22}) - m_2 \Delta_{23} \right) \hat{a}_1 + \left(m_1 \Delta_{23} - m_3 \Delta_{21} \right) \hat{a}_2
+ \left(m_2 \Delta_{21} - m_1 (1 + \Delta_{22}) \right) \sin \theta_{12} \hat{n} \right]
\]

\[
\hat{a}_2 = \frac{\sqrt{a}}{\sqrt{\hat{a} \cdot \hat{a}}} A_1 \left[\left(m_2 \Delta_{13} - m_3 \Delta_{12} \right) \hat{a}_1 + \left(m_3 (1 + \Delta_{11}) - m_1 \Delta_{13} \right) \hat{a}_2
+ \left(m_1 \Delta_{12} - m_2 (1 + \Delta_{11}) \right) \sin \theta_{12} \hat{n} \right]
\]
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

- For orthogonal Gaussian reference-surface coordinates,

$$\Delta_{11} = e_{11}^o \quad \Delta_{12} = e_{12}^o + \varphi \quad \Delta_{13} = - \varphi_1$$

$$\Delta_{21} = e_{12}^o - \varphi \quad \Delta_{22} = e_{22}^o \quad \Delta_{23} = - \varphi_2$$

$$\frac{1}{A_1} \frac{\partial \hat{u}}{\partial \xi_1} = e_{11}^o \hat{a}_1 + (e_{12}^o + \varphi)\hat{a}_2 - \varphi_1 \hat{n}$$

$$\frac{1}{A_2} \frac{\partial \hat{u}}{\partial \xi_2} = (e_{12}^o - \varphi)\hat{a}_1 + e_{22}^o \hat{a}_2 - \varphi_2 \hat{n}$$

$$\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left((e_{11}^o)^2 + (e_{12}^o + \varphi)^2 + (\varphi_1)^2 \right) + O(\varepsilon^4)$$

$$\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left((e_{12}^o - \varphi)^2 + (e_{22}^o)^2 + (\varphi_2)^2 \right) + O(\varepsilon^4)$$

$$2\varepsilon_{12}^o = 2e_{12}^o + e_{11}^o (e_{12}^o - \varphi) + e_{22}^o (e_{12}^o + \varphi) + \varphi_1 \varphi_2 + O(\varepsilon^4)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF S_t - CONTINUED

- Likewise, for orthogonal Gaussian reference-surface coordinates,

$$\hat{a}_1 = \frac{A_1}{A_1} \left[\left(1 + e_{11}^o \right) \hat{a}_1 + \left(e_{12}^o + \varphi \right) \hat{a}_2 - \varphi_1 \hat{n} \right]$$

$$\hat{a}_2 = \frac{A_2}{A_2} \left[\left(e_{12}^o - \varphi \right) \hat{a}_1 + \left(1 + e_{22}^o \right) \hat{a}_2 - \varphi_2 \hat{n} \right]$$

$$\hat{n} = \frac{\sqrt{a}}{\sqrt{a}} \left(m_1 \hat{a}_1 + m_2 \hat{a}_2 + m_3 \hat{n} \right)$$

$$\sqrt{a} = 1 - \varepsilon_{11}^o - \varepsilon_{22}^o + O(\varepsilon^4)$$

$$m_1 = \varphi_1 \left(1 + e_{22}^o \right) - \varphi_2 \left(e_{12}^o + \varphi \right)$$

$$m_2 = \varphi_2 \left(1 + e_{11}^o \right) - \varphi_1 \left(e_{12}^o - \varphi \right)$$

$$m_3 = \left(1 + e_{11}^o \right) \left(1 + e_{22}^o \right) - \left(e_{12}^o + \varphi \right) \left(e_{12}^o - \varphi \right)$$
“SMALL-STRAIN” METRIC COEFFICIENTS AND BASE-VECTOR FIELDS OF \mathbf{S}_i - CONCLUDED

Moreover, for **orthogonal** Gaussian reference-surface coordinates,

$$
\hat{a}^1 = \frac{\sqrt{a}}{\sqrt{a}} \frac{A_2}{A_2} \left[\left(m_3 (1 + e_{22}^o) + m_2 \varphi_2 \right) \hat{a}_1 - \left(m_1 \varphi_2 + m_3 (e_{12}^o - \varphi) \right) \hat{a}_2 \\
+ \left(m_2 (e_{12}^o - \varphi) - m_1 (1 + e_{22}^o) \right) \hat{n} \right]
$$

$$
\hat{a}^2 = \frac{\sqrt{a}}{\sqrt{a}} \frac{A_1}{A_1} \left[- \left(m_2 \varphi_1 + m_3 (e_{12}^o + \varphi) \right) \hat{a}_1 + \left(m_3 (1 + e_{11}^o) + m_1 \varphi_1 \right) \hat{a}_2 \\
+ \left(m_1 (e_{12}^o + \varphi) - m_2 (1 + e_{11}^o) \right) \hat{n} \right]
$$

$$
\frac{\sqrt{a}}{\sqrt{a}} \frac{A_1}{A_1} = 1 - 2\varepsilon_{11}^o - \varepsilon_{22}^o + O(\varepsilon^4)
$$

$$
\frac{\sqrt{a}}{\sqrt{a}} \frac{A_2}{A_2} = 1 - 2\varepsilon_{22}^o - \varepsilon_{11}^o + O(\varepsilon^4)
$$
"SMALL-STRAIN" CURVATURES AND TORSIONS OF S_t

- Previously, it was shown herein that the curvatures of the deformed reference surface are given by

$$\frac{1}{r_{11}} = \frac{\sqrt{a}}{a} \left(\hat{a}_1 \cdot \frac{1}{A_1} \partial_{\xi_1} \right)$$

and

$$\frac{1}{r_{22}} = \frac{\sqrt{a}}{a} \left(\hat{a}_2 \cdot \frac{1}{A_2} \partial_{\xi_2} \right)$$

and the torsions of the deformed reference surface are given by

$$\frac{1}{r_{12}} = -\frac{\sqrt{a}}{a} \left(\hat{a}_2^2 \cdot \frac{1}{A_1} \partial_{\xi_1} \right)$$

and

$$\frac{1}{r_{21}} = \frac{\sqrt{a}}{a} \left(\hat{a}_1 \cdot \frac{1}{A_2} \partial_{\xi_2} \right)$$
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

Using

\[
\hat{a}_1 = \frac{A_1}{\mathcal{A}_1} \left[(1 + \Delta_{11}) \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n} \right]
\]

and

\[
\hat{a}_2 = \frac{A_2}{\mathcal{A}_2} \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22}) \hat{a}_2 + \Delta_{23} \hat{n} \right]
\]

gives

\[
\frac{1}{r_{11}} = \sqrt{a} \left(\frac{A_1}{\mathcal{A}_1} \right)^2 \frac{1}{\bar{r}_{11}}
\]

where

\[
\frac{1}{\bar{r}_{11}} = \left[(1 + \Delta_{11}) \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n} \right] \cdot \frac{1}{A_1} \frac{\partial \hat{m}}{\partial \xi_1}
\]

and

\[
\frac{1}{r_{22}} = \sqrt{a} \left(\frac{A_2}{\mathcal{A}_2} \right)^2 \frac{1}{\bar{r}_{22}}
\]

where

\[
\frac{1}{\bar{r}_{22}} = \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22}) \hat{a}_2 + \Delta_{23} \hat{n} \right] \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2}
\]
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

Similarly, using

$$\hat{a}^2 = \frac{\sqrt{a}}{A_1} \left[\left(m_2 \Delta_{13} - m_3 \Delta_{12} \right) \hat{a}^1 + \left(m_3 (1 + \Delta_{11}) - m_1 \Delta_{13} \right) \hat{a}^2 \
ight. $$

$$\left. + \left(m_1 \Delta_{12} \sin\theta_{12} - m_2 (1 + \Delta_{11}) \sin\theta_{12} \right) \hat{n} \right]$$
gives

$$\frac{1}{\bar{v}_{12}} = \left(\frac{\sqrt{a}}{\bar{v}_{12}} \right)^2 \left(\frac{A_1}{\bar{A}_1} \right)^2 \frac{1}{\bar{v}_{12}}$$

where

$$\frac{1}{\bar{v}_{12}} = \left\{ \left[m_2 \Delta_{13} - m_3 \Delta_{12} \right] \hat{a}^1 + \left[m_3 (1 + \Delta_{11}) - m_1 \Delta_{13} \right] \hat{a}^2 \right.$$

$$\left. + \left[m_1 \Delta_{12} - m_2 (1 + \Delta_{11}) \right] \sin\theta_{12} \hat{n} \right\} \cdot \frac{1}{A_1} \frac{\partial \vec{m}}{\partial \xi_1} \left(\frac{A_1}{\bar{A}_1} \right)^2 \frac{1}{\bar{v}_{12}}$$
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

And, using

$$\hat{a}^1 = \sqrt{\frac{a}{A}} \frac{A_2}{A_2} \left[\left(m_3 (1 + \Delta_{22}) - m_2 \Delta_{23} \right) \hat{a}^1 + \left(m_1 \Delta_{23} - m_3 \Delta_{21} \right) \hat{a}^2 \right. + \left. \left(m_2 \Delta_{21} - m_1 (1 + \Delta_{22}) \right) \sin \theta_{12} \hat{n} \right]$$

gives

$$\frac{1}{r_{21}} = \left(\frac{\sqrt{a}}{\sqrt{a}} \right)^2 \left(\frac{A_2}{A_2} \right)^2 \frac{1}{r_{21}}$$

where

$$\frac{1}{\tilde{r}_{21}} = \left\{ \left[m_3 (1 + \Delta_{22}) - m_2 \Delta_{23} \right] \hat{a}^1 + \left[m_1 \Delta_{23} - m_3 \Delta_{21} \right] \hat{a}^2 \right. + \left. \left[m_2 \Delta_{21} - m_1 (1 + \Delta_{22}) \right] \sin \theta_{12} \hat{n} \right\} \cdot \frac{1}{A_2} \frac{\partial \vec{m}}{\partial \xi_2}$$

367
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t
CONTINUED

- In these expressions,

$$\frac{\sqrt{a}}{\sqrt{a}} \left(\frac{A_1}{A_1} \right)^2 = 1 - 3\varepsilon_{11} - \varepsilon_{22} + O(\varepsilon^4)$$

$$\frac{\sqrt{a}}{\sqrt{a}} \left(\frac{A_2}{A_2} \right)^2 = 1 - 3\varepsilon_{22} - \varepsilon_{11} + O(\varepsilon^4)$$

$$\left(\frac{\sqrt{a}}{\sqrt{a}} \right)^2 \left(\frac{A_1}{A_1} \right)^2 = 1 - 4\varepsilon_{11} - 2\varepsilon_{22} + O(\varepsilon^4)$$

$$\left(\frac{\sqrt{a}}{\sqrt{a}} \right)^2 \left(\frac{A_2}{A_2} \right)^2 = 1 - 4\varepsilon_{22} - 2\varepsilon_{11} + O(\varepsilon^4)$$

- Recalling that the expressions for the derivatives of \vec{m} are given by

$$\frac{1}{A_1} \frac{\partial \vec{m}}{\partial \xi_1} = m^{(1)} \left\{ \hat{a}_1 + m^{(2)} \right\} \hat{a}_2 + m^{(3)} \left\{ \hat{n} \right\}$$

$$\frac{1}{A_2} \frac{\partial \vec{m}}{\partial \xi_2} = m^{(1)} \left\{ \hat{a}_1 + m^{(2)} \right\} \hat{a}_2 + m^{(3)} \left\{ \hat{n} \right\}$$
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t
CONTINUED

where, for general reference-surface Gaussian coordinates,

\[
\begin{align*}
\mathbf{m}^{(1)} \bigg|^{(1)}_{\xi} &= \frac{1}{A_1} \frac{\partial \mathbf{m}_1}{\partial \xi_1} - \frac{\mathbf{m}_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \\
\mathbf{m}^{(2)} \bigg|^{(1)}_{\xi} &= \frac{1}{A_1} \frac{\partial \mathbf{m}_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 + m_2 \cos \theta_{12} \right) + \frac{m_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{r_{12}} m_3 \\
\mathbf{m}^{(3)} \bigg|^{(1)}_{\xi} &= \frac{1}{A_1} \frac{\partial \mathbf{m}_3}{\partial \xi_1} - \frac{m_1}{r_{11}} + m_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \\
\mathbf{m}^{(1)} \bigg|^{(2)}_{\xi} &= \frac{1}{A_2} \frac{\partial \mathbf{m}_1}{\partial \xi_2} + \frac{m_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \frac{\csc \theta_{12}}{r_{21}} \\
\mathbf{m}^{(2)} \bigg|^{(2)}_{\xi} &= \frac{1}{A_2} \frac{\partial \mathbf{m}_2}{\partial \xi_2} - \frac{m_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 + m_2 \cos \theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right)
\end{align*}
\]
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

\[
\mathbf{m}^{(3)} \bigg|^{^{(2)}} = \frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - m_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{m_2}{r_{22}}
\]

using

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = \mathbf{m}^{(1)} \bigg|^{^{(1)}} + \mathbf{m}^{(2)} \bigg|^{^{(1)}} \cos \theta_{12},
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = \mathbf{m}^{(1)} \bigg|^{^{(1)}} \cos \theta_{12} + \mathbf{m}^{(2)} \bigg|^{^{(1)}},
\]

and \(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = \mathbf{m}^{(3)} \bigg|^{^{(1)}} \) gives

\[
\frac{1}{\tilde{r}_{11}} = \left(1 + \Delta_{11} \right) \left[\mathbf{m}^{(1)} \bigg|^{^{(1)}} + \mathbf{m}^{(2)} \bigg|^{^{(1)}} \cos \theta_{12} \right] \\
+ \Delta_{12} \left[\mathbf{m}^{(1)} \bigg|^{^{(1)}} \cos \theta_{12} + \mathbf{m}^{(2)} \bigg|^{^{(1)}} \right] + \Delta_{13} \left[\mathbf{m}^{(3)} \bigg|^{^{(1)}} \right]
\]
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

Similarly, using

$$\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \vec{m}}{\partial \xi_2} = m^{(1)} \left\langle 2 \right| + m^{(2)} \left\langle 2 \right| \cos \theta_{12},$$

$$\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \vec{m}}{\partial \xi_2} = m^{(1)} \left\langle 2 \right| \cos \theta_{12} + m^{(2)} \left\langle 2 \right| ,$$

and

$$\hat{n} \cdot \frac{1}{A_2} \frac{\partial \vec{m}}{\partial \xi_2} = m^{(3)} \left\langle 2 \right|$$

gives

$$\frac{1}{\vec{n}_{22}} = \left(1 + \Delta_{22}\right) \left[m^{(1)} \left\langle 2 \right| \cos \theta_{12} + m^{(2)} \left\langle 2 \right| \right]$$

$$+ \Delta_{21} \left[m^{(1)} \left\langle 2 \right| + m^{(2)} \left\langle 2 \right| \cos \theta_{12} \right] + \Delta_{23} \left[m^{(3)} \left\langle 2 \right| \right].$$
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

Next, using

\[
\hat{a}^1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = m^{(1)} \bigg|_{1} \sin \theta_{12}, \quad \hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = m^{(2)} \bigg|_{1} \sin \theta_{12}, \quad \text{and}
\]

\[
\hat{n} \cdot \frac{1}{A_1} \frac{\partial \mathbf{m}}{\partial \xi_1} = m^{(3)} \bigg|_{1}
\]
gives

\[
\frac{1}{\mathbf{r}_{12}} = \left[m_2 \Delta_{13} - m_3 \Delta_{12} \right] m^{(1)} \bigg|_{1} \sin \theta_{12} + \left[m_3 (1 + \Delta_{11}) - m_1 \Delta_{13} \right] m^{(2)} \bigg|_{1} \sin \theta_{12}
\]

\[+ \left[m_1 \Delta_{12} - m_2 (1 + \Delta_{11}) \right] m^{(3)} \bigg|_{1} \sin \theta_{12}\]
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

- And, using

$$\hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2} = m^{(1)} \bigg|^{(2)} \sin \theta_{12}, \quad \hat{a}^2 \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2} = m^{(2)} \bigg|^{(2)} \sin \theta_{12}, \text{ and}$$

$$\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{m}}{\partial \xi_2} = m^{(3)} \bigg|^{(2)} \quad \text{gives}$$

$$\frac{1}{\tilde{r}_{21}} = \left[m_3 (1 + \Delta_{22}) - m_2 \Delta_{23} \right] m^{(1)} \bigg|^{(2)} \sin \theta_{12} + \left[m_1 \Delta_{23} - m_3 \Delta_{21} \right] m^{(2)} \bigg|^{(2)} \sin \theta_{12}$$

$$+ \left[m_2 \Delta_{21} - m_1 (1 + \Delta_{22}) \right] m^{(3)} \bigg|^{(2)} \sin \theta_{12}$$
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t

CONTINUED

- Substituting the expressions for Δ_{ij} in terms of the linear deformation measures into the expressions for $\tilde{r}_{\alpha\beta}$ and simplifying gives

\[
\frac{1}{\tilde{r}_{11}} = \left(1 + e_{11}^o\right)m^{(1)}_{1} + \left(\cos\theta_{12} + e_{12}^o + \varphi \sin\theta_{12}\right)m^{(2)}_{1} - \left(\varphi_1 + \varphi_2 \cos\theta_{12}\right)m^{(3)}_{1}
\]

\[
\frac{1}{\tilde{r}_{22}} = \left(\cos\theta_{12} + e_{12}^o - \varphi \sin\theta_{12}\right)m^{(1)}_{2} + \left(1 + e_{22}^o\right)m^{(2)}_{2} - \left(\varphi_1 \cos\theta_{12} + \varphi_2\right)m^{(3)}_{2}
\]
“SMALL-STRAIN” CURVATURES AND TORSIONS OF S_t
CONCLUDED

\[
\frac{1}{\tilde{\tau}_{12}} = \left(1 + e_1^0 \csc^2 \theta_{12} - (e_1^0 \csc \theta_{12} + \varphi) \cot \theta_{12}\right) \left[m_3 m^{(2)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} - m_2 m^{(3)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]

\[
+ \left(e_2^0 \csc \theta_{12} + \varphi - e_1^0 \cot \theta_{12}\right) \left[m_1 m^{(3)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} - m_3 m^{(1)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]

\[
+ \left(\varphi_1 + \varphi_2 \cos \theta_{12}\right) \left[m_1 m^{(2)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} - m_2 m^{(1)}_{12} \begin{pmatrix} 1 \\ \langle 1 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]

\[
\frac{1}{\tilde{\tau}_{21}} = \left(1 + e_2^0 \csc \theta_{12}^2 - (e_1^0 \csc \theta_{12} - \varphi) \cot \theta_{12}\right) \left[m_3 m^{(1)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} - m_1 m^{(3)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]

\[
+ \left(e_1^0 \csc \theta_{12} - \varphi - e_2^0 \cot \theta_{12}\right) \left[m_2 m^{(3)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} - m_3 m^{(2)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]

\[
+ \left(\varphi_1 \cos \theta_{12} + \varphi_2\right) \left[m_2 m^{(1)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} - m_1 m^{(2)}_{21} \begin{pmatrix} 1 \\ \langle 2 \rangle \end{pmatrix} \right] \sin \theta_{12}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS

- The changes in reference-surface curvatures, $K^o_{11}(\xi_1, \xi_2, \tau)$ and $K^o_{22}(\xi_1, \xi_2, \tau)$, and the change in reference-surface torsion, $K^o_{12}(\xi_1, \xi_2, \tau)$, caused by deformation have been defined herein by

$$K^o_{11} \equiv \frac{1}{\tau_{11}} - \frac{1}{r_{11}}$$
$$K^o_{22} \equiv \frac{1}{\tau_{22}} - \frac{1}{r_{22}}$$
$$K^o_{12} \equiv -\left[\frac{1}{2} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) - \frac{1}{2} \left(\frac{1}{\tau_{12}} - \frac{1}{\tau_{21}} \right) \right]$$

- Examination of the previously derived expressions for $\tau^{-1}_{\alpha\beta}$ indicates that the changes in surface curvature and torsion are complicated nonlinear functions of the linear deformation parameters

- Thus, these expressions appear to have very limited practical value

- These expressions also have no implicit limitations on the magnitude of the rotations that may occur during deformation
CHANGES IN THE CURVATURES AND TORSIONS OF S_0 FOR “SMALL” STRAINS - CONTINUED

To obtain “small-strain” expressions for the changes in the reference-surface curvatures and torsions, it is convenient to express

$$\kappa_{11}^\circ = \frac{1}{r_{11}} - \frac{1}{R_{11}}$$

as

$$\frac{\sqrt{a}}{A_1} \left(\frac{A_1}{A_1} \right)^2 \kappa_{11}^\circ = \frac{1}{\sqrt{a}} \left(\frac{A_1}{A_1} \right)^2 \frac{1}{r_{11}}$$

and

$$\kappa_{22}^\circ = \frac{1}{r_{22}} - \frac{1}{R_{22}}$$

as

$$\frac{\sqrt{a}}{A_2} \left(\frac{A_2}{A_2} \right)^2 \kappa_{22}^\circ = \frac{1}{\sqrt{a}} \left(\frac{A_2}{A_2} \right)^2 \frac{1}{r_{22}}$$

where

$$\frac{\sqrt{a}}{A_1} \left(\frac{A_1}{A_1} \right)^2 = 1 + 3\varepsilon_{11}^\circ + \varepsilon_{22}^\circ + O(\varepsilon^4)$$

and

$$\frac{\sqrt{a}}{A_2} \left(\frac{A_2}{A_2} \right)^2 = 1 + 3\varepsilon_{22}^\circ + \varepsilon_{11}^\circ + O(\varepsilon^4)$$
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

To obtain a similar expression for the change in the reference-surface torsion, the geometric relation

$$\frac{1}{\nu_{12}} + \frac{1}{\nu_{21}} = \cot \theta_{12} \left(\frac{1}{\nu_{11}} - \frac{1}{\nu_{22}} \right)$$

is first added to

$$2K_{12}^o = - \frac{1}{\nu_{12}} + \frac{1}{\nu_{21}} + \frac{1}{r_{12}} - \frac{1}{r_{21}}$$

to get

$$\frac{1}{\nu_{21}} = K_{12}^o + \frac{\cot \theta_{12}}{2} \left(\frac{1}{\nu_{11}} - \frac{1}{\nu_{22}} \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)$$

and then the two equations are subtracted to get

$$- \frac{1}{\nu_{12}} = K_{12}^o - \frac{\cot \theta_{12}}{2} \left(\frac{1}{\nu_{11}} - \frac{1}{\nu_{22}} \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)$$
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

Then, using

$$\frac{1}{r_{11}} = \frac{1}{\bar{r}_{11}} + K_{11}^o$$

and

$$\frac{1}{r_{22}} = \frac{1}{\bar{r}_{22}} + K_{22}^o$$

it follows that

$$\frac{1}{\bar{r}_{21}} = K_{12}^o + \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + K_{11}^o - K_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)$$

and

$$\frac{1}{\bar{r}_{12}} = K_{12}^o - \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + K_{11}^o - K_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)$$

From

$$\frac{1}{\bar{r}_{21}} = \left(\frac{\sqrt{a}}{\sqrt{a}} \right)^2 \left(\frac{A_2}{\bar{A}_2} \right)^2 \frac{1}{\bar{\theta}_{21}}$$

it follows that

$$\frac{1}{\bar{\theta}_{21}} = \left(\frac{\sqrt{a}}{\sqrt{a}} \right)^2 \left(\frac{A_2}{\bar{A}_2} \right)^2 \left[K_{12}^o + \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + K_{11}^o - K_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \right]$$
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

- Likewise, from $\frac{1}{\tilde{r}_{12}} = \left(\frac{\sqrt{a}}{\sqrt{a}}\right)^2 \left(\frac{A_1}{A_1}\right)^2 \frac{1}{\tilde{r}_{12}}$, it follows that

 $$- \frac{1}{\tilde{r}_{12}} = \left(\frac{\sqrt{a} A_1}{\sqrt{a} A_1}\right)^2 \left[\kappa_{12}^o - \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + \kappa_{11}^o - \kappa_{22}^o\right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}}\right)\right]$$

- Adding these two equations for $\frac{1}{\tilde{r}_{21}}$ and $\frac{1}{\tilde{r}_{12}}$ yields

 $$\frac{1}{\tilde{r}_{21}} - \frac{1}{\tilde{r}_{12}} = \left[2\kappa_{12}^o + \frac{1}{r_{21}} - \frac{1}{r_{12}}\right] C_1 + \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} + \kappa_{11}^o - \kappa_{22}^o\right) C_2$$

where
CHANGES IN THE CURVATURES AND TORSIONS OF S_0

FOR “SMALL” STRAINS - CONTINUED

\[C_1 = \frac{1}{2} \left(\frac{\sqrt{A_2}}{\sqrt{a}} \right)^2 + \frac{1}{2} \left(\frac{\sqrt{A_1}}{\sqrt{a}} \right)^2 = 1 + 3\varepsilon_{11}^\circ + 3\varepsilon_{22}^\circ + O(\varepsilon^4) \]

\[C_2 = \frac{\cot \theta_{12}}{2} = \left(\varepsilon_{22}^\circ - \varepsilon_{11}^\circ \right) \cot \theta_{12} + O(\varepsilon^4) \]

Now, \[\cos \theta_{12} = 2\varepsilon_{12}^\circ + \cos \theta_{12} \left(1 - \varepsilon_{11}^\circ - \varepsilon_{22}^\circ \right) + O(\varepsilon^4) \]

and

\[\sin \theta_{12} = \sin \theta_{12} - \cot \theta_{12} \left[2\varepsilon_{12}^\circ - \cos \theta_{12} \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right) \right] + O(\varepsilon^4) \]

are used to get

\[\cot \theta_{12} = \cot \theta_{12} + 2\varepsilon_{12}^\circ \csc^3 \theta_{12} - \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right) \csc^2 \theta_{12} \cot \theta_{12} + O(\varepsilon^4) \]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

Thus, \[C_2 = (\varepsilon_{22}^0 - \varepsilon_{11}^0) \cot \theta_{12} + O(\varepsilon^4) \]

At this point in the derivation, the equations of interest are:

\[
\left(1 + 3\varepsilon_{11}^o + \varepsilon_{22}^o \right) K_{11}^o = \frac{1}{\tilde{\varepsilon}_{11}} - \frac{1 + 3\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + O(\varepsilon^4)
\]

\[
\left(1 + 3\varepsilon_{22}^o + \varepsilon_{11}^o \right) K_{22}^o = \frac{1}{\tilde{\varepsilon}_{22}} - \frac{1 + 3\varepsilon_{22}^o + \varepsilon_{11}^o}{r_{22}} + O(\varepsilon^4)
\]

\[
\left(1 + 3\varepsilon_{11}^o + 3\varepsilon_{22}^o \right) 2K_{12}^o + \left(K_{11}^o - K_{22}^o \right) \left(\varepsilon_{22}^o - \varepsilon_{11}^o \right) \cot \theta_{12} = \frac{1}{\tilde{\varepsilon}_{21}} - \frac{1}{\tilde{\varepsilon}_{12}} - \left(1 + 3\varepsilon_{11}^o + 3\varepsilon_{22}^o \right) \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) - \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \left(\varepsilon_{22}^o - \varepsilon_{11}^o \right) \cot \theta_{12} + O(\varepsilon^4)
\]
To get further simplification, it is presumed that the changes in surface curvatures and torsions are at most the same order of magnitude as the strains.

Based on this presumption, the last three equations reduce to

\[
\kappa_{11}^o = \left(1 - \frac{1}{\tilde{r}_{11}} \right) - \frac{3 \varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + \mathcal{O}(\varepsilon^4)
\]

\[
\kappa_{22}^o = \left(1 - \frac{1}{\tilde{r}_{22}} \right) - \frac{3 \varepsilon_{22}^o + \varepsilon_{11}^o}{r_{22}} + \mathcal{O}(\varepsilon^4)
\]

\[
2\kappa_{12}^o = - \left[\frac{1}{\tilde{r}_{12}} - \frac{1}{\tilde{r}_{21}} - \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] + 3 \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) + \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \varepsilon_{22}^o \varepsilon_{11}^o \cot \theta_{12} + \mathcal{O}(\varepsilon^4)
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0 FOR “SMALL” STRAINS - CONTINUED

These three equations give the “small” changes in surface curvature and torsion associated with “small” strains.

In these expressions, recall that

\[
\frac{1}{\bar{\iota}_{11}} = \left(1 + e_{11}^o \right) m^{(1)} \left\{ \begin{array}{c} \cos \theta_{12} + e_{12}^o + \varphi \sin \theta_{12} \end{array} \right\} m^{(2)} \left\{ \begin{array}{c} 1 \\ \cos \theta_{12} + e_{12}^o - \varphi \sin \theta_{12} \end{array} \right\} m^{(3)} \left\{ \begin{array}{c} 1 \\ \varphi_1 + \varphi_2 \cos \theta_{12} \end{array} \right\} m^{(1)}
\]

\[
\frac{1}{\bar{\iota}_{22}} = \left(\cos \theta_{12} + e_{12}^o - \varphi \sin \theta_{12} \right) m^{(1)} \left\{ \begin{array}{c} \cos \theta_{12} + e_{12}^o + \varphi \sin \theta_{12} \end{array} \right\} m^{(2)} \left\{ \begin{array}{c} 1 + e_{22}^o \\ \cos \theta_{12} + e_{12}^o + \varphi \sin \theta_{12} \end{array} \right\} m^{(3)} \left\{ \begin{array}{c} 1 + e_{22}^o \\ \varphi_1 + \varphi_2 \cos \theta_{12} \end{array} \right\} m^{(2)}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

\[
\frac{1}{\bar{r}_{12}} = \left(1 + e_{11}^o \csc^2 \theta_{12} - \left(e_{12}^o \csc \theta_{12} + \varphi \right) \cot \theta_{12} \right) \left[m_3 m_2^{(2)} \right] \sin \theta_{12}
\]

\[
+ \left(e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12} \right) \left[m_1 m_2^{(3)} \right] \sin \theta_{12}
\]

\[
+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left[m_1 m_2^{(2)} \right] \sin \theta_{12}
\]

\[
\frac{1}{\bar{r}_{21}} = \left(1 + e_{22}^o \csc^2 \theta_{12} - \left(e_{12}^o \csc \theta_{12} - \varphi \right) \cot \theta_{12} \right) \left[m_3 m_2^{(1)} \right] \sin \theta_{12}
\]

\[
+ \left(e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12} \right) \left[m_2 m_2^{(3)} \right] \sin \theta_{12}
\]

\[
+ \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \left[m_2 m_2^{(1)} \right] \sin \theta_{12}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

\[\varepsilon_{11}^o = \varepsilon_{11} + \frac{1}{2} \left[\left(e_{11}^o \csc \theta_{12} \right)^2 + \left(e_{12}^o \csc \theta_{12} + \varphi \right)^2 \right. \]

\[\left. - 2e_{11}^o \left(e_{12}^o \csc \theta_{12} + \varphi \right) \cot \theta_{12} + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \right] + \mathcal{O}(\varepsilon^4) \]

\[\varepsilon_{22}^o = \varepsilon_{22} + \frac{1}{2} \left[\left(e_{22}^o \csc \theta_{12} \right)^2 + \left(e_{12}^o \csc \theta_{12} - \varphi \right)^2 \right. \]

\[\left. - 2e_{22}^o \left(e_{12}^o \csc \theta_{12} - \varphi \right) \cot \theta_{12} + \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \right] + \mathcal{O}(\varepsilon^4) \]

\[2\varepsilon_{12}^o = 2e_{12}^o + \left[e_{11}^o \left(e_{12}^o - \varphi \sin \theta_{12} \right) + e_{22}^o \left(e_{12}^o + \varphi \sin \theta_{12} \right) \right] \csc^2 \theta_{12} \]

\[- \left[e_{11}^o e_{22}^o + \left(e_{12}^o + \varphi \sin \theta_{12} \right) \left(e_{12}^o - \varphi \sin \theta_{12} \right) \right] \csc \theta_{12} \cot \theta_{12} \]

\[+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + \mathcal{O}(\varepsilon^4) \]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0

FOR “SMALL” STRAINS - CONTINUED

\[
\begin{align*}
\mathbf{m}^{(1)} \big|^{(1)} &= \frac{1}{A_1} \frac{\partial m_1}{\partial \xi_1} - \frac{m_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \\
\mathbf{m}^{(2)} \big|^{(1)} &= \frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 + m_2 \cos \theta_{12} \right) + \frac{m_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - m_3 \frac{\csc \theta_{12}}{r_{12}} \\
\mathbf{m}^{(3)} \big|^{(1)} &= \frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - \frac{m_1}{r_{11}} + m_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \\
\mathbf{m}^{(1)} \big|^{(2)} &= \frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \frac{\csc \theta_{12}}{r_{21}} \\
\mathbf{m}^{(2)} \big|^{(2)} &= \frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} - \frac{m_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 + m_2 \cos \theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \\
\mathbf{m}^{(3)} \big|^{(2)} &= \frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - m_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - m_2 \frac{\csc \theta_{12}}{r_{22}}
\end{align*}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

$m_1 = \varphi_1 - \left(e_{12}^0 \csc \theta_{12} + \varphi \right) \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right)
+ e_{22}^0 \csc \theta_{12} \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right)$

$m_2 = \varphi_2 - \left(e_{12}^0 \csc \theta_{12} - \varphi \right) \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right)
+ e_{11}^0 \csc \theta_{12} \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right)$

$m_3 = 1 + \varphi^2 + \left(e_{11}^0 + e_{22}^0 + e_{11}^0 e_{22}^0 - \left(e_{12}^0 \right)^2 \right) \csc^2 \theta_{12}
- 2e_{12}^0 \cot \theta_{12} \csc \theta_{12}$

$\varphi_1 = \left(\frac{u_1}{r_{11}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \right) \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12}
+ \left(\frac{\cot \theta_{12}}{A_2} \frac{\partial w}{\partial \xi_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12}$
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

\[\varphi_2 = \left(\frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \right) \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial w}{\partial \xi_1} - \frac{u_1}{r_{12}} \right) \csc \theta_{12} \]

\[2\varphi = \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cot \theta_{12} + \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} \right) \csc \theta_{12} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \]

\[e_{11}^{\circ} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(u_1 + u_2 \cos \theta_{12} \right) - \frac{u_2 \sin \theta_{12}}{\rho_{11}} + \frac{w}{r_{11}} \]

\[e_{22}^{\circ} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(u_2 + u_1 \cos \theta_{12} \right) + \frac{u_1 \sin \theta_{12}}{\rho_{22}} + \frac{w}{r_{22}} \]

\[2e_{12}^{\circ} = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cos \theta_{12} \]

\[+ \left(\frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} \right) \sin \theta_{12} + w \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} + w \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \sin \theta_{12} \]
Changes in the curvatures and torsions of S_0 for "small" strains - continued

- For orthogonal Gaussian reference-surface coordinates, the "small" changes in surface curvatures and surface torsion, for "small strains" and "finite rotations" are given by

\[
K_{11}^o = \left(\frac{1}{\tilde{\xi}_{11}} - \frac{1}{r_{11}} \right) - \frac{3\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + O(\varepsilon^4)
\]

\[
K_{22}^o = \left(\frac{1}{\tilde{\xi}_{22}} - \frac{1}{r_{22}} \right) - \frac{3\varepsilon_{22}^o + \varepsilon_{11}^o}{r_{22}} + O(\varepsilon^4)
\]

\[
2K_{12}^o = -\left[\frac{1}{\tilde{\xi}_{12}} - \frac{1}{\tilde{\xi}_{21}} - \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] + 3\left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) + O(\varepsilon^4)
\]

where

\[
\frac{1}{\tilde{\xi}_{11}} = \left(1 + e_{11}^o \right) m^{(1)} \left(e_{12}^o + \varphi \right) m^{(2)} - \varphi_1 m^{(3)} \left(e_{11}^o \right) m^{(1)}
\]

\[
\frac{1}{\tilde{\xi}_{22}} = \left(e_{12}^o - \varphi \right) m^{(1)} \left(1 + e_{22}^o \right) m^{(2)} - \varphi_2 m^{(3)} \left(e_{12}^o \right) m^{(1)}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

$$\frac{1}{\varepsilon_{12}} = (1 + e_{11}^o) \begin{bmatrix} m_3 m^{(2)}_1 & m_2 m^{(3)}_1 \\ m_3 m^{(1)}_2 & m_2 m^{(3)}_2 \end{bmatrix} + (e_{12}^o + \varphi) \begin{bmatrix} m_1 m^{(3)}_1 & m_3 m^{(1)}_1 \\ m_1 m^{(3)}_2 & m_3 m^{(1)}_2 \end{bmatrix} + \varphi_1 \begin{bmatrix} m_1 m^{(2)}_1 & m_2 m^{(1)}_1 \\ m_1 m^{(2)}_2 & m_2 m^{(1)}_2 \end{bmatrix}$$

$$\frac{1}{\varepsilon_{21}} = (1 + e_{22}^o) \begin{bmatrix} m_3 m^{(1)}_1 & m_1 m^{(3)}_1 \\ m_3 m^{(2)}_2 & m_1 m^{(3)}_2 \end{bmatrix} + (e_{12}^o - \varphi) \begin{bmatrix} m_2 m^{(3)}_1 & m_3 m^{(2)}_1 \\ m_2 m^{(3)}_2 & m_3 m^{(2)}_2 \end{bmatrix} + \varphi_2 \begin{bmatrix} m_2 m^{(1)}_1 & m_1 m^{(2)}_1 \\ m_2 m^{(1)}_2 & m_1 m^{(2)}_2 \end{bmatrix}$$

$$\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left(e_{11}^o \right)^2 + \left(e_{12}^o + \varphi \right)^2 + \varphi_1^2 + O(e^4)$$

$$\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left(e_{12}^o - \varphi \right)^2 + \left(e_{22}^o \right)^2 + \varphi_2^2 + O(e^4)$$

$$2\varepsilon_{12} = 2e_{12}^o + e_{11}^o (e_{12}^o - \varphi) + e_{22}^o (e_{12}^o + \varphi) + \varphi_1 \varphi_2 + O(e^4)$$
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONTINUED

\[m_1 = \varphi_1(1 + e_{22}^\circ) - \varphi_2(e_{12}^\circ + \varphi) \]

\[m_2 = \varphi_2(1 + e_{11}^\circ) - \varphi_1(e_{12}^\circ - \varphi) \]

\[m_3 = (1 + e_{11}^\circ)(1 + e_{22}^\circ) - (e_{12}^\circ + \varphi)(e_{12}^\circ - \varphi) \]

\[
\begin{align*}
\frac{\partial m_1}{\partial \xi_1} \bigg|_{1} &= \frac{1}{A_1} \frac{m_2}{\rho_{11}} - \frac{m_3}{r_{11}} \\
\frac{\partial m_2}{\partial \xi_1} \bigg|_{1} &= \frac{1}{A_1} \frac{m_1}{\rho_{11}} + \frac{m_3}{r_{12}} \\
\frac{\partial m_3}{\partial \xi_1} \bigg|_{1} &= \frac{1}{A_1} \frac{m_2}{\rho_{11}} - \frac{m_1}{r_{11}} + \frac{m_2}{r_{12}}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial m_1}{\partial \xi_2} \bigg|_{2} &= \frac{1}{A_2} \frac{m_2}{\rho_{22}} + \frac{m_1}{r_{12}} - \frac{m_3}{r_{22}} \\
\frac{\partial m_2}{\partial \xi_2} \bigg|_{2} &= \frac{1}{A_2} \frac{m_1}{\rho_{22}} - \frac{m_2}{r_{12}} + \frac{m_3}{r_{22}} \\
\frac{\partial m_3}{\partial \xi_2} \bigg|_{2} &= \frac{1}{A_2} \frac{m_2}{\rho_{22}} - \frac{m_1}{r_{12}} - \frac{m_2}{r_{22}}
\end{align*}
\]
CHANGES IN THE CURVATURES AND TORSIONS OF S_0
FOR “SMALL” STRAINS - CONCLUDED

\[\varphi_1 = \frac{u_1}{r_{11}} - \frac{u_2}{r_{12}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \]

\[\varphi_2 = \frac{u_2}{r_{22}} - \frac{u_1}{r_{12}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \]

\[\varphi = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \right) \]

\[e_{11}^o = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} + \frac{w}{r_{11}} \]

\[e_{22}^o = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{\rho_{22}} + \frac{w}{r_{22}} \]

\[2e_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} - 2 \frac{w}{r_{12}} \]

\[\frac{1}{\rho_{11}} = \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \]

\[\frac{1}{\rho_{22}} = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

- Previously, the following three independent compatibility equations for the undeformed reference surface were obtained:

\[
\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = A_1 A_2 \sin \theta_{12} \ K_G
\]

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) \cos \theta_{12} + \frac{\partial}{\partial \xi_2} \left(\frac{A_2}{r_{21}} \right) \sin \theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) + \frac{A_1 A_2}{\rho_{11}} \left(\frac{\cos \theta_{12}}{r_{21}} - \frac{\sin \theta_{12}}{r_{22}} \right)
\]

\[
- \frac{A_1 A_2}{\rho_{22} r_{12}} + \left[\frac{A_2}{r_{21}} \cos \theta_{12} - \frac{A_2}{r_{22}} \sin \theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_1} + \left(\frac{A_1}{r_{12}} \right) \frac{\partial \theta_{12}}{\partial \xi_2} = 0
\]

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{12}} \right) \sin \theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) \cos \theta_{12} - \frac{A_1 A_2}{\rho_{22}} \left(\frac{\cos \theta_{12}}{r_{12}} + \frac{\sin \theta_{12}}{r_{11}} \right)
\]

\[
+ \frac{A_1 A_2}{\rho_{11} r_{21}} + \left(\frac{A_2}{r_{21}} \right) \frac{\partial \theta_{12}}{\partial \xi_1} + \left[\frac{A_1}{r_{12}} \cos \theta_{12} + \frac{A_1}{r_{11}} \sin \theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_2} = 0
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

where $K_G = \frac{1}{r_{11}r_{22}} + \frac{1}{r_{12}r_{21}} + \cot \theta_{12} \left(\frac{1}{r_{12}r_{22}} - \frac{1}{r_{11}r_{21}} \right)$ is the Gaussian curvature of the undeformed reference surface

- By direct analogy, the compatibility equations for the deformed reference surface are:

$$\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = A_1 A_2 \sin \theta_{12} K_G$$

$$\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\nu_{22}} \right) \cos \theta_{12} + \frac{\partial}{\partial \xi_2} \left(\frac{A_2}{\nu_{21}} \right) \sin \theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\nu_{11}} \right) + \frac{A_1 A_2}{\rho_{11}} \left(\frac{\cos \theta_{12}}{\nu_{21}} - \frac{\sin \theta_{12}}{\nu_{22}} \right)$$

$$- \frac{A_1 A_2}{\rho_{22}r_{12}} + \left[\frac{A_2}{\nu_{21}} \cos \theta_{12} - \frac{A_2}{\nu_{22}} \sin \theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_1} + \left(\frac{A_1}{\nu_{12}} \right) \frac{\partial \theta_{12}}{\partial \xi_2} = 0$$
“SMALL-STRAIN" COMPATIBILITY CONDITIONS FOR S_i

CONTINUED

\[
\frac{\partial}{\partial \xi_1} \left(\frac{A_2}{r_{22}} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{12}} \right) \sin \theta_{12} - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{r_{11}} \right) \cos \theta_{12} - \frac{A_1 A_2}{\rho_{22}} \left(\frac{\cos \theta_{12}}{r_{12}} + \frac{\sin \theta_{12}}{r_{11}} \right) \]

\[
+ \frac{A_1 A_2}{\rho_{11} r_{21}} + \left(\frac{A_2}{r_{21}} \right) \frac{\partial \theta_{12}}{\partial \xi_1} + \left[\frac{A_1}{r_{12}} \cos \theta_{12} + \frac{A_1}{r_{11}} \sin \theta_{12} \right] \frac{\partial \theta_{12}}{\partial \xi_2} = 0
\]

where \(K_G = \frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} + \cot \theta_{12} \left(\frac{1}{r_{12} r_{22}} - \frac{1}{r_{11} r_{21}} \right) \) is the Gaussian curvature of the deformed reference surface

- Next, by direct analogy, it also follows that the derivatives of the metric coefficients for the deformed reference surface are given by

\[
\frac{\partial A_1}{\partial \xi_2} = A_1 A_2 \left[\cot \theta_{12} - \frac{\csc \theta_{12}}{\rho_{22}} - \frac{\csc \theta_{12}}{\rho_{11}} - \frac{\cot \theta_{12}}{A_1} \frac{\partial \xi_1}{\partial \xi_2} - \frac{\cot \theta_{12} \partial \theta_{12}}{A_2} \frac{\partial \xi_2}{\partial \xi_2} \right]
\]

and
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR \mathbf{S}_t

CONTINUED

\[
\frac{\partial \mathbf{A}_2}{\partial \xi_1} = \mathbf{A}_1 \mathbf{A}_2 \begin{bmatrix} \csc \theta_{12} - \cot \theta_{12} - \cot \theta_{12} \frac{\partial \theta_{12}}{\partial \xi_1} - \csc \theta_{12} \frac{\partial \theta_{12}}{\partial \xi_2} \\ \rho_{22} - \rho_{11} \end{bmatrix}
\]

- By using these derivative expressions, the compatibility equations are also expressed as

\[
\frac{1}{\mathbf{A}_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{\rho_{11}} \right) - \frac{1}{\mathbf{A}_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{\rho_{22}} \right) + \left(\frac{\cot \theta_{12}}{\rho_{22}} - \frac{\csc \theta_{12}}{\rho_{11}} \right) \left[\frac{1}{\rho_{11}} + \frac{1}{\mathbf{A}_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right]
\]

\[+ \left(\frac{\csc \theta_{12}}{\rho_{22}} - \frac{\cot \theta_{12}}{\rho_{11}} \right) \left[- \frac{1}{\rho_{22}} + \frac{1}{\mathbf{A}_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right] + \frac{1}{\mathbf{A}_1 \mathbf{A}_2} \frac{\partial}{\partial \xi_2} \left(\frac{\partial \theta_{12}}{\partial \xi_1} \right) = \sin \theta_{12} K_G
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR \mathbf{S}_t

CONTINUED

$$\cos \theta_{12} \frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) + \sin \theta_{12} \frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) - \frac{1}{\mathcal{A}_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right)$$

$$+ \csc \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \left(\frac{1}{\rho_{11}} + \frac{1}{\mathcal{A}_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + 2 \frac{1}{r_{12}} \left(- \frac{1}{\rho_{22}} + \frac{1}{\mathcal{A}_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0$$

$$\frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) + \sin \theta_{12} \frac{1}{\mathcal{A}_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) - \cos \theta_{12} \frac{1}{\mathcal{A}_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right)$$

$$+ \frac{2}{r_{21}} \left(\frac{1}{\rho_{11}} + \frac{1}{\mathcal{A}_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \left(- \frac{1}{\rho_{22}} + \frac{1}{\mathcal{A}_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

- For “small” strains, the following approximations are valid:

$$\cos \theta_{12} = 2\varepsilon^{o}_{12} + \cos \theta_{12} \left(1 - \varepsilon^{o}_{11} - \varepsilon^{o}_{22} \right) + O(\varepsilon^4)$$

$$\sin \theta_{12} = \sin \theta_{12} - \cot \theta_{12} \left[2\varepsilon^{o}_{12} - \cos \theta_{12} \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right) \right] + O(\varepsilon^4)$$

$$\cot \theta_{12} = \cot \theta_{12} + 2\varepsilon^{o}_{12} \csc^3 \theta_{12} - \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right) \csc^2 \theta_{12} \cot \theta_{12} + O(\varepsilon^4)$$

$$A_1 = A_1 \left(1 + \varepsilon^{o}_{11} + O(\varepsilon^4) \right) \quad A_2 = A_2 \left(1 + \varepsilon^{o}_{22} + O(\varepsilon^4) \right)$$

$$\frac{1}{r_{11}} = \frac{1}{r_{11}} + K_{11}^{o} \quad \frac{1}{r_{22}} = \frac{1}{r_{22}} + K_{22}^{o}$$

- In addition, $\theta_{12} = \cos^{-1} \left[2\varepsilon^{o}_{12} + \cos \theta_{12} \left(1 - \varepsilon^{o}_{11} - \varepsilon^{o}_{22} \right) + O(\varepsilon^4) \right]$ becomes

$$\theta_{12} = \theta_{12} - 2\varepsilon^{o}_{12} \csc \theta_{12} + \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right) \cot \theta_{12} + O(\varepsilon^4)$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_i

CONTINUED

Moreover, the torsions of the deformed reference surface are

$$\frac{1}{\tau_{12}} = \frac{1}{r_{12}} - K_{12}^0 + \frac{1}{2} \cot \theta_{12} (K_{11}^0 - K_{22}^0)$$

$$+ \frac{1}{2} \left[2\varepsilon_{12}^0 \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12} - (\varepsilon_{11}^0 + \varepsilon_{22}^0) \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \csc^2 \theta_{12} + O(\varepsilon^4)$$

and

$$\frac{1}{\tau_{21}} = \frac{1}{r_{21}} + K_{12}^0 + \frac{1}{2} \cot \theta_{12} (K_{11}^0 - K_{22}^0)$$

$$+ \frac{1}{2} \left[2\varepsilon_{12}^0 \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12} - (\varepsilon_{11}^0 + \varepsilon_{22}^0) \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \csc^2 \theta_{12} + O(\varepsilon^4)$$

and the corresponding geodesic curvatures are
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_ε

CONTINUED

\[
\frac{1}{\rho_{11}} = \frac{1}{\rho_{11}} \left[1 + 2\varepsilon^o_{12}\cot\theta_{12}\csc\theta_{12} - \csc^2\theta_{12}\left(\varepsilon^o_{11} + \varepsilon^o_{22}\right) \right]
+ \frac{\csc\theta_{12}}{A_1A_2} \left[\frac{\partial}{\partial \xi_1} \left(A_2 \left[2\varepsilon^o_{12} - \varepsilon^o_{11}\cos\theta_{12} \right] \right) - \frac{\partial}{\partial \xi_2} \left[A_1\varepsilon^o_{11} \right] \right] + \mathcal{O}(\varepsilon^4)
\]

\[
\frac{1}{\rho_{22}} = \frac{1}{\rho_{22}} \left[1 + 2\varepsilon^o_{12}\cot\theta_{12}\csc\theta_{12} - \csc^2\theta_{12}\left(\varepsilon^o_{11} + \varepsilon^o_{22}\right) \right]
- \frac{\csc\theta_{12}}{A_1A_2} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \left[2\varepsilon^o_{12} - \cos\theta_{12}\varepsilon^o_{22} \right] \right) - \frac{\partial}{\partial \xi_1} \left[A_2\varepsilon^o_{22} \right] \right] + \mathcal{O}(\varepsilon^4)
\]

- First, substituting these “small” strain approximations into the Gaussian curvature K_G of the deformed reference surface and using the identity $\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot\theta_{12}\left(\frac{1}{r_{11}} - \frac{1}{r_{22}}\right)$ yields $K_G = K_G + \kappa_G$, where the change in Gaussian curvature caused by deformation is given by
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

In addition,

\[
K_G = \frac{K_{22}^o}{r_{11}} + \frac{K_{11}^o}{r_{22}} + K_{12}^o \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) + \left[\frac{K_{22}^o}{r_{12}} - \frac{K_{11}^o}{r_{21}} - K_{12}^o \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \right] \cot \theta_{12}
\]

\[
+ \left[2 \varepsilon_{12}^o \cot^2 \theta_{12} - \csc^2 \theta_{12} (\varepsilon_{11}^o + \varepsilon_{22}^o) \right] \left(\frac{1}{r_{12} r_{22}} - \frac{1}{r_{21} r_{11}} \right) \cot \theta_{12} + \mathcal{O} (\varepsilon^4)
\]

\[
\mathcal{A}_1 \mathcal{A}_2 \sin \theta_{12} \ K_G = \mathcal{A}_1 \mathcal{A}_2 \sin \theta_{12} \left(K_G + K_G \right)
\]

\[
+ \mathcal{A}_1 \mathcal{A}_2 \left((\varepsilon_{11}^o + \varepsilon_{22}^o) \csc \theta_{12} - 2 \varepsilon_{12}^o \cot \theta_{12} \right) K_G + \mathcal{O} (\varepsilon^4)
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

- Similarly,

$$\frac{A_1}{\rho_{11}} = \frac{A_1}{\rho_{11}} \left[1 + \varepsilon_{11}^0 + 2\varepsilon_{12}^0 \cot \theta_{12} \csc \theta_{12} - \csc^2 \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right]$$

$$+ \frac{\csc \theta_{12}}{A_1 A_2} \left[\frac{\partial}{\partial \xi_1} \left(A_2 \left[2\varepsilon_{12}^0 - \varepsilon_{11}^o \cos \theta_{12} \right] \right) - \frac{\partial}{\partial \xi_2} \left[A_1 \varepsilon_{11}^o \right] \right] + O(\varepsilon^4)$$

$$\frac{A_2}{\rho_{22}} = \frac{A_2}{\rho_{22}} \left[1 + \varepsilon_{22}^0 + 2\varepsilon_{12}^0 \cot \theta_{12} \csc \theta_{12} - \csc^2 \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right]$$

$$- \frac{\csc \theta_{12}}{A_1 A_2} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \left[2\varepsilon_{12}^0 - \cos \theta_{12} \varepsilon_{22}^o \right] \right) - \frac{\partial}{\partial \xi_1} \left[A_2 \varepsilon_{22}^o \right] \right] + O(\varepsilon^4)$$

- Thus,

$$\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = A_1 A_2 \sin \theta_{12} \ K_G$$

becomes
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_i

CONTINUED

\[
\frac{\partial}{\partial \xi_2} \left\{ \frac{A_1}{\rho_{11}} \left[\varepsilon_{11}^o + 2\varepsilon_{12}^o \cot \theta_{12} \csc \theta_{12} - \csc^2 \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right] \right\}
\]

\[
+ \frac{\partial}{\partial \xi_2} \left\{ \frac{\csc \theta_{12}}{A_2} \left[\frac{\partial}{\partial \xi_1} \left(A_2 \left[2\varepsilon_{12}^o - \varepsilon_{11}^o \cos \theta_{12} \right] \right) - \frac{\partial}{\partial \xi_2} \left[A_1 \varepsilon_{11}^o \right] \right] \right\}
\]

\[
- \frac{\partial}{\partial \xi_1} \left\{ \frac{A_2}{\rho_{22}} \left[\varepsilon_{22}^o + 2\varepsilon_{12}^o \cot \theta_{12} \csc \theta_{12} - \csc^2 \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right] \right\}
\]

\[
+ \frac{\partial}{\partial \xi_1} \left\{ \frac{\csc \theta_{12}}{A_1} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \left[2\varepsilon_{12}^o - \cos \theta_{12} \varepsilon_{22}^o \right] \right) - \frac{\partial}{\partial \xi_1} \left[A_2 \varepsilon_{22}^o \right] \right] \right\}
\]

\[
+ \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left[\left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \cot \theta_{12} - 2\varepsilon_{12}^o \csc \theta_{12} \right] = A_1 A_2 \sin \theta_{12} K_G
\]

\[
+ A_1 A_2 \left[\left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \csc \theta_{12} - 2\varepsilon_{12}^o \cot \theta_{12} \right] K_G + O(\varepsilon^4)
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

Because of the complexity of this expression and, particularly, the other two corresponding compatibility equations that follow, it is convenient to express

$$\frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \right) + \frac{\partial}{\partial \xi_1} \left(\frac{\partial \theta_{12}}{\partial \xi_2} \right) = A_1 A_2 \sin \theta_{12} K_g$$

as

$$C_{11}(\varepsilon_{11}) + C_{12}(\varepsilon_{22}) + C_{13}(\varepsilon_{12}) + C_{14}(K_{11}) + C_{15}(K_{22}) + C_{16}(K_{12}) = 0$$

where

$$C_{11}(\varepsilon_{11}) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \csc^2 \theta_{12} \varepsilon_{11}^o \right) - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \cot^2 \theta_{12} \varepsilon_{11}^o \right)$$

$$- \frac{\partial}{\partial \xi_2} \left(\csc \theta_{12} A_2 \right) \left[\frac{\partial}{\partial \xi_1} \left(A_2 \cos \theta_{12} \varepsilon_{11}^o \right) + \frac{\partial}{\partial \xi_2} \left(A_1 \varepsilon_{11}^o \right) \right] + \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\cot \theta_{12} \varepsilon_{11}^o \right)$$

$$- \left(\frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} \right) A_1 A_2 \csc \theta_{12} \varepsilon_{11}^o + O(\varepsilon^4)$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_z

CONTINUED

\[
C_{12}(\varepsilon_{22}^0) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \cot^2 \theta_{12} \varepsilon_{22}^0 \right) - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \csc^2 \theta_{12} \varepsilon_{22}^0 \right)
- \frac{\partial}{\partial \xi_1} \left(\frac{\csc \theta_{12}}{A_1} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \cos \theta_{12} \varepsilon_{22}^0 \right) + \frac{\partial}{\partial \xi_1} \left(A_2 \varepsilon_{22}^0 \right) \right] \right) + \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\cot \theta_{12} \varepsilon_{22}^0 \right)

- \left(\frac{1}{r_{11}r_{22}} + \frac{1}{r_{12}r_{21}} \right) A_1 A_2 \csc \theta_{12} \varepsilon_{22}^0 + O(\varepsilon^4)
\]

\[
C_{14}(K_{11}^0) = -A_1 A_2 \left(\frac{\sin \theta_{12}}{r_{22}} - \frac{\cos \theta_{12}}{r_{21}} \right) K_{11}^0 + O(\varepsilon^4)
\]

\[
C_{15}(K_{22}^0) = -A_1 A_2 \left(\frac{\sin \theta_{12}}{r_{12}} + \frac{\cos \theta_{12}}{r_{11}} \right) K_{22}^0 + O(\varepsilon^4)
\]

\[
C_{16}(K_{12}^0) = -A_1 A_2 \left[\left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \sin \theta_{12} - \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} \right] K_{12}^0 + O(\varepsilon^4)
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

\[C_{13}(\varepsilon_{12}^o) = \frac{\partial}{\partial \xi_1} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi_2} \left(A_1 2\varepsilon_{12}^o \right) \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2 \cot \theta_{12} \csc \theta_{12}}{\rho_{22}} 2\varepsilon_{12}^o \right) \]

\[+ \frac{\partial}{\partial \xi_2} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial}{\partial \xi_1} \left(A_2 2\varepsilon_{12}^o \right) \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1 \cot \theta_{12} \csc \theta_{12}}{\rho_{11}} 2\varepsilon_{12}^o \right) \]

\[- \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\csc \theta_{12} 2\varepsilon_{12}^o \right) + A_1 A_2 \left(1 - \cos \theta_{12} \right) \cot^2 \theta_{12} \left(\frac{1}{r_{12} r_{22}} - \frac{1}{r_{21} r_{11}} \right) 2\varepsilon_{12}^o \]

\[+ A_1 A_2 \cot \theta_{12} \left(\frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} \right) 2\varepsilon_{12}^o + O(\varepsilon^4) \]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR \(S_t \)

CONTINUED

- Similarly, the compatibility equation

\[
\begin{align*}
\cos\theta_{12} \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{v_{12}} \right) + \sin\theta_{12} \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{v_{21}} \right) - \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{v_{11}} \right) \\
+ \csc\theta_{12} \left(\frac{1}{v_{11}} - \frac{1}{v_{22}} \right) \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + 2 \frac{1}{v_{12}} \left(-\frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0
\end{align*}
\]

becomes

\[
\mathcal{C}_{21}(\varepsilon_{11}^0) + \mathcal{C}_{22}(\varepsilon_{22}^0) + \mathcal{C}_{23}(\varepsilon_{12}^0) + \mathcal{C}_{24}(K_{11}^0) + \mathcal{C}_{25}(K_{22}^0) + \mathcal{C}_{26}(K_{12}^0) = 0
\]

and the compatibility equation

\[
\begin{align*}
\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{v_{22}} \right) + \sin\theta_{12} \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{v_{12}} \right) - \cos\theta_{12} \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{v_{11}} \right) \\
+ 2 \frac{1}{v_{21}} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc\theta_{12} \left(\frac{1}{v_{11}} - \frac{1}{v_{22}} \right) \left(-\frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) = 0
\end{align*}
\]

becomes

\[
\mathcal{C}_{21}(\varepsilon_{11}^0) + \mathcal{C}_{22}(\varepsilon_{22}^0) + \mathcal{C}_{23}(\varepsilon_{12}^0) + \mathcal{C}_{24}(K_{11}^0) + \mathcal{C}_{25}(K_{22}^0) + \mathcal{C}_{26}(K_{12}^0) = 0
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

\[
\mathcal{C}_{31}(\varepsilon_{11}^o) + \mathcal{C}_{32}(\varepsilon_{22}^o) + \mathcal{C}_{33}(\varepsilon_{12}^o) + \mathcal{C}_{34}(\kappa_{11}^o) + \mathcal{C}_{35}(\kappa_{22}^o) + \mathcal{C}_{36}(\kappa_{12}^o) = 0
\]

where

\[
\mathcal{C}_{21}(\varepsilon_{11}^o) = -\left[\frac{\csc \theta_{12}}{2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \frac{1}{A_1} \frac{\partial \varepsilon_{11}^o}{\partial \xi_1} - \left[\frac{1}{r_{11}} - \frac{1}{r_{22}} \right] \csc^2 \theta_{12} - \frac{2 \cot \theta_{12}}{r_{12}} \frac{1}{A_2} \frac{\partial \varepsilon_{11}^o}{\partial \xi_2}
\]

\[
- \frac{\csc \theta_{12}}{2A_1} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) + \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \sin 2\theta_{12} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) \cos 2\theta_{12} \varepsilon_{11}^o
\]

\[
+ \csc \theta_{12} \left[\left(-\frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \csc \theta_{12} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \right] \varepsilon_{11}^o + O(\varepsilon^4)
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

$$
\mathcal{C}_{22}(\varepsilon^o) = \frac{\csc \theta_{12}}{2} \left[\frac{1}{r_{21}} - \frac{3}{r_{12}} \right] \frac{1}{A_1} \frac{\partial \varepsilon^o_{22}}{\partial \xi_1}
+ \frac{\csc \theta_{12}}{2} \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) \cos 2 \theta_{12} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} \right) \right] \varepsilon^o_{22}

+ \left[\left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \cos \theta_{12} \right) - \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \frac{\cot \theta_{12} \csc \theta_{12}}{\rho_{11}} \right] \varepsilon^o_{22}

- \csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left[\left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} - \frac{4 \cot \theta_{12}}{r_{12}} \right] \varepsilon^o_{22}

- \cot \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left[\left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} - \frac{2 \cot \theta_{12}}{r_{12}} \right] \varepsilon^o_{22} + \mathcal{O}(\varepsilon^4)
$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

$$C_{23}(\varepsilon_{12}^\circ) = \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} + \frac{2}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) - 2 \cot \theta_{12} \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) \right] \varepsilon_{12}^\circ$$

$$+ \csc^2 \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \frac{1}{A_1} \frac{\partial \varepsilon_{12}^\circ}{\partial \xi_1}$$

$$- \csc^2 \theta_{12} \left[\left(\frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left(\frac{1}{r_{21}} + \frac{5}{r_{12}} \right) + \frac{2}{\rho_{11}} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] \varepsilon_{12}^\circ + O(\varepsilon^4)$$

$$C_{24}(K_{11}^\circ) = \frac{\cos \theta_{12}}{2} \frac{1}{A_1} \frac{\partial K_{11}^\circ}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial K_{11}^\circ}{\partial \xi_2}$$

$$+ \csc \theta_{12} \left[\frac{1}{\rho_{11}} + \frac{1}{2} \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right] + \cot \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K_{11}^\circ + O(\varepsilon^4)$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

$$C_{25} (K_{22}^o) = \frac{\cos \theta_{12}}{2} \frac{1}{A_1} \frac{1}{\partial \xi_1}$$

$$- \left[\csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{2} \frac{1}{A_1} \frac{1}{\partial \xi_1} \right) + \cot \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{1}{\partial \xi_2} \right) \right] K_{22}^o + O(\varepsilon^4)$$

$$C_{26} (K_{12}^o) = \sin \theta_{12} \frac{1}{A_1} \frac{1}{\partial \xi_1} - 2 \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{1}{\partial \xi_2} \right) K_{12}^o + O(\varepsilon^4)$$
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_t

CONTINUED

\[C_{31} (\varepsilon_{11}^o) = \frac{\csc \theta_{12}}{2} \left[\frac{3}{r_{21}} - \frac{1}{r_{12}} \right] \frac{1}{A_2} \partial_{\xi_2}^o \]

\[+ \frac{\csc \theta_{12}}{2} \left[\frac{1}{A_2} \partial_{\xi_2} \left(\frac{1}{r_{21}} \right) - \frac{1}{A_2} \partial_{\xi_2} \left(\frac{1}{r_{12}} \right) \cos 2\theta_{12} \right] \varepsilon_{11}^o \]

\[+ \left[\frac{1}{A_1} \partial_{\xi_1} \left(\frac{1}{r_{22}} \right) - \frac{1}{A_2} \partial_{\xi_2} \left(\frac{1}{r_{11}} \right) \cos \theta_{12} - \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \csc \theta_{12} \right] \varepsilon_{11}^o \]

\[- \cot \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \partial_{\xi_1} \right) \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2\cot \theta_{12}}{r_{21}} \right] \varepsilon_{11}^o \]

\[- \csc \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \partial_{\xi_2} \right) \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{4\cot \theta_{12}}{r_{21}} \right] \varepsilon_{11}^o + \mathcal{O}(\varepsilon^4) \]
"SMALL-STRAIN" COMPATIBILITY CONDITIONS FOR \(S_t \)

CONTINUED

\[
\mathcal{C}_{32}(\varepsilon_{22}^o) = - \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2 \cot \theta_{12}}{r_{21}} + \frac{1}{A_1} \frac{\partial \varepsilon_{22}^o}{\partial \xi_1} + \frac{\csc \theta_{12}}{2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \frac{1}{A_2} \frac{\partial \varepsilon_{22}^o}{\partial \xi_2}
\]

\[
- \csc \theta_{12} \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) \sin \theta_{12} + \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) \cos \theta_{12} - \frac{1}{2 A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \varepsilon_{22}^o
\]

\[
+ \csc \theta_{12} \left[\left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \csc \theta_{12} - \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \right] \varepsilon_{22}^o + \mathcal{O}(\varepsilon^4)
\]

\[
\mathcal{C}_{34}(K_{11}^o) = \frac{\cos \theta_{12}}{2} \frac{1}{A_2} \frac{\partial K_{11}^o}{\partial \xi_2}
\]

\[
- \csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc \theta_{12} \left(\frac{1}{\rho_{22}} + \frac{1}{2 A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K_{11}^o + \mathcal{O}(\varepsilon^4)
\]
"SMALL-STRAIN" COMPATIBILITY CONDITIONS FOR S_ϵ

CONTINUED

\[C_{33} \left(\varepsilon_{12}^o \right) = \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) + 2 \cot \theta_{12} \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) \right] \varepsilon_{12}^o \]

\[+ \csc^2 \theta_{12} \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_2} \frac{\partial \varepsilon_{12}^o}{\partial \xi_2} \]

\[+ \csc^2 \theta_{12} \left[\left(\frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left(\frac{1}{r_{12}} + \frac{5}{r_{12}} \right) + \frac{2}{\rho_{22}} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] \varepsilon_{12}^o + O(\varepsilon^4) \]

\[C_{35} \left(K_{22}^o \right) = - \frac{1}{A_1} \frac{\partial K_{22}^o}{\partial \xi_1} + \cos \theta_{12} \frac{1}{2} \frac{\partial K_{22}^o}{\partial \xi_2} \]

\[+ \left[\cot \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{2} \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K_{22}^o + O(\varepsilon^4) \]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_ε

CONTINUED

\[\mathcal{E}_{36}(K_{12}^o) = \sin \theta_{12} \frac{1}{A_2} \frac{\partial K_{12}^o}{\partial \xi_2} - 2 \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) K_{12}^o + O(\varepsilon^4) \]

- In obtaining these expressions for the **differential compatibility operators**, $\mathcal{E}_{ij}(\)$, the following expressions were used

\[
\frac{\partial A_2}{\partial \xi_1} = A_1 A_2 \left(\frac{\csc \theta_{12}}{\rho_{22}} - \frac{\cot \theta_{12}}{\rho_{11}} \right) - \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} + \frac{\csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \csc \theta_{12}
\]

\[
\frac{\partial A_1}{\partial \xi_2} = A_1 A_2 \left(\frac{\cot \theta_{12}}{\rho_{22}} - \frac{\csc \theta_{12}}{\rho_{11}} \right) - \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} + \frac{\cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \csc \theta_{12}
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR \(S \)

CONTINUED

- For orthogonal reference-surface Gaussian coordinates, the Gaussian curvature reduces to

\[
K_G = \frac{1}{r_{11}r_{22}} - \frac{1}{r_{12}^2}
\]

and the corresponding change due to deformation becomes

\[
K_G = \frac{\kappa_{11}^o}{r_{11}} + \frac{\kappa_{22}^o}{r_{22}} + \frac{2\kappa_{12}^o}{r_{12}} + O(\varepsilon^4)
\]

- Likewise, for orthogonal reference-surface Gaussian coordinates, the differential operators reduce to:

\[
\mathcal{C}_{11}(\varepsilon_{11}^o) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2^o}{\rho_{22}} \varepsilon_{11}^o \right) - \frac{\partial}{\partial \xi_2} \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(A_1^o \varepsilon_{11}^o \right) \right)
\]

\[
- \left(\frac{1}{r_{11}r_{22}} - \frac{1}{(r_{12})^2} \right) A_1 A_2 \varepsilon_{11}^o + O(\varepsilon^4)
\]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_{ϵ}
CONTINUED

\[C_{12}(\varepsilon^o_{22}) = - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \varepsilon^o_{22} \right) - \frac{\partial}{\partial \xi_1} \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(A_2 \varepsilon^o_{22} \right) \right) \]
\[- \left(\frac{1}{r_{11}r_{22}} - \frac{1}{(r_{12})^2} \right) A_1 A_2 \varepsilon^o_{22} + O(\varepsilon^4) \]

\[C_{13}(\varepsilon^o_{12}) = \frac{\partial}{\partial \xi_1} \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_2} \left(A_1 \varepsilon^o_{12} \right) \right) + \frac{\partial}{\partial \xi_2} \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_1} \left(A_2 \varepsilon^o_{12} \right) \right) \]
\[- \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(2\varepsilon^o_{12} \right) + O(\varepsilon^4) \]

\[C_{14}(K^o_{11}) = - \frac{A_1 A_2}{r_{22}} K^o_{11} + O(\varepsilon^4) \]
\[C_{15}(K^o_{22}) = - \frac{A_1 A_2}{r_{11}} K^o_{22} + O(\varepsilon^4) \]
\[C_{16}(K^o_{12}) = - \frac{2A_1 A_2}{r_{12}} K^o_{12} + O(\varepsilon^4) \]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR S_*

CONTINUED

\[C_{21}(\varepsilon^o) = -\left(\frac{1}{r_{11}} - \frac{1}{r_{22}}\right)A_2 \frac{\partial \varepsilon_{11}^o}{\partial \xi_2} + \varepsilon_{11}^o \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}}\right) + \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_1} \left(\frac{2}{r_{12}}\right)\varepsilon_{11}^o + O(\varepsilon^4) \]

\[C_{22}(\varepsilon^o) = \frac{\varepsilon_{22}^o}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}}\right) - 2 \frac{\varepsilon_{22}^o}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} - \frac{1}{r_{22}}\right) + O(\varepsilon^4) \]

\[C_{23}(\varepsilon^o) = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{11}} + \frac{1}{r_{22}}\right)\varepsilon_{12}^o + \left(\frac{1}{r_{11}} - \frac{1}{r_{22}}\right) \frac{\varepsilon_{22}^o}{A_1} \frac{\partial}{\partial \xi_1} + \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \frac{4\varepsilon_{12}^o}{r_{12}} + O(\varepsilon^4) \]

\[C_{24}(K_{11}^o) = -\frac{1}{A_2} \frac{\partial K_{11}^o}{\partial \xi_2} - \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} K_{11}^o + O(\varepsilon^4) \]

\[C_{25}(K_{22}^o) = \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} K_{22}^o + O(\varepsilon^4) \]

\[C_{26}(K_{12}^o) = \frac{1}{A_1} \frac{\partial K_{12}^o}{\partial \xi_1} + \frac{2}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} K_{12}^o + O(\varepsilon^4) \]
“SMALL-STRAIN” COMPATIBILITY CONDITIONS FOR \(S_t \)

CONCLUDED

\[
C_{31}(\varepsilon_{11}^o) = \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \right] \varepsilon_{11}^o - \frac{2}{r_{12}} \frac{1}{A_2} \frac{\partial \varepsilon_{11}^o}{\partial \xi_2} + \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \varepsilon_{11}^o + O(\varepsilon^4)
\]

\[
C_{32}(\varepsilon_{22}^o) = -\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \varepsilon_{22}^o}{\partial \xi_1} + \frac{\varepsilon_{22}^o}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) + \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \frac{2\varepsilon_{22}^o}{r_{12}} + O(\varepsilon^4)
\]

\[
C_{33}(\varepsilon_{12}^o) = \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{22}} + \frac{1}{r_{11}} \right) \right] \varepsilon_{12}^o + \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_2} \frac{\partial \varepsilon_{12}^o}{\partial \xi_2} + \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \frac{4\varepsilon_{12}^o}{r_{12}} + O(\varepsilon^4)
\]

\[
C_{34}(\kappa_{11}^o) = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \kappa_{11}^o + O(\varepsilon^4)
\]

\[
C_{35}(\kappa_{22}^o) = -\frac{1}{A_1} \frac{\partial \kappa_{22}^o}{\partial \xi_1} - \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \kappa_{22}^o + O(\varepsilon^4)
\]

\[
C_{36}(\kappa_{12}^o) = \frac{1}{A_2} \frac{\partial \kappa_{12}^o}{\partial \xi_2} + \frac{2}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \kappa_{12}^o + O(\varepsilon^4)
\]
MATHEMATICAL DESCRIPTION OF DEFORMED-SHELL GEOMETRY
MATHEMATICAL DESCRIPTION OF THE DEFORMED SHELL, \mathcal{R}_t

- As discussed previously, a shell structure is described mathematically as a set of points (material particles), \mathbf{B}, that occupy a region, \mathcal{R}_t, of three-dimensional Euclidean space \mathbb{E}^3 at time t.

- The time $t = 0$ is defined as the reference configuration or reference state of the shell, which occupies $\mathcal{R}_0 \subset \mathbb{E}^3$.

- In the reference configuration, or state, the shell is presumed to be undeformed and unstressed.
In addition, the undeformed shell is modelled as a set of contiguous parallel surfaces that fill $\mathcal{R}_0 \subset \mathcal{E}^3$.

Recall that points of the shell in the reference state are described parametrically by the Cartesian coordinates $X_k = X_k(\xi_1, \xi_2, \xi_3)$, where the parameters ξ_1, ξ_2, and ξ_3 define a system of curvilinear coordinates for the region $\mathcal{R}_0 \subset \mathcal{E}^3$.

The coordinates $x_k = X_k(\xi_1, \xi_2, 0)$ define points of the corresponding reference surface at time $t = 0$.

Values of $c_3^-(\xi_1, \xi_2) \leq \xi_3 \leq c_3^+(\xi_1, \xi_2)$ define the set of contiguous parallel surfaces.
MATHEMATICAL DESCRIPTION OF THE
DEFORMED SHELL, \(\mathcal{R}_t \) - CONTINUED

- During deformation, the set of material points initially in \(\mathcal{R}_0 \) occupy a region, \(\mathcal{R}_t \subset \mathbb{E}^3 \), at time \(t \).

- Material points initially in the reference surface \(S_0 \subset \mathcal{R}_0 \) occupy a region, \(S_t \subset \mathcal{R}_t \), at time \(t \).

- Material points initially in the parallel surface \(S_0 (\xi_3) \subset \mathcal{R}_0 \) occupy a region, \(S_t (\xi_3) \subset \mathcal{R}_t \), at time \(t \).

- Let points of \(\mathcal{R}_t \) have the Cartesian coordinates \((x_1, x_2, x_3) \), with respect to the coordinate frame shown in the previous figure.

- Points of \(S_t \) have the Cartesian coordinates \((x_1, x_2, x_3) \).
MATHEMATICAL DESCRIPTION OF THE DEFORMED SHELL, \mathcal{R}_t - CONTINUED

- By using the Lagrangian description of motion and deformation, the coordinates $\begin{pmatrix} x_1, x_2, x_3 \end{pmatrix}$ of a generic point $P \in \mathcal{R}_t$ are expressed in terms of the coordinates $\begin{pmatrix} X_1, X_2, X_3 \end{pmatrix}$ in the undeformed configuration of the corresponding point $P \in \mathcal{R}_0$; that is,

$$X_k = X_k(x_1, x_2, x_3, t)$$

- Thus, the parametric representation of \mathcal{R}_0 given by $X_k = X_k(\xi_1, \xi_2, \xi_3)$ induces the parametric representation for \mathcal{R}_t given by

$$X_k = X_k(\xi_1, \xi_2, \xi_3, t)$$

such that

$$X_k(\xi_1, \xi_2, \xi_3, 0) = X_k(\xi_1, \xi_2, \xi_3)$$

- These equations constitute a parametric representation in which the undeformed, unstressed material region \mathcal{R}_0 is transformed into the deformed image \mathcal{R}_t.
MATHEMATICAL DESCRIPTION OF THE DEFORMED SHELL, \mathcal{R}_t - CONTINUED

- Thus, the curvilinear-coordinate net that defines points of \mathcal{R}_0 deforms into a curvilinear-coordinate net that defines points of \mathcal{R}_t.

- The convection of the set of points \mathcal{R}_0 through \mathbb{E}^3 is represented mathematically by a continuous family of deformation mappings $\mathcal{D}_t(\cdot)$, in which the set \mathcal{R}_0 is mapped onto the set \mathcal{R}_t in a one-to-one manner at every given instant of time.

- The convected nature of the curvilinear coordinates enables the definition of vector fields associated with points of the deformed configuration \mathcal{R}_t that facilitate characterization of its deformation.
MATHEMATICAL DESCRIPTION OF THE DEFORMED SHELL, \(R_t \) - CONTINUED

- To characterize the geometry of the deformed region \(R_t \), it is convenient to define the position vector
 \[
 \mathbf{x} = x_k(\xi_1, \xi_2, \xi_3, t) \hat{i}_k
 \]
 with respect to the same fixed coordinate frame used to define
 \[
 \mathbf{x} = x_k(\xi_1, \xi_2, \xi_3) \hat{i}_k
 \]

- The position vector \(\mathbf{x} \) locates the deformed image,
 \[
 P = D_t(P) \in R_t
 \]
 of a generic point, \(P \in R_0 \), at time \(t \)

- The **displacement** of points of the reference configuration are described by the displacement-vector field
 \[
 \mathbf{u}(\xi_1, \xi_2, \xi_3, t)
 \]
 such that
 \[
 \mathbf{x} = \mathbf{x} + \mathbf{u}, \quad \mathbf{u}(\xi_1, \xi_2, \xi_3, 0) = \mathbf{0}, \quad \text{and} \quad \mathbf{u}(\xi_1, \xi_2, 0, t) = \mathbf{u}(\xi_1, \xi_2, t)
 \]

- Here, \(\mathbf{u}(\xi_1, \xi_2, t) \) is the displacement-vector field associated with points of the undeformed reference surface
 \[
 S_0 \subset R_0
 \]
CONVECTED BASE-VECTOR FIELDS FOR \mathcal{R}_t

- To characterize the deformation of a shell, vector fields associated with points of the deformed configuration \mathcal{R}_t are needed.

- Moreover, to describe and manipulate these vector fields, a corresponding set of base-vector fields is also needed.

- By direct analogy with the curvilinear coordinates of the undeformed configuration \mathcal{R}_0, the natural base-vector fields of the convected curvilinear coordinate system (ξ_1, ξ_2, ξ_3) are given by

$$\hat{\mathbf{e}}_k(\xi_1, \xi_2, \xi_3, \tau) \equiv \frac{\partial \mathbf{X}}{\partial \xi_k}, \quad \text{where} \quad \hat{\mathbf{e}}_k(\xi_1, \xi_2, \xi_3, 0) = \hat{\mathbf{g}}_k(\xi_1, \xi_2, \xi_3)$$

- Each of the base vectors $\{\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3\}$ is tangent to one of the convected curvilinear-coordinate curves at a given point of the deformed shell, as depicted in the following figure.
CONVECTED BASE-VECTOR FIELDS FOR \mathcal{R}_t

CONTINUED

Curvilinear coordinates of \mathcal{R}_0 at time $t = 0$

$$\mathbf{X} = \mathbf{X}(\xi_1, \xi_2, \xi_3, 0)$$

Convected curvilinear coordinates of \mathcal{R}_t at time t

$$\mathbf{X} = \mathbf{X}(\xi_1, \xi_2, \xi_3, t)$$
Thus, it follows that \mathbf{g}_1 and \mathbf{g}_2 are tangent to the convected Gaussian-coordinate curves of a given deformed parallel surface defined by a specific value of the coordinate ξ_3.
CONVECTED BASE-VECTOR FIELDS FOR \mathcal{R}_t

CONTINUED

- Recall, that the vectors $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$, defined for the undeformed configuration \mathcal{R}_0, are noncolinear and noncoplanar, for a meaningful coordinate system formed by three distinct coordinate surfaces.

- Thus, $\{\hat{g}_1, \hat{g}_2, \hat{g}_3\}$ are inherently linearly independent at each point of \mathcal{R}_0, and, as a result, constitute a basis for representing vector field associated with the points of \mathcal{R}_0.

- Therefore, any vector field $\tilde{V}(\xi_1, \xi_2, \xi_3)$ associated with points of \mathcal{R}_0 can be expressed uniquely by the linear combination $\tilde{V} = V^k \hat{g}_k$, where $V^k = V^k(\xi_1, \xi_2, \xi_3)$.
CONVECTED BASE-VECTOR FIELDS FOR \mathcal{R}_t

CONTINUED

- For physically meaningful deformations, the vector fields \(\{\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3\} \) remain noncolinear and noncoplanar and, as a result, remain linearly independent during deformation.

- Thus, they form a basis for points of the deformed configuration \mathcal{R}_t such that any vector field $\tilde{\mathbf{V}}(\xi_1, \xi_2, \xi_3, t)$, associated with points of \mathcal{R}_t, can be expressed uniquely as the linear combination

\[
\tilde{\mathbf{V}} = \mathbf{V}^k \tilde{\mathbf{e}}_k, \quad \text{where} \quad \mathbf{V}^k = \mathbf{V}^k(\xi_1, \xi_2, \xi_3, t)
\]

- In addition, $\mathbf{V}^k(\xi_1, \xi_2, \xi_3, 0) = \mathbf{V}^k(\xi_1, \xi_2, \xi_3)$ because of the convective nature of the curvilinear coordinates.
Another convenient form of the convected natural basis that is used herein is the set of unit-magnitude vector fields \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) defined by

\[
\hat{g}_k = \frac{\hat{X}_k}{\mathcal{H}_k} = \frac{1}{\mathcal{H}_k} \frac{\partial \hat{X}}{\partial \xi_k}
\]

with

\[
\mathcal{H}_k(\xi_1, \xi_2, \xi_3, t) \equiv \left| \hat{g}_k \right| = \sqrt{\hat{g}_k \cdot \hat{g}_k}
\]

and where the parentheses enclosing the subscript indicates suspension of summation of repeated indices.

The relationships between \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) and \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \) are found by substituting \(\hat{X} = \hat{X} + \hat{U} \) into \(\hat{g}_k \equiv \frac{\partial \hat{X}}{\partial \xi_k} \) and then using \(\hat{g}_k = \frac{\partial \hat{X}}{\partial \xi_k} \) to get

\[
\hat{g}_k = \hat{g}_k + \frac{\partial \hat{U}}{\partial \xi_k}
\]

or

\[
\hat{g}_k = \mathcal{H}_k(\hat{g}_k + \frac{1}{\mathcal{H}_k} \frac{\partial \hat{U}}{\partial \xi_k})
\]
CONVECTED BASE-VECTOR FIELDS FOR \mathcal{R}_t
CONCLUDED

\[\mathbf{\tilde{U}}(\xi_1, \xi_2, \xi_3, \tau) \]

\[\mathbf{\tilde{x}} = \mathbf{x}_k(\xi_1, \xi_2, \xi_3) \hat{i}_k \]

\[\mathbf{\tilde{x}} = \mathbf{x}_k(\xi_1, \xi_2, \xi_3, \tau) \hat{i}_k \]
METRIC COEFFICIENTS FOR R_t

- The metric coefficients of the deformed shell, R_t, are obtained following the same process used for the undeformed shell, R_0.

- First, consider the deformation of the differential volume element $d\forall \subset R_0$ into another differential volume element $d\forall \subset R_t$, as depicted in the following figure.

 - The point $R \in R_0$ has coordinates (X_1, X_2, X_3).

 - The base of $d\forall \subset R_0$ is located on the parallel surface $S_\varepsilon(R)$.

 - $R = D_\varepsilon(R) \in R_t$ is the image of $R \in R_0$, at time t and has coordinates (X_1, X_2, X_3).

 - The base of $d\forall \subset R_t$ is located on the parallel surface $S_\varepsilon(R)$.
METRIC COEFFICIENTS FOR \mathcal{R}_t - CONTINUED

$\xi_1 \xi_2 \xi_3 \hat{n}$

\mathcal{R}_0 $\mathcal{S}_\varepsilon(P)$

$\mathcal{S}_\varepsilon(R)$

$S_\varepsilon(P)$

\hat{X} $\hat{i}_1 \hat{i}_2 \hat{i}_3$

$d\mathcal{A}$ $\mathcal{D}_\varepsilon(d\mathcal{A}) \subset \mathcal{R}_t$
METRIC COEFFICIENTS FOR \mathbb{R}_t - CONTINUED

- Recall that the position vectors to points P and R in the undeformed shell are $\mathbf{x} = x_k(\xi_1, \xi_2) \hat{\mathbf{i}}_k$ and $\mathbf{X}(\xi_1, \xi_2, \xi_3) = \mathbf{\hat{x}}(\xi_1, \xi_2) + \xi_3 \mathbf{\hat{n}}(\xi_1, \xi_2)$, respectively.

- Likewise, the position vector to point S is

$$\mathbf{X}(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \xi_3 + d\xi_3) = \mathbf{\hat{X}}(\xi_1, \xi_2, \xi_3) + d\mathbf{\hat{X}}$$

the vector from point R to point S is $d\mathbf{\hat{X}}$

- The length of arc of the material curve between points R and S is given by

$$dL = \mathbf{RS} = |d\mathbf{\hat{X}}|$$

to a first approximation in differentials.
For the deformed shell, the position vectors to points \(P \) and \(R \) are:

\[
\vec{x} = x_k(\xi_1, \xi_2, \xi_3, \tau) \hat{i}_k \quad \text{and} \quad \vec{R} = x_k(\xi_1, \xi_2, \xi_3, \tau) \hat{i}_k,
\]

respectively.

Likewise, the position vector to point \(S \) is:

\[
\vec{S} = (\xi_1 + d\xi_1, \xi_2 + d\xi_2, \xi_3 + d\xi_3) = \vec{S}(\xi_1, \xi_2, \xi_3) + d\vec{S},
\]

and the vector from point \(R \) to point \(S \) is:

\[
d\vec{R} = \vec{R} - \vec{S}.
\]

The length of arc of the material curve between points \(R \) and \(S \) is:

\[
dL = D_\tau(dL) \quad \text{and} \quad dL = RS = \left| d\vec{R} \right|,
\]

to a first approximation in differentials.
The chain rule of differentiation gives
\[\frac{d\mathbf{\dot{X}}(\xi_1, \xi_2, \xi_3, t)}{d\xi_k} = \frac{\partial \mathbf{\dot{X}}}{\partial \xi_k} \frac{d\xi_k}{dt} = \mathbf{\dot{\xi}}_k(\xi_1, \xi_2, \xi_3, t) d\xi_k \]

From \(d\mathcal{L} = |d\mathbf{\dot{X}}| \), it follows that \(d\mathcal{L}^2 = d\mathbf{\dot{X}} \cdot d\mathbf{\dot{X}} = (\mathbf{\dot{\xi}}_i \cdot \mathbf{\dot{\xi}}_k) d\xi_i d\xi_k \)

Using \(\mathcal{H}_k(\xi_1, \xi_2, \xi_3, t) = |\mathbf{\dot{\xi}}_k| = \sqrt{\mathbf{\dot{\xi}}_k \cdot \mathbf{\dot{\xi}}_k(k)} \) and the presumption of a nonorthogonal convected-coordinate mesh for \(\mathcal{R}_t \) gives
\[d\mathcal{L}^2 = (\mathcal{H}_1 d\xi_1)^2 + 2\mathcal{H}_1 \mathcal{H}_2 \cos\Theta_{12} d\xi_1 d\xi_2 + (\mathcal{H}_2 d\xi_2)^2 + 2\mathcal{H}_1 \mathcal{H}_3 \cos\Theta_{13} d\xi_1 d\xi_3 + 2\mathcal{H}_2 \mathcal{H}_3 \cos\Theta_{23} d\xi_2 d\xi_3 + (\mathcal{H}_3 d\xi_3)^2 \]

where \(\Theta_{jk}(\xi_1, \xi_2, \xi_3, t) \) are the angles between the generally nonorthogonal intersecting coordinate curves of the deformed shell that are defined by \(\mathcal{H}_j \mathcal{H}_k \cos\Theta_{(jk)} = \mathbf{\dot{\xi}}_j \cdot \mathbf{\dot{\xi}}_k \)
By substituting $\hat{g}_k = \hat{g}_k + \frac{\partial \tilde{U}}{\partial \xi_k} = H_{(k)} \left(\hat{g}_k + \frac{1}{H_{(k)}} \frac{\partial \tilde{U}}{\partial \xi_k} \right)$ into $H_k = \sqrt{\hat{g}_k \cdot \hat{g}_{(k)}}$, the metric coefficients of the deformed shell are found, in terms of the displacement vector field, to be

\[
H_1 = H_1 \sqrt{1 + 2 \left(\hat{g}_1 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right)}
\]

\[
H_2 = H_2 \sqrt{1 + 2 \left(\hat{g}_2 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right)}
\]

\[
H_3 = H_3 \sqrt{1 + 2 \left(\hat{g}_3 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right)}
\]

or

\[
H_k = H_k \sqrt{1 + 2 \left(\hat{g}_{(k)} \cdot \frac{1}{H_{(k)}} \frac{\partial \tilde{U}}{\partial \xi_{(k)}} \right) + \left(\frac{1}{H_{(k)}} \frac{\partial \tilde{U}}{\partial \xi_{(k)}} \cdot \frac{1}{H_{(k)}} \frac{\partial \tilde{U}}{\partial \xi_{(k)}} \right)}
\]
Similarly, \(J H k \cos \Theta_{(jk)} = \hat{J}_j \cdot \hat{J}_k \) gives

\[
\frac{H_1 H_2}{H_1 H_2} \cos \Theta_{12} - \cos \Theta_{12} = \left(\hat{g}_1 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\hat{g}_2 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) \left(\frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right)
\]

\[
\frac{H_1 H_3}{H_1 H_3} \cos \Theta_{13} - \cos \Theta_{13} = \left(\hat{g}_1 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\hat{g}_3 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) \left(\frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right)
\]

\[
\frac{H_2 H_3}{H_2 H_3} \cos \Theta_{23} - \cos \Theta_{23} = \left(\hat{g}_2 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\hat{g}_3 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) \left(\frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right)
\]
METRIC COEFFICIENTS FOR \mathcal{R}_t - CONTINUED

- The lengths of the differential arcs along the convected coordinate curves are obtained directly from the expression

$$d\mathcal{L}^2 = \left(H_1 d\xi_1 \right)^2 + 2 H_1 H_2 \cos \Theta_{12} \, d\xi_1 d\xi_2 + \left(H_2 d\xi_2 \right)^2 + 2 H_1 H_3 \cos \Theta_{13} \, d\xi_1 d\xi_3 + 2 H_2 H_3 \cos \Theta_{23} \, d\xi_2 d\xi_3 + \left(H_3 d\xi_3 \right)^2$$

- Along the convected ξ_1-coordinate curve, $d\xi_2 = d\xi_3 = 0$ and
 $$d\mathcal{L} \rightarrow d\xi_1^{(1)}$$
 where
 $$d\xi_1^{(1)} = H_1 d\xi_1$$

- Along the convected ξ_2-coordinate curve, $d\xi_1 = d\xi_3 = 0$ and
 $$d\mathcal{L} \rightarrow d\xi_2^{(2)}$$
 where
 $$d\xi_2^{(2)} = H_2 d\xi_2$$

- Along the convected ξ_3-coordinate curve, $d\xi_1 = d\xi_2 = 0$ and
 $$d\mathcal{L} \rightarrow d\xi_3^{(3)}$$
 where
 $$d\xi_3^{(3)} = H_3 d\xi_3$$
METRIC COEFFICIENTS FOR \mathcal{R}_t - CONCLUDED

- In terms of the displacement vector-field,

\[
\begin{align*}
\mathbf{d}_e(\xi_3)_1 &= \sqrt{1 + 2(\hat{g}_1 \cdot \frac{1}{H_1} \frac{\partial \bar{U}}{\partial \xi_1}) + \left(\frac{1}{H_1} \frac{\partial \bar{U}}{\partial \xi_1} \cdot \frac{1}{H_1} \frac{\partial \bar{U}}{\partial \xi_1}\right)} \ H_1 d\xi_1 \\
\mathbf{d}_e(\xi_3)_2 &= \sqrt{1 + 2(\hat{g}_2 \cdot \frac{1}{H_2} \frac{\partial \bar{U}}{\partial \xi_2}) + \left(\frac{1}{H_2} \frac{\partial \bar{U}}{\partial \xi_2} \cdot \frac{1}{H_2} \frac{\partial \bar{U}}{\partial \xi_2}\right)} \ H_2 d\xi_2 \\
\mathbf{d}_e(\xi_3)_3 &= \sqrt{1 + 2(\hat{g}_3 \cdot \frac{1}{H_3} \frac{\partial \bar{U}}{\partial \xi_3}) + \left(\frac{1}{H_3} \frac{\partial \bar{U}}{\partial \xi_3} \cdot \frac{1}{H_3} \frac{\partial \bar{U}}{\partial \xi_3}\right)} \ H_3 d\xi_3
\end{align*}
\]
RECIPIROCAL BASIS FOR \mathcal{R}_t

- Previously, the vector fields $\{\vec{g}^1, \vec{g}^2, \vec{g}^3\}$ were introduced for the undeformed shell, \mathcal{R}_0, such that

$$\vec{g}_1 \times \vec{g}_2 = H \vec{g}^3 \quad \vec{g}_3 \times \vec{g}_1 = H \vec{g}^2 \quad \vec{g}_2 \times \vec{g}_3 = H \vec{g}^1$$

and $\vec{g}^m \cdot \vec{g}_n = \delta^m_n$, where δ^m_n is the Kronecker delta symbol and

$$H^2 = \begin{bmatrix}
(H_1)^2 & H_1H_2\cos\Theta_{12} & H_1H_3\cos\Theta_{13} \\
H_1H_2\cos\Theta_{12} & (H_2)^2 & H_2H_3\cos\Theta_{23} \\
H_1H_3\cos\Theta_{13} & H_2H_3\cos\Theta_{23} & (H_3)^2
\end{bmatrix}$$

- A set of expressions $\vec{g}^k = g^{kp}\vec{g}_p$ that relate the basis $\{\vec{g}_1, \vec{g}_2, \vec{g}_3\}$ to the reciprocal basis $\{\vec{g}^1, \vec{g}^2, \vec{g}^3\}$ were derived for general nonorthogonal coordinates
RECIPROCAL BASIS FOR \mathcal{R}_t - CONTINUED

\[\begin{bmatrix}
g_{11} & g_{12} & g_{13} \\
g_{12} & g_{22} & g_{23} \\
g_{13} & g_{23} & g_{33}
\end{bmatrix} = \begin{bmatrix}
(H_1)^2 & H_1 H_2 \cos \Theta_{12} & H_1 H_3 \cos \Theta_{13} \\
H_1 H_2 \cos \Theta_{12} & (H_2)^2 & H_2 H_3 \cos \Theta_{23} \\
H_1 H_3 \cos \Theta_{13} & H_2 H_3 \cos \Theta_{23} & (H_3)^2
\end{bmatrix}^{-1}\]

- Therefore, it follows that reciprocal base vector fields for the deformed shell \mathcal{R}_t are found by direct analogy.

- Specifically, a convected basis $\{\hat{\gamma}^1, \hat{\gamma}^2, \hat{\gamma}^3\}$ that is reciprocal to the convected basis $\{\dot{\gamma}_1, \dot{\gamma}_2, \dot{\gamma}_3\}$ is defined for \mathcal{R}_t by

\[\dot{\gamma}_1 \times \dot{\gamma}_2 = \mathcal{H} \hat{\gamma}^3 \quad \dot{\gamma}_3 \times \dot{\gamma}_1 = \mathcal{H} \hat{\gamma}^2 \quad \dot{\gamma}_2 \times \dot{\gamma}_3 = \mathcal{H} \hat{\gamma}^1\]

and $\hat{\gamma}^m \cdot \hat{\gamma}^n = \delta^m_n$, where δ^m_n is the Kronecker delta symbol and
The relationship between the two bases is given by

\[\mathbf{H}^2 = \begin{pmatrix} \mathbf{H}_1^2 & \mathbf{H}_1 \mathbf{H}_2 \cos \Theta_{12} & \mathbf{H}_1 \mathbf{H}_3 \cos \Theta_{13} \\ \mathbf{H}_1 \mathbf{H}_2 \cos \Theta_{12} & \mathbf{H}_2^2 & \mathbf{H}_2 \mathbf{H}_3 \cos \Theta_{23} \\ \mathbf{H}_1 \mathbf{H}_3 \cos \Theta_{13} & \mathbf{H}_2 \mathbf{H}_3 \cos \Theta_{23} & \mathbf{H}_3^2 \end{pmatrix} \]

- The relationship between the two bases is given by \(\mathbf{g}^k = \mathbf{g} \mathbf{g}_p \), where

\[
\begin{bmatrix} g^{11} & g^{12} & g^{13} \\ g^{12} & g^{22} & g^{23} \\ g^{13} & g^{23} & g^{33} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1^2 & \mathbf{H}_1 \mathbf{H}_2 \cos \Theta_{12} & \mathbf{H}_1 \mathbf{H}_3 \cos \Theta_{13} \\ \mathbf{H}_1 \mathbf{H}_2 \cos \Theta_{12} & \mathbf{H}_2^2 & \mathbf{H}_2 \mathbf{H}_3 \cos \Theta_{23} \\ \mathbf{H}_1 \mathbf{H}_3 \cos \Theta_{13} & \mathbf{H}_2 \mathbf{H}_3 \cos \Theta_{23} & \mathbf{H}_3^2 \end{bmatrix}^{-1}
\]

- Also,

\[
(\vec{\mathbf{g}}_1 \times \vec{\mathbf{g}}_2) \cdot \vec{\mathbf{g}}_3 = (\vec{\mathbf{g}}_2 \times \vec{\mathbf{g}}_3) \cdot \vec{\mathbf{g}}_1 = (\vec{\mathbf{g}}_3 \times \vec{\mathbf{g}}_1) \cdot \vec{\mathbf{g}}_2 = \mathbf{H}
\]
RECIPROCAL BASIS FOR R_{ξ} - CONCLUDED

ξ_1, ξ_2, ξ_3

ξ_1, ξ_2, ξ_3

ξ_1, ξ_2, ξ_3

ξ_1, ξ_2, ξ_3

Surface $\xi_3 = \text{constant}$
DIFFERENTIAL AREAS AND VOLUMES FOR \mathcal{R}_t

- Consider the deformation of the differential volume $d\mathcal{A}$ into $d\mathcal{A}$, as shown in the figure.
During deformation, the differential surface area shown in the previous figure becomes

\[dA(\xi_3) = D_{\xi}(dA(\xi_3)) \]

To a first approximation in differentials, \(dA(\xi_3) \) is given by

\[dA(\xi_3) = \left| \frac{\partial \hat{X}}{\partial \xi_1} d\xi_1 \times \frac{\partial \hat{X}}{\partial \xi_2} d\xi_2 \right| \]

Using \(\hat{\xi}_\alpha = \frac{\partial \hat{X}}{\partial \xi_\alpha} \) gives

\[dA(\xi_3) = \hat{\xi}_1 \times \hat{\xi}_2 \ d\xi_1 d\xi_2 \]
The differential area of the face of the differential element given by \(\xi_2 = 0 \) is given by
\[
dA^{(2)} = \left| \frac{\partial \vec{X}}{\partial \xi_1} d\xi_1 \times \frac{\partial \vec{X}}{\partial \xi_3} d\xi_3 \right|,
\]
to a first approximation in differentials.

Substituting \(\delta_k = \frac{\partial \vec{X}}{\partial \xi_k} \) into the previous expression gives
\[
dA^{(2)} = \delta_1 \times \delta_3 \ d\xi_1 d\xi_3.
\]
Similarly, the differential area of the face of the differential element given by $\xi_1 = 0$ is given by

$$dA_\langle 1 \rangle = \left| \frac{\partial \hat{\mathbf{X}}}{\partial \xi_2} d\xi_2 \times \frac{\partial \hat{\mathbf{X}}}{\partial \xi_3} d\xi_3 \right| = \left| \hat{\mathbf{g}}_2 \times \hat{\mathbf{g}}_3 \right| d\xi_2 d\xi_3$$

and the volume of the differential element is given by

$$dV = \left(\hat{\mathbf{g}}_1 \times \hat{\mathbf{g}}_2 \right) \cdot \hat{\mathbf{g}}_3 d\xi_1 d\xi_2 d\xi_3$$

From $\hat{\mathbf{g}}_k = H_{(k)} \left(\hat{\mathbf{g}}_k + \frac{1}{H_{(k)}} \frac{\partial \hat{\mathbf{U}}}{\partial \xi_k} \right)$ and $\frac{1}{H_{(p)}} \frac{\partial \hat{\mathbf{U}}}{\partial \xi_p} \equiv U_{\langle k \rangle}^{(k)} \hat{\mathbf{g}}_k$, it is seen that areas and volume of the differential element of the deformed shell are extremely complicated expressions, when expressed in terms of the displacement-field derivatives $U_{\langle k \rangle}^{(k)}$.
DIFFERENTIAL AREAS AND VOLUMES FOR \(\mathbb{R}^n \)

CONTINUED

- More insightful forms for the differential areas and volumes are obtained by using \(\hat{g}_k = H_k \) and

\[
\begin{align*}
\hat{g}_1 \times \hat{g}_2 &= H_1 H_2 \quad \hat{g}_1 \times \hat{g}_2 = H_1 H_2 \sin \theta_{12} \hat{g}_3 = H_1 H_2 \sin \theta_{12} \\
\hat{g}_1 \times \hat{g}_3 &= H_1 H_3 \quad \hat{g}_1 \times \hat{g}_3 = H_1 H_3 \sin \theta_{13} \hat{g}_2 = H_1 H_3 \sin \theta_{13} \\
\hat{g}_2 \times \hat{g}_3 &= H_2 H_3 \quad \hat{g}_2 \times \hat{g}_3 = H_2 H_3 \sin \theta_{23} \hat{g}_1 = H_2 H_3 \sin \theta_{23} \\
(\hat{g}_1 \times \hat{g}_2) \cdot \hat{g}_3 &= H
\end{align*}
\]

where

\[
H^2 = \begin{bmatrix}
H_1^2 & H_1 H_2 \cos \theta_{12} & H_1 H_3 \cos \theta_{13} \\
H_1 H_2 \cos \theta_{12} & H_2^2 & H_2 H_3 \cos \theta_{23} \\
H_1 H_3 \cos \theta_{13} & H_2 H_3 \cos \theta_{23} & H_3^2
\end{bmatrix}
\]

or

\[
H = H_1 H_2 H_3 \sqrt{\sin^2 \theta_{12} + \sin^2 \theta_{13} + \sin^2 \theta_{23} + 2(\cos \theta_{12} \cos \theta_{13} \cos \theta_{23} - 1)}
\]
DIFFERENTIAL AREAS AND VOLUMES FOR \mathcal{R}_t

CONCLUDED

- With these results,

\[
d\mathcal{A}(\xi_3) = \mathbf{\hat{\xi}_1} \times \mathbf{\hat{\xi}_2} \, d\xi_1 d\xi_2 \quad \text{becomes} \quad d\mathcal{A}(\xi_3) = H_1 H_2 \sin \Theta_{12} \, d\xi_1 d\xi_2
\]

\[
d\mathcal{A}(\xi_2) = \mathbf{\hat{\xi}_1} \times \mathbf{\hat{\xi}_3} \, d\xi_1 d\xi_3 \quad \text{becomes} \quad d\mathcal{A}(\xi_2) = H_1 H_3 \sin \Theta_{13} \, d\xi_1 d\xi_3
\]

\[
d\mathcal{A}(\xi_1) = \mathbf{\hat{\xi}_2} \times \mathbf{\hat{\xi}_3} \, d\xi_2 d\xi_3 \quad \text{becomes} \quad d\mathcal{A}(\xi_1) = H_2 H_3 \sin \Theta_{23} \, d\xi_2 d\xi_3
\]

\[
d\mathcal{V} = (\mathbf{\hat{\xi}_1} \times \mathbf{\hat{\xi}_2}) \cdot \mathbf{\hat{\xi}_3} \, d\xi_1 d\xi_2 d\xi_3 \quad \text{becomes} \quad d\mathcal{V} = H \, d\xi_1 d\xi_2 d\xi_3
\]
CHARACTERIZATION OF SHELL DEFORMATIONS
ELONGATION AND SHEAR OF THE SHELL

- **Elongation** (and contraction) and **shear** are two fundamental characteristics of deformation.

- In the general theory of the mechanics of solids, it is proven that elongation of any differential arc composed of material points can be described completely in terms of the **Green-Lagrange strains**.

- Shearing action is characterized by the change in angle between the tangent lines of any two differential arcs, composed of material points, that emanate from the same material point.

- Shearing action can also be described completely in terms of the **Green-Lagrange strains**.
Consider the differential arc shown in the figure:

\[dL(\mu) = R\hat{S} \subset \mathcal{R}_0 \]
The arc is part of a curve $C \subset \mathbb{R}_0$ that is defined parametrically by

$$\mathbf{X}(\mu) = X_k(\xi_1(\mu), \xi_2(\mu), \xi_2(\mu)) \hat{i}_k$$

where μ is a parameter.

During deformation, arc $\mathbb{RS} \subset \mathbb{R}_0$ generally changes spatial orientation and elongates or contracts (negative elongation) into $\mathbb{RS} \subset \mathbb{R}_t$.

The elongation $e_{\mathbb{T}}(\mu)(\xi_1(\mu), \xi_2(\mu), \xi_3(\mu), t)$ of the differential arc $d\mathcal{L}(\mu) = \mathbb{RS}$ as it deforms into the differential arc $d\mathcal{L}(\mu) = \mathbb{RS}$ is defined by

$$e_{\mathbb{T}}(\mu) \equiv \frac{d\mathcal{L} - d\mathcal{L}}{d\mathcal{L}}$$
ELONGATION AND SHEAR OF THE SHELL - CONTINUED

In this definition of the elongation, the unit-magnitude vector field
\[\hat{T}(\mu) = \frac{d\hat{X}}{dL} \]
defines the orientation of the elongation.

\[dL(\mu) = R\tilde{S} \subset R_0 \]

From \[e\hat{T} = \frac{d\mathcal{L} - dL}{dL} \], it follows that

\[d\mathcal{L} = \left(1 + e\hat{T}\right)dL \]

and

\[\left(1 + e\hat{T}\right)^2 - 1 = \frac{d\mathcal{L}^2 - dL^2}{dL^2} \]
ELONGATION AND SHEAR OF THE SHELL - CONTINUED

Using \(d\mathcal{L}^2 = (\dot{\mathbf{g}}_j \cdot \dot{\mathbf{g}}_k) d\xi_j d\xi_k \) and \(dL^2 = (\dot{g}_j \cdot \dot{g}_k) d\xi_j d\xi_k \) gives

\[
\left(1 + e_\hat{T}\right)^2 - 1 = \left[\left(\dot{\mathbf{g}}_j \cdot \dot{\mathbf{g}}_k\right) - \left(\dot{g}_j \cdot \dot{g}_k\right)\right] \frac{d\xi_j}{dL} \frac{d\xi_k}{dL}
\]

The direct dependence on \(\hat{T}_(\mu) \) is seen by noting that

\[
\hat{T} = \frac{d\hat{X}}{dL} = \frac{\partial \hat{X}}{\partial \xi_j} \frac{d\xi_j}{dL} = \hat{g}_j \frac{d\xi_j}{dL} \quad \text{and} \quad \hat{g}^m \cdot \hat{g}^n = \delta^m_n \quad \text{give} \quad \frac{d\xi_j}{dL} = \hat{T} \cdot \hat{g}^j
\]

Thus, \(\left(1 + e_\hat{T}\right)^2 - 1 = \left[\left(\dot{\mathbf{g}}_j \cdot \dot{\mathbf{g}}_k\right) - \left(\dot{g}_j \cdot \dot{g}_k\right)\right] \left(\hat{T} \cdot \hat{g}^j\right)\left(\hat{T} \cdot \hat{g}^k\right) \)

The six independent quantities \(\varepsilon_{jk} (\xi_1, \xi_2, \xi_3, t) \), defined such that

\[
\left[\left(\dot{\mathbf{g}}_j \cdot \dot{\mathbf{g}}_k\right) - \left(\dot{g}_j \cdot \dot{g}_k\right)\right] \frac{d\xi_j}{dL} \frac{d\xi_k}{dL} \equiv 2\varepsilon_{jk} (\xi_1, \xi_2, \xi_3, t) \frac{H_{(j)} d\xi_j}{dL} \frac{H_{(k)} d\xi_k}{dL}
\]
ELONGATION AND SHEAR OF THE SHELL-CONCLUDED

completely defined the elongation \(e^{(\xi_1, \xi_2, \xi_3, \tau)} \); that is

\[
e^{(\hat{T})} = \sqrt{1 + 2\varepsilon_{jk} H_{(j)} H_{(k)} (\hat{T} \cdot \hat{g}^j)(\hat{T} \cdot \hat{g}^k)} - 1
\]

\[
(1 + e^{(\hat{T})})^2 - 1 = \frac{dL^2 - dL^2}{dL^2}
\]

gives

\[
\frac{dL^2 - dL^2}{dL^2} = 2\varepsilon_{jk} H_{(j)} H_{(k)} (\hat{T} \cdot \hat{g}^j)(\hat{T} \cdot \hat{g}^k)
\]

This last expression is also written as

\[
dL^2 - dL^2 = 2\varepsilon_{jk} H_{(j)} H_{(k)} d\xi_j d\xi_k
\]
NONLINEAR SHELL STRAINS

- The physical components of the nonlinear, Green-Lagrange strain tensor for an arbitrary point of the shell are given by

\[
2\varepsilon_{ij}(H_{(i)}d\xi_i)\left(\frac{\partial}{\partial x^j}+\frac{\partial}{\partial y^j}\right) = dL^2 - dL^2
\]

where parentheses around the subscript are used in order not to violate the notation rules for the repeated-index summation convention.

- In this expression, \(dL = D_{\varepsilon}(dL) \) is the deformed image of the infinitesimal arc length \(dL \), which is also infinitesimal.

- Previously, it was shown for general nonorthogonal coordinates that

\[
dL^2 = (H_1 d\xi_1)^2 + 2H_1H_2\cos\Theta_{12} d\xi_1 d\xi_2 + (H_2 d\xi_2)^2 + 2H_1H_3\cos\Theta_{13} d\xi_1 d\xi_3 + 2H_2H_3\cos\Theta_{23} d\xi_2 d\xi_3 + (H_3 d\xi_3)^2
\]

\[
dL^2 = (H_1 d\xi_1)^2 + 2H_1H_2\cos\Theta_{12} d\xi_1 d\xi_2 + (H_2 d\xi_2)^2 + 2H_1H_3\cos\Theta_{13} d\xi_1 d\xi_3 + 2H_2H_3\cos\Theta_{23} d\xi_2 d\xi_3 + (H_3 d\xi_3)^2
\]
NONLINEAR SHELL STRAINS - CONTINUED

Thus,

\[
dL^2 - dL^2 = \left(H_1^2 - H_1 \right) d\xi_1 d\xi_1 + 2 \left(H_1 H_2 \cos \Theta_{12} - H_1 H_2 \cos \Theta_{12} \right) d\xi_1 d\xi_2 + \\
\left(H_2^2 - H_2 \right) d\xi_2 d\xi_2 + 2 \left(H_1 H_3 \cos \Theta_{13} - H_1 H_3 \cos \Theta_{13} \right) d\xi_1 d\xi_3 + \\
\left(H_3^2 - H_3 \right) d\xi_3 d\xi_3 + 2 \left(H_2 H_3 \cos \Theta_{23} - H_2 H_3 \cos \Theta_{23} \right) d\xi_2 d\xi_3
\]

Using the definition \(2\varepsilon_{ij} \left(H_{(i)} d\xi_{(i)} \right) \left(H_{(j)} d\xi_{(j)} \right) = dL^2 - dL^2 \) gives

\[
2\varepsilon_{11} = \left(\frac{H_1}{H_1} \right)^2 - 1 \\
2\varepsilon_{22} = \left(\frac{H_2}{H_2} \right)^2 - 1 \\
2\varepsilon_{33} = \left(\frac{H_3}{H_3} \right)^2 - 1 \\
2\varepsilon_{12} = 2 \left(\frac{H_1 H_2 \cos \Theta_{12} - \cos \Theta_{12}}{H_1 H_2} \right) \\
2\varepsilon_{13} = 2 \left(\frac{H_1 H_3 \cos \Theta_{13} - \cos \Theta_{13}}{H_1 H_3} \right) \\
2\varepsilon_{23} = 2 \left(\frac{H_2 H_3 \cos \Theta_{23} - \cos \Theta_{23}}{H_2 H_3} \right)
\]
The strains are expressed in terms of the displacement field by using

\[\mathcal{H}_1 = H_1 \sqrt{1 + 2 \left(\hat{g}_1 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right)} \]

\[\mathcal{H}_2 = H_2 \sqrt{1 + 2 \left(\hat{g}_2 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right)} \]

\[\mathcal{H}_3 = H_3 \sqrt{1 + 2 \left(\hat{g}_3 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right)} \]

\[\frac{\mathcal{H}_1 \mathcal{H}_2}{H_1 H_2} \cos \Theta_{12} - \cos \Theta_{12} = \left(\hat{g}_1 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\hat{g}_2 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) \]

\[\frac{\mathcal{H}_1 \mathcal{H}_3}{H_1 H_3} \cos \Theta_{13} - \cos \Theta_{13} = \left(\hat{g}_1 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\hat{g}_3 \cdot \frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \right) + \left(\frac{1}{H_1} \frac{\partial \tilde{U}}{\partial \xi_1} \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) \]

\[\frac{\mathcal{H}_2 \mathcal{H}_3}{H_2 H_3} \cos \Theta_{23} - \cos \Theta_{23} = \left(\hat{g}_2 \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) + \left(\hat{g}_3 \cdot \frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \right) + \left(\frac{1}{H_2} \frac{\partial \tilde{U}}{\partial \xi_2} \cdot \frac{1}{H_3} \frac{\partial \tilde{U}}{\partial \xi_3} \right) \]
Therefore,

\[
\begin{align*}
\varepsilon_{11} &= \left(\hat{g}_1 \cdot \frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \right) + \frac{1}{2} \left(\frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \cdot \frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \right) \\
\varepsilon_{22} &= \left(\hat{g}_2 \cdot \frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \right) + \frac{1}{2} \left(\frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \cdot \frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \right) \\
\varepsilon_{33} &= \left(\hat{g}_3 \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right) + \frac{1}{2} \left(\frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right) \\
2\varepsilon_{12} &= \left(\hat{g}_1 \cdot \frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \right) + \left(\hat{g}_2 \cdot \frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \right) + \left(\frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \cdot \frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \right) \\
2\varepsilon_{13} &= \left(\hat{g}_1 \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right) + \left(\hat{g}_3 \cdot \frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \right) + \left(\frac{1}{\hat{H}_1 \frac{\partial \hat{U}}{\partial \xi_1}} \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right) \\
2\varepsilon_{23} &= \left(\hat{g}_2 \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right) + \left(\hat{g}_3 \cdot \frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \right) + \left(\frac{1}{\hat{H}_2 \frac{\partial \hat{U}}{\partial \xi_2}} \cdot \frac{1}{\hat{H}_3 \frac{\partial \hat{U}}{\partial \xi_3}} \right)
\end{align*}
\]
NONLINEAR SHELL STRAINS - CONTINUED

or

\[2\varepsilon_{ij} = \left(\hat{g}_i \cdot \frac{1}{H_{(i)}} \frac{\partial \hat{U}}{\partial \xi_j} \right) + \left(\frac{1}{H_{(i)}} \frac{\partial \hat{U}}{\partial \xi_i} \cdot \hat{g}_j \right) + \left(\frac{1}{H_{(i)}} \frac{\partial \hat{U}}{\partial \xi_i} \cdot \frac{1}{H_{(j)}} \frac{\partial \hat{U}}{\partial \xi_j} \right) \]

With these expressions, it follows that the geometries of \(R_0 \) and \(R_t \) are related by

\[H_1 = H_1 \sqrt{1 + 2\varepsilon_{11}} \]
\[H_2 = H_2 \sqrt{1 + 2\varepsilon_{22}} \]
\[H_3 = H_3 \sqrt{1 + 2\varepsilon_{33}} \]

\[\frac{H_1 H_2 \cos \Theta_{12} - \cos \Theta_{12}}{H_1 H_2} = 2\varepsilon_{12} \]
\[\frac{H_1 H_3 \cos \Theta_{13} - \cos \Theta_{13}}{H_1 H_3} = 2\varepsilon_{13} \]
\[\frac{H_2 H_3 \cos \Theta_{23} - \cos \Theta_{23}}{H_2 H_3} = 2\varepsilon_{23} \]
By using these expressions, the cosines and sines of the angles between intersecting convected coordinate curves are found to be

\[
\begin{align*}
\cos \Theta_{12} &= \frac{2\varepsilon_{12} + \cos \Theta_{12}}{\sqrt{1 + 2\varepsilon_{11}} \sqrt{1 + 2\varepsilon_{22}}} \\
\sin \Theta_{12} &= \sqrt{1 - \frac{(2\varepsilon_{12} + \cos \Theta_{12})^2}{(1 + 2\varepsilon_{11})(1 + 2\varepsilon_{22})}} \\
\cos \Theta_{13} &= \frac{2\varepsilon_{13} + \cos \Theta_{13}}{\sqrt{1 + 2\varepsilon_{11}} \sqrt{1 + 2\varepsilon_{33}}} \\
\sin \Theta_{13} &= \sqrt{1 - \frac{(2\varepsilon_{13} + \cos \Theta_{13})^2}{(1 + 2\varepsilon_{11})(1 + 2\varepsilon_{33})}} \\
\cos \Theta_{23} &= \frac{2\varepsilon_{23} + \cos \Theta_{23}}{\sqrt{1 + 2\varepsilon_{22}} \sqrt{1 + 2\varepsilon_{33}}} \\
\sin \Theta_{23} &= \sqrt{1 - \frac{(2\varepsilon_{23} + \cos \Theta_{23})^2}{(1 + 2\varepsilon_{22})(1 + 2\varepsilon_{33})}}
\end{align*}
\]

The differential area \(d\mathcal{A}(\xi_3) = H_1 H_2 \sin \Theta_{12} \, d\xi_1 \, d\xi_2 \) becomes

\[
d\mathcal{A}(\xi_3) = H_1 H_2 \sqrt{(1 + 2\varepsilon_{11})(1 + 2\varepsilon_{22}) - (2\varepsilon_{12} + \cos \Theta_{12})^2} \, d\xi_1 \, d\xi_2
\]
NONLINEAR SHELL STRAINS - CONTINUED

- Likewise, \(\mathbf{dA}_{(2)} = \mathbf{H}_1 \mathbf{H}_3 \sin \Theta_{13} \, d\xi_1 \, d\xi_3 \) becomes

\[
\mathbf{dA}_{(2)} = \mathbf{H}_1 \mathbf{H}_3 \sqrt{\left(1 + 2\varepsilon_{11}\right)\left(1 + 2\varepsilon_{33}\right) - \left(2\varepsilon_{13} + \cos \Theta_{13}\right)^2} \, d\xi_1 \, d\xi_3
\]

and \(\mathbf{dA}_{(1)} = \mathbf{H}_2 \mathbf{H}_3 \sin \Theta_{23} \, d\xi_2 \, d\xi_3 \) becomes

\[
\mathbf{dA}_{(1)} = \mathbf{H}_2 \mathbf{H}_3 \sqrt{\left(1 + 2\varepsilon_{22}\right)\left(1 + 2\varepsilon_{33}\right) - \left(2\varepsilon_{23} + \cos \Theta_{23}\right)^2} \, d\xi_2 \, d\xi_3
\]

- Next,

\[
\mathbf{H} = \mathbf{H}_1 \mathbf{H}_2 \mathbf{H}_3 \sqrt{\sin^2 \Theta_{12} + \sin^2 \Theta_{13} + \sin^2 \Theta_{23} + 2(\cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} - 1)}
\]

becomes

\[
\frac{\mathbf{H}^2}{\mathbf{H}_1^2 \mathbf{H}_2^2 \mathbf{H}_3^2} = \left(1 + 2\varepsilon_{11}\right)\left(1 + 2\varepsilon_{22}\right)\left(1 + 2\varepsilon_{33}\right) + 2 \left(2\varepsilon_{12} + \cos \Theta_{12}\right)\left(2\varepsilon_{13} + \cos \Theta_{13}\right)\left(2\varepsilon_{23} + \cos \Theta_{23}\right)
\]

\[
- \left(1 + 2\varepsilon_{33}\right)\left(2\varepsilon_{12} + \cos \Theta_{12}\right)^2 - \left(1 + 2\varepsilon_{22}\right)\left(2\varepsilon_{13} + \cos \Theta_{13}\right)^2 - \left(1 + 2\varepsilon_{11}\right)\left(2\varepsilon_{23} + \cos \Theta_{23}\right)^2
\]
NONLINEAR SHELL STRAINS - CONCLUDED

- The differential volume is then obtained from \(dV = \mathcal{H} d\xi_1 d\xi_2 d\xi_3 \)

- For the shell coordinate system defined with respect to undeformed parallel surfaces, recall that \(\Theta_{13} = \Theta_{23} = \frac{\pi}{2} \) and

\[
\cos \Theta_{12} = \frac{\left(1 + \frac{\xi_3}{r_{11}} \right) \left(1 + \frac{\xi_3}{r_{22}} \right) \cos \theta_{12} + \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \frac{\xi_3}{r_{21}} - \left(1 + \frac{\xi_3}{r_{22}} \right) \frac{\xi_3}{r_{12}} \right] \sin \theta_{12} + \left(1 - \frac{\xi_3}{r_{11}} \right) \frac{\xi_3}{r_{12}} \cos \theta_{12}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2}} + \frac{\left(1 - \frac{\xi_3}{r_{22}} \right) \frac{\xi_3}{r_{21}} \cos \theta_{12}}{\sqrt{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}} + \frac{\left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2}{\sqrt{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}}}
\]
“SMALL-STRAIN” APPROXIMATIONS

● For “small strains,” the magnitude of each of the nonlinear Green-Lagrange strains is presumed to be of second order, compared to unity

● This property is denoted herein by \(O(\varepsilon^2) \), with \(\varepsilon^2 \ll 1 \)

● This presumption permits use of the **binomial theorem** and **Taylor series** for simplifying various strain expressions

● Applying the binomial theorem yields the following simplifications

\[
\sqrt{1 + 2\varepsilon_k(k)} = 1 + \varepsilon_k(k) + O(\varepsilon^4)
\]

\[
\frac{1}{1 - \varepsilon_k(k)} = 1 + \varepsilon_k(k) + O(\varepsilon^4)
\]

\[
\frac{1}{\sqrt{1 + 2\varepsilon_k(k)}} = 1 - \varepsilon_k(k) + O(\varepsilon^4)
\]

\[
\frac{1}{1 + \varepsilon_k(k)} = 1 - \varepsilon_k(k) + O(\varepsilon^4)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

Applying these simplifications to the metric coefficients for the deformed shell yields

\[H_k = H_k \left[1 + \varepsilon_{(kk)} + O(\varepsilon^4) \right] \]

By definition, the \textit{shearing strains}, denoted by \(\gamma_{ij} \), are given by the changes in angles; that is,

\[\gamma_{ij} \equiv \Theta_{ij} - \Theta_{ij} \]

Thus,

\[
\begin{align*}
\cos \Theta_{ij} &= \cos (\Theta_{ij} - \gamma_{ij}) = \cos \gamma_{ij} \cos (\Theta_{(ij)}) + \sin \gamma_{ij} \sin (\Theta_{(ij)}) \\
\sin \Theta_{ij} &= \sin (\Theta_{ij} - \gamma_{ij}) = \sin \Theta_{(ij)} \cos \gamma_{ij} - \cos \Theta_{(ij)} \sin \gamma_{ij}
\end{align*}
\]

For “small” shearing strains, the Taylor series expansions of the sine and cosine functions with small-magnitude arguments yields

\[
\begin{align*}
\cos \gamma_{ij} &= 1 + O(\varepsilon^4) \quad \text{and} \quad \sin \gamma_{ij} = \gamma_{ij} + O(\varepsilon^4)
\end{align*}
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

- Applying these simplifications gives

\[
\cos \Theta_{ij} = \cos \Theta_{ij} + \gamma_{ij} \sin \Theta_{(ij)} + \mathcal{O}(\varepsilon^4)
\]
and

\[
\sin \Theta_{ij} = \sin \Theta_{ij} - \gamma_{ij} \cos \Theta_{(ij)} + \mathcal{O}(\varepsilon^4)
\]

- For “small” elongations, \(\epsilon_{\hat{T}} \) is presumed to also be \(\mathcal{O}(\varepsilon^2) \) such that

\[
\left(1 + \epsilon_{\hat{T}} \right)^2 - 1 = \frac{d\mathcal{L}^2 - dL^2}{dL^2}
\]
becomes

\[
2\epsilon_{\hat{T}} = \frac{d\mathcal{L}^2 - dL^2}{dL^2} = 2\varepsilon_{jk} \frac{H_{(i)} d\xi_j}{dL} \frac{H_{(k)} d\xi_k}{dL} + \mathcal{O}(\varepsilon^4)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

Next, \(\cos \Theta_{ij} = \cos \Theta_{ij} + \gamma_{ij} \sin \Theta_{ij} + O(\varepsilon^4) \) and \(H_k = H_k \left[1 + \varepsilon_{(kk)} + O(\varepsilon^4) \right] \)

are substituted into

\[
\cos \Theta_{12} = \frac{2\varepsilon_{12} + \cos \Theta_{12}}{\sqrt{1 + 2\varepsilon_{11}} \sqrt{1 + 2\varepsilon_{22}}}
\]

to get

\[
\gamma_{12} = \frac{2\varepsilon_{12} - (\varepsilon_{11} + \varepsilon_{22}) \cos \Theta_{12}}{\sin \Theta_{12}} + O(\varepsilon^4)
\]

Likewise,

\[
\gamma_{13} = \frac{2\varepsilon_{13} - (\varepsilon_{11} + \varepsilon_{33}) \cos \Theta_{13}}{\sin \Theta_{13}} + O(\varepsilon^4)
\]

\[
\gamma_{23} = \frac{2\varepsilon_{23} - (\varepsilon_{22} + \varepsilon_{33}) \cos \Theta_{23}}{\sin \Theta_{23}} + O(\varepsilon^4)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

- “Small” strain approximations to the differential areas and differential volume are obtained as follows

- Substituting $\mathcal{A}_k = H_k [1 + \varepsilon_{(kk)} + O(\varepsilon^4)]$, $\sin\Theta_{ij} = \sin\Theta_{ij} - \gamma_{ij} \cos\Theta_{(ij)} + O(\varepsilon^4)$, and $\cos\Theta_{ij} = \cos\Theta_{ij} + \gamma_{ij} \sin\Theta_{(ij)} + O(\varepsilon^4)$ into $dA(\xi_3) = H_1 H_2 \sin \Theta_{12} \, d\xi_1 d\xi_2$ and simplifying yields

$$dA(\xi_3) = H_1 H_2 \left[\sin\Theta_{12} \left(1 + \varepsilon_{11} + \varepsilon_{22} \right) - \gamma_{12} \cos\Theta_{12} \right] d\xi_1 d\xi_2 + O(\varepsilon^4)$$

- Then, $\gamma_{12} = \frac{2\varepsilon_{12} - (\varepsilon_{11} + \varepsilon_{22}) \cos\Theta_{12}}{\sin\Theta_{12}} + O(\varepsilon^4)$ is used to get

$$dA(\xi_3) = H_1 H_2 \left[\sin\Theta_{12} + \left(\varepsilon_{11} + \varepsilon_{22} \right) \csc\Theta_{12} - 2\varepsilon_{12} \cot\Theta_{12} + O(\varepsilon^4) \right]$$
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

- Similarly, \(\mathcal{A}^{(2)} = H_1 H_3 \sin \theta_{13} \, d\xi_1 d\xi_3 \) and \(\mathcal{A}^{(1)} = H_2 H_3 \sin \theta_{23} \, d\xi_2 d\xi_3 \) become

\[
\mathcal{A}^{(2)} = H_1 H_3 \left[\sin \theta_{13} + \left(\varepsilon_{11} + \varepsilon_{33} \right) \csc \theta_{13} - 2 \varepsilon_{13} \cot \theta_{13} + O(\varepsilon^4) \right]
\]

\[
\mathcal{A}^{(1)} = H_2 H_3 \left[\sin \theta_{23} + \left(\varepsilon_{22} + \varepsilon_{33} \right) \csc \theta_{23} - 2 \varepsilon_{23} \cot \theta_{23} + O(\varepsilon^4) \right]
\]

- For the coordinate system defined with respect to undeformed parallel surfaces, \(\Theta_{13} = \Theta_{23} = \frac{\pi}{2} \) and, as a result,

\[
\gamma_{12} = 2\varepsilon_{12} \csc \theta_{12} - \left(\varepsilon_{11} + \varepsilon_{22} \right) \cot \theta_{12} + O(\varepsilon^4)
\]

\[
\gamma_{13} = 2\varepsilon_{13} + O(\varepsilon^4)
\]

\[
\gamma_{23} = 2\varepsilon_{23} + O(\varepsilon^4)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

- In addition,

\[
\begin{align*}
\mathcal{A}_1 &= H_2 H_3 \left[1 + \varepsilon_{22} + \varepsilon_{33} + O(\varepsilon^4) \right] \\
\mathcal{A}_2 &= H_1 H_3 \left[1 + \varepsilon_{11} + \varepsilon_{33} + O(\varepsilon^4) \right] \\
\mathcal{A}_3 &= H_1 H_2 \left[\sin^2 \Theta_{12} + \left(\varepsilon_{11} + \varepsilon_{22} \right) \csc \Theta_{12} - 2 \varepsilon_{12} \cot \Theta_{12} + O(\varepsilon^4) \right]
\end{align*}
\]

- To simplify

\[
H = H_1 H_2 H_3 \sqrt{\sin^2 \Theta_{12} + \sin^2 \Theta_{13} + \sin^2 \Theta_{23} + 2 \left(\cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} - 1 \right)}
\]

it is noted that

\[
\sin^2 \Theta_{ij} = \sin^2 \Theta_{ij} - 2 \gamma_{ij} \cos \Theta_{(ij)} + O(\varepsilon^4)
\]

and that

\[
\cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} = \cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} + \gamma_{13} \cos \Theta_{12} \sin \Theta_{13} \cos \Theta_{23}
\]

\[
+ \gamma_{12} \sin \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} + \gamma_{23} \cos \Theta_{12} \cos \Theta_{13} \sin \Theta_{23} + O(\varepsilon^4)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONTINUED

For the coordinate system defined with respect to undeformed parallel surfaces, \(\Theta_{13} = \Theta_{23} = \frac{\pi}{2} \), and the following simplifications are obtained:

\[
\sin^2 \Theta_{12} + \sin^2 \Theta_{13} + \sin^2 \Theta_{23} = 2 + \sin^2 \Theta_{12} - 2\gamma_{12} \cos \Theta_{12} + O(\varepsilon^4)
\]

\[
2(\cos \Theta_{12} \cos \Theta_{13} \cos \Theta_{23} - 1) = -2 + O(\varepsilon^4)
\]

\[
\mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 = H_1 H_2 \left(1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right)
\]

\[
\mathcal{H} = H_1 H_2 H_3 \sin \Theta_{12} \left(1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) \sqrt{1 - 2\gamma_{12} \cot \Theta_{12} \csc \Theta_{12} + O(\varepsilon^4)}
\]

\[
\mathcal{H} = H_1 H_2 H_3 \sin \Theta_{12} \left(1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}\right) \left[1 - \gamma_{12} \cot \Theta_{12} \csc \Theta_{12} + O(\varepsilon^4)\right]
\]

\[
\mathcal{H} = H_1 H_2 H_3 \sin \Theta_{12} \left(1 + \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} - \gamma_{12} \cot \Theta_{12} \csc \Theta_{12} + O(\varepsilon^4)\right)
\]
“SMALL-STRAIN” APPROXIMATIONS - CONCLUDED

- Using \(\gamma_{12} = \frac{2\varepsilon_{12} - (\varepsilon_{11} + \varepsilon_{22})\cos\Theta_{12}}{\sin\Theta_{12}} + \mathcal{O}(\varepsilon^4) \) gives

\[\mathcal{H} = H_1H_2H_3\sin\Theta_{12}\left(1 + (\varepsilon_{11} + \varepsilon_{22})(1 + \csc\Theta_{12}\cot^2\Theta_{12})\right) \]

\[- 2\varepsilon_{12}\csc^2\Theta_{12}\cot\Theta_{12} + \varepsilon_{33} + \mathcal{O}(\varepsilon^4) \]
THE KINEMATIC HYPOTHESIS

• Up to this point in the present study, no relationship between the displacement-vector field \(\vec{u}(\xi_1, \xi_2, t) \), for points of the undeformed reference surface, and the corresponding displacement-vector field \(\vec{U}(\xi_1, \xi_2, \xi_3, t) \) for points of a corresponding undeformed parallel surface has been given.

• A **kinematic hypothesis** is required to make this connection.

• Let \(R \) be a point of a parallel surface given by \(\hat{X} = \vec{x}(\xi_1, \xi_2) + \xi_3 \hat{n}(\xi_1, \xi_2) \) and \(P \) be the corresponding point of the reference surface, as shown in the following figure.

• For the **Kirchhoff hypothesis** of deformation, used in classical shell theory, the particle \(\mathcal{R} = \mathcal{D}(R) \) is always located on the line normal to the tangent plane spanned by \(\hat{a}_1 \) and \(\hat{a}_2 \) during deformation and it also remains at the same distance from the tangent plane.
Undeformed neighborhood, $S_{\varepsilon}(P)$

Deformed image of $S_{\varepsilon}(P)$

$U(\xi_1, \xi_2, \xi_3, \tau)$

$\hat{U}(\xi_1, \xi_2, \xi_3, \tau)$

$\xi_3 \hat{\xi}$
THE KINEMATIC HYPOTHESIS - CONTINUED

- The deformed image of R is indicated as \mathcal{R} in the figure and is given by

$$\hat{U}(\xi_1, \xi_2, \xi_3, t) = \hat{u}(\xi_1, \xi_2, t) + \xi_3 \left[\hat{\mathbf{n}}(\xi_1, \xi_2, t) - \hat{n}(\xi_1, \xi_2) \right]$$

where, $\hat{\mathbf{n}}(\xi_1, \xi_2, t)$ is the field of unit-magnitude vectors that are perpendicular the corresponding tangent plane of the deformed shell.

- It is convenient to introduce the difference-vector field Φ given by

$$\Phi(\xi_1, \xi_2, t) = \hat{\mathbf{n}}(\xi_1, \xi_2, t) - \hat{n}(\xi_1, \xi_2)$$

such that

$$\hat{U} = \hat{u} + \xi_3 \Phi$$

- Recall that, in general, rotation of \hat{n} into $\hat{\mathbf{n}}$ is characterized by an orthogonal transformation of the form $\hat{\mathbf{n}} = \mathcal{R}(\hat{n})$; thus, $\Phi = \mathcal{R}(\hat{n}) - \hat{n}$
A more general class of deformations, depicted in the following figure, is considered in the present study.

\[\hat{\mathbf{u}}(\xi_1, \xi_2, \xi_3, \tau) \]
\[\hat{\mathbf{u}} + \xi_3(\hat{\mathbf{a}} - \hat{\mathbf{n}}) \]
\[\hat{\mathbf{y}}(\xi_1, \xi_2, \xi_3, \tau) \]

Undeformed neighborhood, \(S_\varepsilon(P) \)

Deformed image of \(S_\varepsilon(P) \)
THE KINEMATIC HYPOTHESIS - CONTINUED

- For this type of deformation, the material point \(R \) moves to the position \(\hat{R} \), which is located by the vector \(\overrightarrow{PR} \).

- Moreover, the material line element \(PR \) deforms into the curve \(D_\xi(PR) \).

- The vector field \(\vec{\gamma}(\xi_1, \xi_2, \xi_3, \xi) \) shown in the figure is given by
 \[
 \vec{\gamma} = PR - \hat{\xi}_3 n \]
 and locates the point \(R \in D_\xi(PR) \).

- The basic kinematic hypothesis used in the present study to represent this type of deformation is given by
 \[
 \vec{U} = \vec{u} + \xi_3 (\hat{\alpha} - \hat{n}) + \vec{\gamma}
 \]
 and includes that of classical shell theory as a well-defined special case.
THE KINEMATIC HYPOTHESIS - CONTINUED

• In particular, the term \(\xi_3 (\hat{n} - \hat{n}) \) corresponds to the following deformations presumed in classical Love-Kirchhoff shell theory

• A line of material particles that are initially perpendicular to the tangent plane at a given point of the reference surface remains so during deformation

• Extension of this perpendicular material line element is negligible during deformation

• The vector field \(\vec{\gamma}(\xi_1, \xi_2, \xi_3, \varepsilon) \) defines a general nonlinear distribution of transverse-shearing deformations across the shell thickness, as shown in the previous figure

• The specific functional form through the shell thickness is user defined and should be guided by practical considerations and experimental evidence
THE KINEMATIC HYPOTHESIS - CONCLUDED

With a kinematic hypothesis such as

\[\hat{U} = \hat{u} + \xi_3 (\hat{\mathbf{e}} - \hat{\mathbf{n}}) + \hat{\gamma} = \hat{u} + \xi_3 \Phi + \hat{\gamma} \]

given, general expressions for the Green-Lagrange shell strains in terms of the components of \(\hat{u}(\xi_1, \xi_2, \xi_3, \xi_4) \), \(\Phi(\xi_1, \xi_2, \xi_3, \xi_4) \), and \(\hat{\gamma}(\xi_1, \xi_2, \xi_3, \xi_4) \) can be obtained directly from the nonlinear strain-displacement relations

\[2\varepsilon_{ij} = \left(\hat{g}_i \cdot \frac{1}{H_{(j)}} \frac{\partial \hat{U}}{\partial \xi_j} \right) + \left(\frac{1}{H_{(i)}} \frac{\partial \hat{U}}{\partial \xi_i} \cdot \hat{g}_j \right) + \left(\frac{1}{H_{(i)}} \frac{\partial \hat{U}}{\partial \xi_i} \cdot \frac{1}{H_{(j)}} \frac{\partial \hat{U}}{\partial \xi_j} \right) \]

However, for the kinematic hypothesis of the present study, an alternate approach is presented that shows how the differences in the geometries of the deformed and undeformed reference surfaces affect the shell strains.
ALTERNATE FORMULATION OF THE SHELL STRAINS
ALTERNATE FORMULATION OF SHELL STRAINS

To see clearly how the geometric parameters of the undeformed and deformed shell configurations contribute to the shell strains, an alternate form of the kinematic hypothesis proposed previously herein is used; that is,

\[
\vec{X}(\xi_1, \xi_2, \xi_3, \tau) = \vec{x}(\xi_1, \xi_2, \tau) + \xi_3 \hat{\alpha}(\xi_1, \xi_2, \tau) + \hat{\gamma}(\xi_1, \xi_2, \xi_3, \tau)
\]

Substituting this expression into \(\dot{\gamma}_k = \frac{\partial \vec{X}}{\partial \xi_k} \) and using \(\hat{\alpha}_\alpha = \frac{1}{A(\alpha)} \frac{\partial \vec{X}}{\partial \xi_\alpha} \) gives

\[
\dot{\gamma}_\alpha = A(\alpha) \left[\hat{\alpha}_\alpha + \xi_3 \frac{1}{A(\alpha)} \frac{\partial \hat{\alpha}}{\partial \xi_\alpha} + \frac{1}{A(\alpha)} \frac{\partial \hat{\gamma}}{\partial \xi_\alpha} \right]
\] and

\[
\dot{\gamma}_3 = \hat{\alpha} + \frac{\partial \hat{\gamma}}{\partial \xi_3}
\]
Previously, it was shown herein that the Green-Lagrange shell strains are given by

\[2\varepsilon_{ij} H^{(i)} H^{(j)} = \left(\vec{g}_j \cdot \vec{g}_k \right) - \left(\vec{g}_j \cdot \vec{g}_k \right) \]

These strains are expressed more explicitly as

\[2\varepsilon_{\alpha\beta} = \frac{A_{(\alpha)} A_{(\beta)}}{H_{(\alpha)} H_{(\beta)}} \left(\frac{\vec{g}_\alpha}{A_{(\alpha)}} \cdot \frac{\vec{g}_\beta}{A_{(\beta)}} \right) - \left(\frac{\vec{g}_\alpha}{A_{(\alpha)}} \cdot \frac{\vec{g}_\beta}{A_{(\beta)}} \right) \]

\[2\varepsilon_{\alpha3} H^{(\alpha)} = \left(\vec{g}_\alpha \cdot \vec{g}_3 \right) - \left(\vec{g}_\alpha \cdot \vec{g}_3 \right) \]

\[2\varepsilon_{33} = \left(\vec{g}_3 \cdot \vec{g}_3 \right) - \left(\vec{g}_3 \cdot \vec{g}_3 \right) \]

where it is noted that the shell metric coefficient \(H_3 = 1 \)
ALTERNATE FORMULATION OF SHELL STRAINS
CONCLUDED

- In the kinematic hypothesis \(\vec{X} = \vec{x} + \xi_3 \hat{a} + \vec{\gamma} \), deformation is envisioned as “small” transverse shearing deformations superimposed on a classical Love-Kirchhoff-type “small” strain - “large” rotation deformation state, in the deformed configuration.

- The position vector \(\vec{x}(\xi_1, \xi_2, \tau) \) accounts for the reference-surface displacements and \(\hat{a}(\xi_1, \xi_2, \tau) \) is associated with the rigid-body rotation of \(\hat{n}(\xi_1, \xi_2) \), and the corresponding reference-surface tangent plane, into the deformed configuration.

- The vector field \(\vec{\gamma}(\xi_1, \xi_2, \xi_3, \tau) \) is presumed to have the form

\[
\vec{\gamma} = f_1(\xi_3) \Lambda_1 \hat{a}_1 + f_2(\xi_3) \Lambda_2 \hat{a}_2 + f_3(\xi_3) \Lambda_3 \hat{a}
\]

where the unknown functions \(\Lambda_k = \Lambda_k(\xi_1, \xi_2, \tau) \) and \(\Lambda_k(\xi_1, \xi_2, 0) = 0 \).
THROUGH-THE-THICKNESS NORMAL STRAIN

First, consider the transverse, through-the-thickness normal strain

\[2\varepsilon_{33} = (\hat{g}_3 \cdot \hat{g}_3) - (\tilde{g}_3 \cdot \tilde{g}_3) \]

Substituting \(\hat{g}_3 = \hat{n} + \frac{\partial \hat{\gamma}}{\partial \xi_3} \) into this strain expression, and noting that \(\tilde{g}_3 = \hat{n} \) and \(\hat{n} \cdot \hat{n} = 1 \), gives

\[\varepsilon_{33} = \left(\hat{n} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{2} \left| \frac{\partial \hat{\gamma}}{\partial \xi_3} \right|^2 \]

Herein, it is presumed that the transverse, through-the-thickness normal strain \(\varepsilon_{33} \) is negligible compared to the other strains.

Thus, \(\left| \frac{\partial \hat{\gamma}}{\partial \xi_3} \right| \) is presumed to be of \(O(\varepsilon^2) \) and \(\hat{n} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} = f_3'(\xi_3)\Lambda_3 = 0 \)

such that \(\varepsilon_{33} = 0 + O(\varepsilon^4) \) and \(\hat{\gamma} = f_1(\xi_3)\Lambda_1\hat{\alpha}_1 + f_2(\xi_3)\Lambda_2\hat{\alpha}_2 \)
TRANSVERSE SHEARING STRAINS

- In the expression $f_3' (\xi_3)$, the prime mark denotes differentiation with respect to the independent variable ξ_3.

- In the present study, the transverse shearing deformations and strains are presumed to be relatively “small”.

- Thus, the functions $\Lambda_\alpha (\xi_1, \xi_2, \epsilon)$, which completely characterize the transverse shearing deformations of the shell, are presumed to be of $O (\epsilon^2)$.

- First, substituting $\hat{g}_3 = \hat{\epsilon} + \frac{\partial \hat{\gamma}}{\partial \xi_3}$ into

$$2\varepsilon_{13} H_{1 (\alpha)} = \left(\hat{g}_2 \cdot \hat{g}_3 \right) - \left(\hat{g}_\alpha \cdot \hat{g}_3 \right)$$

and noting that $\hat{g}_\alpha \cdot \hat{g}_3 = 0$ gives

$$2\varepsilon_{13} \frac{H_1}{A_1} = \frac{\hat{g}_1}{A_1} \cdot \left(\hat{\epsilon} + \frac{\partial \hat{\gamma}}{\partial \xi_3} \right)$$

and

$$2\varepsilon_{23} \frac{H_2}{A_2} = \frac{\hat{g}_2}{A_2} \cdot \left(\hat{\epsilon} + \frac{\partial \hat{\gamma}}{\partial \xi_3} \right)$$
TRANSVERSE SHEARING STRAINS
CONTINUED

Then, using \(\dot{\mathbf{q}}_\alpha = \mathbf{A}(\alpha) \left[\hat{\mathbf{a}} + \xi_3 \frac{1}{\mathbf{A}(\alpha) \partial_\xi_3} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_\alpha} + \frac{1}{\mathbf{A}(\alpha) \partial_\xi_\alpha} \frac{\partial \hat{\mathbf{y}}}{\partial \xi_\alpha} \right] \) gives

\[
2\varepsilon_{13} \frac{H_1}{\mathbf{A}_1} = \left[\hat{\mathbf{a}} + \xi_3 \frac{1}{\mathbf{A}_1 \partial_\xi_1} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_1} + \frac{1}{\mathbf{A}_1 \partial_\xi_2} \frac{\partial \hat{\mathbf{y}}}{\partial \xi_2} \right] \cdot \left(\hat{\mathbf{a}} + \frac{\partial \hat{\mathbf{y}}}{\partial \xi_3} \right)
\]

\[
2\varepsilon_{23} \frac{H_2}{\mathbf{A}_2} = \left[\hat{\mathbf{a}} + \xi_3 \frac{1}{\mathbf{A}_2 \partial_\xi_2} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_2} + \frac{1}{\mathbf{A}_2 \partial_\xi_3} \frac{\partial \hat{\mathbf{y}}}{\partial \xi_3} \right] \cdot \left(\hat{\mathbf{a}} + \frac{\partial \hat{\mathbf{y}}}{\partial \xi_3} \right)
\]

Noting that \(\hat{\mathbf{a}}_\alpha \cdot \hat{\mathbf{a}} = 0 \), and that \(\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = 1 \) leads to

\[
\frac{1}{\mathbf{A}(\alpha) \partial_\xi_\alpha} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_\alpha} \cdot \hat{\mathbf{a}} = 0
\]

gives
TRANSVERSE SHEARING STRAINS
CONTINUED

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left(\hat{a}_1 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \xi_3 \left(\frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \left(\frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} \cdot \hat{\gamma} \right) + \left(\frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right)
\]

and

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left(\hat{a}_2 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \xi_3 \left(\frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \left(\frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} \cdot \hat{\gamma} \right) + \left(\frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right)
\]

- The nonlinear terms given by the last term in each of these two strain equations are presumed to be of \(O(\varepsilon^4)\), and are neglected.

- In addition, differentiating \(\hat{a} \cdot \hat{\gamma} = 0\) gives

\[
\frac{1}{A_{(\alpha)}} \frac{\partial \hat{a}}{\partial \xi_{\alpha}} \cdot \hat{\gamma} = - \frac{1}{A_{(\alpha)}} \frac{\partial \hat{\gamma}}{\partial \xi_{\alpha}} \cdot \hat{\gamma}
\]
TRANSVERSE SHEARING STRAINS
CONTINUED

- Together, these results produce

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left(\hat{a}_1 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} \cdot \left(\xi_3 \frac{\partial \hat{\gamma}}{\partial \xi_3} - \hat{\gamma} \right) + \mathcal{O}(\varepsilon^4)
\]

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left(\hat{a}_2 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} \cdot \left(\xi_3 \frac{\partial \hat{\gamma}}{\partial \xi_3} - \hat{\gamma} \right) + \mathcal{O}(\varepsilon^4)
\]

- For convenience, let \(\Gamma = \xi_3 \frac{\partial \hat{\gamma}}{\partial \xi_3} - \hat{\gamma} \) such that

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left(\hat{a}_1 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} \cdot \Gamma + \mathcal{O}(\varepsilon^4)
\]

and

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left(\hat{a}_2 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} \cdot \Gamma + \mathcal{O}(\varepsilon^4)
\]
TRANSVERSE SHEARING STRAINS
CONTINUED

Expressing \(\hat{\Gamma} = p_1(\xi_3)\Lambda_1\hat{\alpha} + p_2(\xi_3)\Lambda_2\hat{\alpha} \) and using \(\hat{\Gamma} = \xi_3 \frac{\partial \hat{Y}}{\partial \xi_3} - \hat{\gamma} \), it follows that

\[
p_1(\xi_3) = \xi_3 f_1'(\xi_3) - f_1(\xi_3) \quad \text{and} \quad p_2(\xi_3) = \xi_3 f_2'(\xi_3) - f_2(\xi_3)
\]

Next, using \(\hat{\alpha} = A_{(\alpha)}\hat{\alpha} \) and \(A_1 A_2 \cos \theta_{12} = \hat{\alpha}_1 \cdot \hat{\alpha}_2 \) with

\[
\hat{\gamma} = f_1(\xi_3)\Lambda_1\hat{\alpha} + f_2(\xi_3)\Lambda_2\hat{\alpha} \quad \text{and} \quad \hat{\Gamma} = p_1(\xi_3)\Lambda_1\hat{\alpha} + p_2(\xi_3)\Lambda_2\hat{\alpha}
\]
gives

\[
\hat{\alpha}_1 \cdot \hat{\gamma} = f_1(\xi_3)\Lambda_1 + f_2(\xi_3)\Lambda_2 \cos \theta_{12} \quad \text{and} \quad \hat{\alpha}_2 \cdot \hat{\gamma} = f_2(\xi_3)\Lambda_2 + f_1(\xi_3)\Lambda_1 \cos \theta_{12}
\]

\[
\hat{\alpha}_1 \cdot \hat{\Gamma} = p_1(\xi_3)\Lambda_1 + p_2(\xi_3)\Lambda_2 \cos \theta_{12} \quad \text{and} \quad \hat{\alpha}_2 \cdot \hat{\Gamma} = p_2(\xi_3)\Lambda_2 + p_1(\xi_3)\Lambda_1 \cos \theta_{12}
\]
Then, using

\[
\cos \theta_{12} = 2 \varepsilon_{12}^0 + \cos \theta_{12} (1 - \varepsilon_{11}^0 - \varepsilon_{22}^0) + O(\varepsilon^4),
\]

for “small” strains, with the last four equations yields

\[
\hat{a}_1 \cdot \hat{\gamma} = f_1(\xi_3) \Lambda_1 + f_2(\xi_3) \Lambda_2 \cos \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \hat{\gamma} = f_2(\xi_3) \Lambda_2 + f_1(\xi_3) \Lambda_1 \cos \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{a}_1 \cdot \hat{\Gamma} = p_1(\xi_3) \Lambda_1 + p_2(\xi_3) \Lambda_2 \cos \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \hat{\Gamma} = p_2(\xi_3) \Lambda_2 + p_1(\xi_3) \Lambda_1 \cos \theta_{12} + O(\varepsilon^4)
\]
Further simplification of the equations

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left(\hat{a}_1 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_1} \frac{\partial \hat{\Gamma}}{\partial \xi_1} \cdot \hat{\Gamma} + O(\varepsilon^4) \quad \text{and}
\]

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left(\hat{a}_2 \cdot \frac{\partial \hat{\gamma}}{\partial \xi_3} \right) + \frac{1}{A_2} \frac{\partial \hat{\Gamma}}{\partial \xi_2} \cdot \hat{\Gamma} + O(\varepsilon^4)
\]

is obtained by using the equations for the derivatives of \(\hat{a}(\xi_1, \xi_2, t) \) for a general set of nonorthogonal curvilinear Gaussian coordinates.

The derivatives are given by

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2
\]

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
\]
Thus,

\[
\frac{1}{A_1} \frac{\partial \hat{a}_1}{\partial \xi_1} \cdot \vec{\Gamma} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) (\hat{a}_1 \cdot \vec{\Gamma}) - \frac{\csc \theta_{12}}{r_{12}} (\hat{a}_2 \cdot \vec{\Gamma})
\]

and

\[
\frac{1}{A_2} \frac{\partial \hat{a}_2}{\partial \xi_2} \cdot \vec{\Gamma} = \frac{\csc \theta_{12}}{r_{21}} (\hat{a}_1 \cdot \vec{\Gamma}) + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) (\hat{a}_2 \cdot \vec{\Gamma})
\]

Then, using

\[
\hat{a}_1 \cdot \vec{\Gamma} = p_1(\xi_3) \Lambda_1 + p_2(\xi_3) \Lambda_2 \cos \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \vec{\Gamma} = p_2(\xi_3) \Lambda_2 + p_1(\xi_3) \Lambda_1 \cos \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\cot \theta_{12} = \cot \theta_{12} + 2\varepsilon_{12}^\circ \csc^3 \theta_{12} - \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right) \csc^2 \theta_{12} \cot \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

and

\[
\csc \theta_{12} = \csc \theta_{12} \left[1 + 2\varepsilon_{12}^\circ \cot \theta_{12} \csc \theta_{12} - \cot^2 \theta_{12} \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right) \right] + \mathcal{O}(\varepsilon^4)
\]
TRANSVERSE SHEARING STRAINS
CONTINUED

\[
\frac{1}{A_1} \frac{\partial \hat{\Gamma}}{\partial \xi_1} \cdot \hat{\Gamma} = \frac{p_1(\xi_3)\Lambda_1 + p_2(\xi_3)\Lambda_2 \cos \theta_{12}}{r_{11}} - \frac{p_2(\xi_3)\Lambda_2 \sin \theta_{12}}{r_{12}} + O(\varepsilon^4)
\]

\[
\frac{1}{A_2} \frac{\partial \hat{\Gamma}}{\partial \xi_2} \cdot \hat{\Gamma} = \frac{p_1(\xi_3)\Lambda_1 \sin \theta_{12}}{r_{21}} + \frac{p_2(\xi_3)\Lambda_2 + p_1(\xi_3)\Lambda_1 \cos \theta_{12}}{r_{22}} + O(\varepsilon^4)
\]

for “small” strains

- Applying these results, and

\[
\hat{\Gamma}_1 \cdot \hat{\gamma} = f_1(\xi_3)\Lambda_1 + f_2(\xi_3)\Lambda_2 \cos \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{\Gamma}_2 \cdot \hat{\gamma} = f_2(\xi_3)\Lambda_2 + f_1(\xi_3)\Lambda_1 \cos \theta_{12} + O(\varepsilon^4)
\]

to the last expressions given for “small” transverse shearing strains yields
TRANSVERSE SHEARING STRAINS
CONTINUED

\[2 \varepsilon_{13} \frac{H_1}{\mathcal{A}_1} = f_1'(\xi_3) \Lambda_1 + f_2'(\xi_3) \Lambda_2 \cos \theta_{12} \]
+ \(\frac{p_1(\xi_3) \Lambda_1 + p_2(\xi_3) \Lambda_2 \cos \theta_{12}}{\mathcal{r}_{11}} \)
- \(\frac{p_2(\xi_3) \Lambda_2 \sin \theta_{12}}{\mathcal{r}_{12}} \) + \(O(\varepsilon^4) \)

and

\[2 \varepsilon_{23} \frac{H_2}{\mathcal{A}_2} = f_2'(\xi_3) \Lambda_2 + f_1'(\xi_3) \Lambda_1 \cos \theta_{12} \]
+ \(\frac{p_1(\xi_3) \Lambda_1 \sin \theta_{12}}{\mathcal{r}_{21}} \)
+ \(\frac{p_2(\xi_3) \Lambda_2 + p_1(\xi_3) \Lambda_1 \cos \theta_{12}}{\mathcal{r}_{22}} \) + \(O(\varepsilon^4) \)

Next, \(\mathcal{A}_\alpha = A_\alpha \left[1 + \varepsilon_{\alpha(\alpha)} + O(\varepsilon^4) \right] \) is used to get
TRANSVERSE SHEARING STRAINS
CONTINUED

Note that it was shown previously that

\[
2\varepsilon_{13} \frac{H_1}{A_1} = f_1'(\xi_3) \Lambda_1 + f_2'(\xi_3) \Lambda_2 \cos \theta_{12}
\]
\[
+ \frac{p_1(\xi_3) \Lambda_1 + p_2(\xi_3) \Lambda_2 \cos \theta_{12}}{\varepsilon_{11}} - \frac{p_2(\xi_3) \Lambda_2 \sin \theta_{12}}{\varepsilon_{12}} + O(\varepsilon^4)
\]

and

\[
2\varepsilon_{23} \frac{H_2}{A_2} = f_2'(\xi_3) \Lambda_2 + f_1'(\xi_3) \Lambda_1 \cos \theta_{12}
\]
\[
+ \frac{p_1(\xi_3) \Lambda_1 \sin \theta_{12}}{\varepsilon_{21}} + \frac{p_2(\xi_3) \Lambda_2 + p_1(\xi_3) \Lambda_1 \cos \theta_{12}}{\varepsilon_{22}} + O(\varepsilon^4)
\]

Note that it was shown previously that

\[
\frac{H_1}{A_1} = \sqrt{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2
\]

and
TRANSVERSE SHEARING STRAINS
CONTINUED

\[
\frac{H_2}{A_2} = \sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}
\]

- Next, \(\vec{x}(\xi_1, \xi_2, 0, \tau) = \vec{z}(\xi_1, \xi_2, \tau) \) is enforced in \(\vec{x} = \vec{z} + \xi_3 \hat{e} + \vec{\gamma} \), with

\[
\vec{\gamma} = f_1(\xi_3) \Lambda_1 \hat{e}_1 + f_2(\xi_3) \Lambda_2 \hat{e}_2
\]

to get the requirements \(f_1(0) = f_2(0) = 0 \)

- Then, the reference-surface strain definitions

\[
2 \varepsilon_{\alpha 3}^\circ = 2 \varepsilon_{\alpha 3}(\xi_1, \xi_2, 0, \tau) \]

are used to get

\[
2 \varepsilon_{13}^\circ = f_1'(0) \Lambda_1 + f_2'(0) \Lambda_2 \cos \theta_{12} + O(\varepsilon^4) \quad \text{and}
\]

\[
2 \varepsilon_{23}^\circ = f_2'(0) \Lambda_2 + f_1'(0) \Lambda_1 \cos \theta_{12} + O(\varepsilon^4)
\]
Thus,

\[\Lambda_1 = \frac{2\varepsilon_{13}^\circ - 2\varepsilon_{23}^\circ \cos \theta_{12}}{f_1'(0) \sin^2 \theta_{12}} + \mathcal{O}(\varepsilon^4) \]

and

\[\Lambda_2 = \frac{2\varepsilon_{23}^\circ - 2\varepsilon_{13}^\circ \cos \theta_{12}}{f_2'(0) \sin^2 \theta_{12}} + \mathcal{O}(\varepsilon^4) \]

Now, it is convenient to introduce the functions

\[F_\alpha(\xi_3) = \frac{f_\alpha(\xi_3)}{f_{(\alpha)'}(0)} \]

such that

\[f_1(\xi_3) \Lambda_1 = F_1(\xi_3) \frac{2\varepsilon_{13}^\circ - 2\varepsilon_{23}^\circ \cos \theta_{12}}{\sin^2 \theta_{12}} + \mathcal{O}(\varepsilon^4) \]

and

\[f_2(\xi_3) \Lambda_2 = F_2(\xi_3) \frac{2\varepsilon_{23}^\circ - 2\varepsilon_{13}^\circ \cos \theta_{12}}{\sin^2 \theta_{12}} + \mathcal{O}(\varepsilon^4) \]

\[\hat{\gamma} = \csc^2 \theta_{12} \left[F_1(\xi_3) \left(2\varepsilon_{13}^\circ - 2\varepsilon_{23}^\circ \cos \theta_{12} \right) \hat{a}_1 + F_2(\xi_3) \left(2\varepsilon_{23}^\circ - 2\varepsilon_{13}^\circ \cos \theta_{12} \right) \hat{a}_2 \right] + \mathcal{O}(\varepsilon^4) \]
TRANSVERSE SHEARING STRAINS
CONTINUED

- To facilitate simplification, let \(\gamma_1 = F_1(\xi_3)\gamma_1^o \) and \(\gamma_2 = F_2(\xi_3)\gamma_2^o \), where

\[
\gamma_1^o = \csc^2 \theta_{12} \left(2\varepsilon_{13}^o - 2\varepsilon_{23}^o \cos \theta_{12} \right)
\]

and

\[
\gamma_2^o = \csc^2 \theta_{12} \left(2\varepsilon_{23}^o - 2\varepsilon_{13}^o \cos \theta_{12} \right)
\]

such that

\[
\vec{\gamma} = \gamma_1 \hat{a}_1 + \gamma_2 \hat{a}_2,
\]

\[
f_1(\xi_3)\Lambda_1 = F_1(\xi_3)\gamma_1^o + \mathcal{O}(\varepsilon^4),
\]

and

\[
f_2(\xi_3)\Lambda_2 = F_2(\xi_3)\gamma_2^o + \mathcal{O}(\varepsilon^4)
\]

- With this notation, \(\vec{X} = \vec{x} + \xi_3 \hat{a} + \vec{\gamma} \) becomes

\[
\vec{X} = \vec{x} + \xi_3 \hat{a} + F_1(\xi_3)\gamma_1^o \hat{a}_1 + F_2(\xi_3)\gamma_2^o \hat{a}_2 + \mathcal{O}(\varepsilon^4)
\]

for “small” strains
In these expressions, and subsequent expressions,

\[\varepsilon_{13}^p(\xi_1, \xi_2, \tau) \quad \text{and} \quad \varepsilon_{23}^p(\xi_1, \xi_2, \tau) \]

are used as the primary unknowns that characterize the transverse shear deformations of the shell.

However, \(\gamma_1^p(\xi_1, \xi_2, \tau) \) and \(\gamma_2^p(\xi_1, \xi_2, \tau) \) can also be used.

Next, differentiating

\[F_\alpha(\xi_3) = \frac{f_\alpha(\xi_3)}{f_{\alpha}'(0)} \]

gives

\[F_\alpha'(\xi_3) = \frac{f_\alpha'(\xi_3)}{f_{\alpha}'(0)} \]

Thus,

\[f_1'(\xi_3)\Lambda_1 = F_1'(\xi_3)\gamma_1^p + O(\varepsilon^4) \quad \text{and} \quad f_2'(\xi_3)\Lambda_2 = F_2'(\xi_3)\gamma_2^p + O(\varepsilon^4) \]
Moreover, from

\[p_1(\xi_3) = \xi_3 f_1'(\xi_3) - f_1(\xi_3) \quad \text{and} \quad p_2(\xi_3) = \xi_3 f_2'(\xi_3) - f_2(\xi_3) \]

it follows that

\[p_1(\xi_3) \Lambda_1 = [\xi_3 F_1'(\xi_3) - F_1(\xi_3)] \gamma_1^o + O(\epsilon^4) \quad \text{and} \]

\[p_2(\xi_3) \Lambda_2 = [\xi_3 F_2'(\xi_3) - F_2(\xi_3)] \gamma_2^o + O(\epsilon^4) \]

For convenience,

\[P_1(\xi_3) = \xi_3 F_1'(\xi_3) - F_1(\xi_3) \quad \text{and} \quad P_2(\xi_3) = \xi_3 F_2'(\xi_3) - F_2(\xi_3) \]

such that

\[p_1(\xi_3) \Lambda_1 = P_1(\xi_3) \gamma_1^o + O(\epsilon^4) \quad \text{and} \quad p_2(\xi_3) \Lambda_2 = P_2(\xi_3) \gamma_2^o + O(\epsilon^4) \]
The transverse shearing strains are now expressed as

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left[F'_1(\xi_3) + \frac{P_1(\xi_3)}{\nu_{11}} \right] \gamma_1^o + \left[\left(F'_2(\xi_3) + \frac{P_2(\xi_3)}{\nu_{11}} \right) \cos \theta_{12} - \frac{P_2(\xi_3) \sin \theta_{12}}{\nu_{12}} \right] \gamma_2^o + O(\varepsilon^4)
\]

and

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left[F'_2(\xi_3) + \frac{P_2(\xi_3)}{\nu_{22}} \right] \gamma_2^o + \left[\left(F'_1(\xi_3) + \frac{P_1(\xi_3)}{\nu_{22}} \right) \cos \theta_{12} + \frac{P_1(\xi_3) \sin \theta_{12}}{\nu_{21}} \right] \gamma_1^o + O(\varepsilon^4)
\]
Previously herein, it was shown that

\[
\frac{1}{\varepsilon_{11}} = \frac{1}{r_{11}} + \kappa_{11}^o
\]
\[
\frac{1}{\varepsilon_{22}} = \frac{1}{r_{22}} + \kappa_{22}^o
\]

\[
\frac{1}{\varepsilon_{21}} = \kappa_{12}^o + \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + \kappa_{11}^o - \kappa_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)
\]

\[
- \frac{1}{\varepsilon_{12}} = \kappa_{12}^o - \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + \kappa_{11}^o - \kappa_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)
\]

\[
\cot \theta_{12} = \cot \theta_{12} + 2 \varepsilon_{12}^o \csc^3 \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \csc^2 \theta_{12} \cot \theta_{12} + O(\varepsilon^4)
\]

Thus,

\[
\frac{2\varepsilon_{13}^o}{\varepsilon_{11}} = \frac{2\varepsilon_{13}^o}{r_{11}} + O(\varepsilon^4)
\]
and

\[
\frac{2\varepsilon_{23}^o}{\varepsilon_{22}} = \frac{2\varepsilon_{23}^o}{r_{22}} + O(\varepsilon^4)
\]
In addition,

\[
\frac{2\varepsilon^\circ_{\alpha\beta}}{\tau_{12}} = \varepsilon^\circ_{\alpha\beta} \left(\frac{1}{r_{11}^2} - \frac{1}{r_{22}^2} \right) \cot\theta_{12} - \varepsilon^\circ_{\alpha\beta} \left(\frac{1}{r_{21}^2} - \frac{1}{r_{12}^2} \right) + O(\varepsilon^4)
\]

and

\[
\frac{2\varepsilon^\circ_{\alpha\beta}}{\tau_{21}} = \varepsilon^\circ_{\alpha\beta} \left(\frac{1}{r_{11}^2} - \frac{1}{r_{22}^2} \right) \cot\theta_{12} + \varepsilon^\circ_{\alpha\beta} \left(\frac{1}{r_{21}^2} - \frac{1}{r_{12}^2} \right) + O(\varepsilon^4)
\]

where products of \(2\varepsilon^\circ_{\alpha\beta} \) and \(\kappa^\circ_{\alpha\beta} \) are presumed to be \(O(\varepsilon^4) \).

Using the identity

\[
\frac{1}{r_{12}^2} + \frac{1}{r_{21}^2} = \cot\theta_{12} \left(\frac{1}{r_{11}^2} - \frac{1}{r_{22}^2} \right)
\]

gives

\[
\frac{2\varepsilon^\circ_{\alpha\beta}}{\tau_{12}} = \frac{2\varepsilon^\circ_{\alpha\beta}}{r_{12}} + O(\varepsilon^4)
\]

and

\[
\frac{2\varepsilon^\circ_{\alpha\beta}}{\tau_{21}} = \frac{2\varepsilon^\circ_{\alpha\beta}}{r_{21}} + O(\varepsilon^4)
\]
TRANSVERSE SHEARING STRAINS
CONTINUED

- Using these results gives
 \[
 \frac{\gamma_1^o}{\varepsilon_{21}} = \frac{\gamma_1}{\varepsilon_{21}} + \mathcal{O}(\varepsilon^4)
 \quad \text{and} \quad
 \frac{\gamma_2^o}{\varepsilon_{12}} = \frac{\gamma_2}{\varepsilon_{12}} + \mathcal{O}(\varepsilon^4)
 \]

- Applying these “small-strain” simplifications to the last expressions given for the transverse shearing strains yields

\[
2\varepsilon_{13} \left. \frac{H_1}{A_1} \right| = \left[F_1'(\xi_3) + \frac{P_1(\xi_3)}{r_{11}} \right] \gamma_1^o + \left[\left(F_2'(\xi_3) + \frac{P_2(\xi_3)}{r_{11}} \right) \cos \theta_{12} - \frac{P_2(\xi_3) \sin \theta_{12}}{r_{12}} \right] \gamma_2^o + \mathcal{O}(\varepsilon^4)
\]

\[
2\varepsilon_{23} \left. \frac{H_2}{A_2} \right| = \left[F_2'(\xi_3) + \frac{P_2(\xi_3)}{r_{22}} \right] \gamma_2^o + \left[\left(F_1'(\xi_3) + \frac{P_1(\xi_3)}{r_{22}} \right) \cos \theta_{12} + \frac{P_1(\xi_3) \sin \theta_{12}}{r_{21}} \right] \gamma_1^o + \mathcal{O}(\varepsilon^4)
\]

where \(P_1(\xi_3) \equiv \xi_3 F_1'(\xi_3) - F_1(\xi_3) \), \(P_2(\xi_3) \equiv \xi_3 F_2'(\xi_3) - F_2(\xi_3) \), and \(F_1(\xi_3) \) and \(F_2(\xi_3) \) are user defined and their selection should be guided by practical considerations and experimental evidence.
TRANSVERSE SHEARING STRAINS
CONTINUED

- Also, note that the requirements \(f_1(0) = f_2(0) = 0 \) stated earlier herein become the requirements \(F_1(0) = F_2(0) = 0 \).

- Additional conditions that can be used to influence the choice of \(F_1(\xi) \) and \(F_2(\xi) \) are obtained from the traction boundary conditions on the bounding surfaces of the shell.

- To illustrate this process, consider shells that are free of tangential surface tractions on the bounding surfaces.

 - For this case, the transverse shearing stresses vanish at the bounding surfaces.

 - Also, in many approximate shell theories, nonzero surface tractions are replaced with statically equivalent distributed loads and couples that are applied to the shell reference surface.
Enforcing these traction-free boundary conditions generally involves the use of constitutive equations and yields eight homogeneous, linear algebraic equations in terms of $F_1(\xi) \text{ and } F_2(\xi)$ and their first derivatives, evaluated at each bounding surface.

An alternate and less cumbersome approach is used subsequently in which the traction-free boundary conditions are satisfied by requiring the transverse shearing strains at the bounding surfaces to vanish.

Inspection of the transverse-shearing-strain equations indicates that these strains vanish at the bounding surfaces of the shell, provided that:

$$F_1'(c_3^+) = F_1'(c_3^-) = F_2'(c_3^+) = F_2'(c_3^-) = 0$$

and

$$F_1(c_3^+) = F_1(c_3^-) = F_2(c_3^+) = F_2(c_3^-) = 0$$

where it is noted that $c_3^-(\xi_1, \xi_2) \leq \xi_3 \leq c_3^+(\xi_1, \xi_2)$.
TRANSVERSE SHEARING STRAINS
CONTINUED

- These two conditions cannot be satisfied exactly unless the shell has a uniform thickness or a piecewise uniform thickness since \(F_\alpha = F_\alpha(\xi_3) \)

- However, the underlying presumption that transverse through-the-thickness strains are negligible places limitations on how rapidly \(c_3^-(\xi_1, \xi_2) \) and \(c_3^+(\xi_1, \xi_2) \) can vary with \((\xi_1, \xi_2) \)

- Thus, using average values for \(c_3^- \) and \(c_3^+ \) is likely to produce meaningful results for global response quantities

- It is significant to note that the choice \(F_1(\xi_3) = F_2(\xi_3) = \xi_3 \) produces uniform through-the-thickness transverse shearing strains

- \(F_1(\xi_3) = F_2(\xi_3) = \xi_3 \) corresponds to a first-order transverse-shear deformation theory, which uses a “shear correction factor” to account for the fact that the transverse-shearing strains do not vanish on the bounding surfaces of the shell
TRANSVERSE SHEARING STRAINS
CONTINUED

- It is reiterated that the specific functional forms of \(F_{\alpha}(\xi_3) \) are user defined and their selection should be guided by practical considerations and experimental evidence.

- For the practical case of shells with a uniform thickness \(h \) and

\[
- \frac{h}{2} \leq \xi_3 \leq + \frac{h}{2}, \quad \text{consider} \quad F_{\alpha}(\xi_3) = F(\xi_3) = \frac{h}{2\pi} \left(\cos\frac{\pi\xi_3}{h} \sin\frac{2\pi\xi_3}{h} \right)
\]

which satisfy \(F(0) = 0, \ F\left(\frac{h}{2}\right) = F\left(-\frac{h}{2}\right) = 0 \), and \(F'(\frac{h}{2}) = F'\left(-\frac{h}{2}\right) = 0 \).
To get an estimate of the through-the-thickness variation in the transverse-shearing strains, let \(\theta_{12} = \frac{\pi}{2} \), \(\frac{1}{r_{12}} = 0 \), and \(r_{11} = 5h \).

These values yield

\[
\frac{2\varepsilon_{13}}{\varepsilon_{13}^o} \approx \frac{1}{1 + \frac{\xi_3}{5h}} \left(F'(\xi_3) + \frac{1}{5h} \left[\xi_3 F'(\xi_3) - F(\xi_3) \right] \right)
\]
Note that $r_{11} = 5h$ corresponds to a very thick shell.
Now consider the family of polynomials given by

\[F(\xi_3) = \xi_3 \left(1 - \frac{1}{2m+1} \left(\frac{2\xi_3}{h} \right)^{2m} \right) \]

with \(F'(\xi_3) = 1 - \left(\frac{2\xi_3}{h} \right)^{2m} \), for \(m = 1, 2, \ldots \)

\(-\frac{h}{2} \leq \xi_3 \leq +\frac{h}{2}\)
Note that these polynomials do not satisfy
\[-\frac{h}{2} \leq \xi_3 \leq \frac{h}{2}\]

\[F'(\xi_3) = 1 - \left(\frac{2\xi_3}{h}\right)^{2m}\]

\[F\left(\frac{h}{2}\right) = F\left(-\frac{h}{2}\right) = 0\]
TRANSVERSE SHEARING STRAINS
CONTINUED

\[- \frac{h}{2} \leq \xi_3 \leq + \frac{h}{2}\]

\[m = 1\]

\[\frac{1}{\xi_3} \left(F'(\xi_3) + \frac{1}{5h} \left[\xi_3 F'(\xi_3) - F(\xi_3) \right] \right)\]

\[\frac{1}{\xi_3} \left(F'(\xi_3) \right)\]

\[\frac{F'(\xi_3)}{1 + \frac{5h}{\xi_3}}\]

\[\frac{F'(\xi_3)}{h}\]
TRANSVERSE SHEARING STRAINS
CONTINUED

\[-\frac{h}{2} \leq \xi_3 \leq +\frac{h}{2}\]

\[m = 2\]

\[
\frac{1}{1 + \frac{\xi_3}{5h}} \left(F'(\xi_3) + \frac{1}{5h} \left[\xi_3 F'(\xi_3) - F(\xi_3) \right] \right)
\]

\[
\frac{1}{1 + \frac{\xi_3}{5h}} F'(\xi_3)
\]
These plots suggest that the requirements on $F(\xi_3)$ and $F'(\xi_3)$ can be relaxed to

$$F(0) = 0 \quad \text{and} \quad F'(\frac{h}{2}) = F'(-\frac{h}{2}) = 0$$

without any serious loss in accuracy in the analysis of global response quantities like displacements, buckling loads, and vibration frequencies.
PARALLEL-SURFACE TANGENTIAL STRAINS

The next step in the analysis is to simplify the strain expressions by first simplifying the dot products, where

\[
2\varepsilon_{\alpha\beta} = \frac{A_\alpha A_\beta}{H_\alpha H_\beta} \left(\frac{\hat{g}_\alpha}{A_\alpha} \cdot \frac{\hat{g}_\beta}{A_\beta} \right) - \left(\frac{\hat{g}_\alpha}{A_\alpha} \cdot \frac{\hat{g}_\beta}{A_\beta} \right)
\]

These strains constitute the extensional and shearing strains acting in the parallel surface passing through a given point of the shell, at that point

First, recall that

\[
\frac{\hat{g}_1}{A_1} = \hat{a}_1 + \xi_3 \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1}
\]

and

\[
\frac{\hat{g}_2}{A_2} = \hat{a}_2 + \xi_3 \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2}
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- By using the derivative expressions

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{a}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{a}_2 \quad \text{and}
\]

\[
\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} = \frac{\csc \theta_{12}}{r_{21}} \hat{a}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{a}_2
\]

it follows that:

\[
\frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}_1 = \frac{1}{r_{11}} \quad \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}_2 = \frac{1}{r_{22}}
\]

\[
\xi_3 \left(\frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \cdot \hat{a}_1 + \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \cdot \hat{a}_2 \right) = \left(\frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \right) \sin \theta_{12}
\]

\[
\left(\frac{\xi_3}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) \cdot \hat{a}_1 = \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2
\]

\[
\left(\frac{\xi_3}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) \cdot \hat{a}_2 = \left(\frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{21}} \right)^2
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

These expressions yield

\[
\left(\xi_3^2 \right)^2 \frac{1}{A_1} \frac{\partial \hat{n}_1}{\partial \xi_1} \cdot \frac{1}{A_2} \frac{\partial \hat{n}_2}{\partial \xi_2} = \left(\frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{22}} \right) \sin \theta_{12} + \left(\frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{21}} + \frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{22}} \right) \cos \theta_{12}
\]

\[
\frac{\mathbf{g}_1}{A_1} \cdot \frac{\mathbf{g}_1}{A_1} = 1 + 2 \frac{\xi_3}{r_{11}} \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2
\]

\[
\frac{\mathbf{g}_2}{A_2} \cdot \frac{\mathbf{g}_2}{A_2} = 1 + 2 \frac{\xi_3}{r_{22}} \left(\frac{\xi_3}{r_{21}} \right)^2 + \left(\frac{\xi_3}{r_{22}} \right)^2
\]

\[
\frac{\mathbf{g}_1}{A_1} \cdot \frac{\mathbf{g}_2}{A_2} = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \right) \sin \theta_{12}
\]

\[
+ \left(\frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{22}} \right) \sin \theta_{12} + \left(\frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{21}} + \frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{22}} \right) \cos \theta_{12}
\]
Analogously, it follows that

\[
\frac{1}{\mathcal{A}_1} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_1} = \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \hat{\mathbf{a}}_1 - \frac{\csc \theta_{12}}{r_{12}} \hat{\mathbf{a}}_2
\]

and

\[
\frac{1}{\mathcal{A}_2} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_2} = \csc \theta_{12} \hat{\mathbf{a}}_1 + \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \hat{\mathbf{a}}_2
\]

yield

\[
\frac{1}{\mathcal{A}_1} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_1} \cdot \hat{\mathbf{a}}_1 = \frac{1}{r_{11}}
\]

\[
(\xi_3)^2 \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_1} \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_1} = \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2
\]

\[
\frac{1}{\mathcal{A}_2} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_2} \cdot \hat{\mathbf{a}}_2 = \frac{1}{r_{22}}
\]

\[
(\xi_3)^2 \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_2} \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\mathbf{a}}}{\partial \xi_2} = \left(\frac{\xi_3}{r_{21}} \right)^2 + \left(\frac{\xi_3}{r_{22}} \right)^2
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- In addition,

\[
\left(\frac{\xi_3}{A_2} \right) \left(1 \frac{\partial \hat{a}_1}{\partial \xi_2} \cdot \hat{\alpha}_1 + 1 \frac{\partial \hat{a}_2}{\partial \xi_1} \cdot \hat{\alpha}_2 \right) = \left(\frac{\xi_3}{\nu_{11}} + \frac{\xi_3}{\nu_{22}} \right) \cos \theta_{12} + \left(\frac{\xi_3}{\nu_{21}} - \frac{\xi_3}{\nu_{12}} \right) \sin \theta_{12}
\]

\[
\left(\frac{\xi_3}{A_1} \right)^2 \left(\frac{\partial \hat{a}_1}{\partial \xi_1} \cdot 1 \frac{\partial \hat{a}_2}{\partial \xi_2} \right) = \left(\frac{\xi_3 \xi_3}{\nu_{11} \nu_{21}} - \frac{\xi_3 \xi_3}{\nu_{12} \nu_{22}} \right) \sin \theta_{12} + \left(\frac{\xi_3 \xi_3}{\nu_{12} \nu_{21}} + \frac{\xi_3 \xi_3}{\nu_{11} \nu_{22}} \right) \cos \theta_{12}
\]

- To obtain additional simplifications, it is presumed that the transverse-shearing strains and their derivatives with respect to the reference-surface Gaussian coordinates are small enough that nonlinear terms associated with their products are negligible.

- To gain some physical insight, let \(\gamma = \gamma_{\text{max}} \sin \left(\frac{2\pi h}{l} \bar{x} \right) \) represent a transverse-shearing response that oscillates along the deformed shell reference surface with a wavelength \(l \) in a small neighborhood of an arbitrary point of the reference surface.
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

• The symbol \bar{h} denotes the corresponding average thickness and \bar{x} represents any arc-length coordinate for the reference surface that has been nondimensionalized by \bar{h}

• This type of nondimensionalization is consistent with localized kinking or wrinkling that might be observed for an actual shell and that is easily characterized in terms of the nearby shell thickness

• The derivative is given by

$$
\gamma' = 2\pi \gamma_{\text{max}} \left(\frac{\bar{h}}{\ell} \right) \cos \left(\frac{2\pi \bar{h}}{\ell} \bar{x} \right)
$$

• Inspection of these equations reveals that

$$
|\gamma_{\text{max}}| \ll 1 \quad \text{and} \quad |\gamma_{\text{max}}| \frac{\bar{h}}{\ell} \ll 1
$$

for a “small” transverse shearing strain and its derivative
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

● Therefore, \(\frac{\hat{h}}{\ell} \leq 1 \) which means that the wavelength of the response must be larger than the average thickness.

● Thus, this presumption of “small” transverse-shearing strains and their derivatives is consistent with the absence of extreme short wavelength transverse-shearing action along the reference surface.

● For this presumption, it follows that the nonlinear terms given by

\[
\frac{1}{\mathcal{A}_{(\alpha)}} \frac{\partial \hat{\gamma}}{\partial \xi_{\alpha}} \cdot \frac{1}{\mathcal{A}_{(\beta)}} \frac{\partial \hat{\gamma}}{\partial \xi_{\beta}} \leq \left| \frac{1}{\mathcal{A}_{(\alpha)}} \frac{\partial \hat{\gamma}}{\partial \xi_{\alpha}} \right| \left| \frac{1}{\mathcal{A}_{(\beta)}} \frac{\partial \hat{\gamma}}{\partial \xi_{\beta}} \right| = 0 + \mathcal{O}(\varepsilon^4)
\]

are negligible.
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

The remaining dot products needed are expressed as

\[
2\xi_3 \left(\frac{1}{\mathcal{A}_1} \frac{\partial \hat{\mathcal{A}}}{\partial \xi_1} \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} - 2 \frac{\xi_3 \cot \theta_{12}}{r_{12}} \left(\hat{a}_1 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\gamma}}{\partial \xi_1} \right) \right)
\]

and

\[
2\xi_3 \left(\frac{1}{\mathcal{A}_2} \frac{\partial \hat{\mathcal{A}}}{\partial \xi_2} \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} + 2 \frac{\xi_3 \csc \theta_{12}}{r_{21}} \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_2} \right) \right)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[
\xi_3 \left(\frac{1}{\mathcal{A}_1} \frac{\partial \hat{u}}{\partial \xi_1} \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{v}}{\partial \xi_2} + \frac{1}{\mathcal{A}_2} \frac{\partial \hat{u}}{\partial \xi_2} \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{v}}{\partial \xi_1} \right) = \\
\frac{\xi_3 \csc \theta_{12}}{\nu_{21}} \left(\hat{a}_1 \cdot \frac{\partial \hat{v}}{\partial \xi_1} \right) + \left(\frac{\xi_3}{\nu_{11}} + \frac{\xi_3 \cot \theta_{12}}{\nu_{12}} \right) \left(\hat{a}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{v}}{\partial \xi_1} \right) \\
+ \left(\frac{\xi_3}{\nu_{22}} - \frac{\xi_3 \cot \theta_{12}}{\nu_{21}} \right) \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{v}}{\partial \xi_1} \right) - \frac{\xi_3 \csc \theta_{12}}{\nu_{12}} \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{v}}{\partial \xi_2} \right)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

With these simplifications, the inner products associated with the convected basis are written as

\[
\frac{\mathbf{\dot{\gamma}}_1}{A_1} \cdot \frac{\mathbf{\dot{\gamma}}_1}{A_1} = \left(\frac{A_1}{A_1} \right)^2 \left[1 + \frac{2 \xi_3}{\eta_{11}} + \left(\frac{\xi_3}{\eta_{11}} \right)^2 + \left(\frac{\xi_3}{\eta_{12}} \right)^2 \right] + 2 \Gamma_{11} + \mathcal{O}(\varepsilon^4)
\]

\[
\frac{\mathbf{\dot{\gamma}}_2}{A_2} \cdot \frac{\mathbf{\dot{\gamma}}_2}{A_2} = \left(\frac{A_2}{A_2} \right)^2 \left[1 + \frac{2 \xi_3}{\eta_{22}} + \left(\frac{\xi_3}{\eta_{21}} \right)^2 + \left(\frac{\xi_3}{\eta_{22}} \right)^2 \right] + 2 \Gamma_{22} + \mathcal{O}(\varepsilon^4)
\]

\[
\frac{\mathbf{\dot{\gamma}}_1}{A_1} \cdot \frac{\mathbf{\dot{\gamma}}_2}{A_2} = \frac{A_1 A_2}{A_1 A_2} \left[1 + \frac{\xi_3}{\eta_{11}} + \frac{\xi_3}{\eta_{22}} \right] \cos \theta_{12} + \left(\frac{\xi_3}{\eta_{21}} - \frac{\xi_3}{\eta_{12}} \right) \sin \theta_{12}
\]

\[
+ \left(\frac{\xi_3}{\eta_{11}} \frac{\xi_3}{\eta_{21}} - \frac{\xi_3}{\eta_{12}} \frac{\xi_3}{\eta_{22}} \right) \sin \theta_{12} + \left(\frac{\xi_3}{\eta_{12}} \frac{\xi_3}{\eta_{21}} + \frac{\xi_3}{\eta_{11}} \frac{\xi_3}{\eta_{22}} \right) \cos \theta_{12} + 2 \Gamma_{12} + \mathcal{O}(\varepsilon^4)
\]

where
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[\Gamma_{11} = \left(\frac{A_1}{A_{1}} \right)^2 \left[- \frac{\xi_3 \csc \theta_{12}}{n_{12}} \left(\hat{\alpha}_2 \cdot \frac{1}{A_1} \frac{\partial \gamma}{\partial \xi_1} \right) \right. \\
\left. + \left(1 + \frac{\xi_3}{n_{11}} + \frac{\xi_3 \cot \theta_{12}}{n_{12}} \right) \left(\hat{\alpha}_1 \cdot \frac{1}{A_1} \frac{\partial \gamma}{\partial \xi_1} \right) \right] + O(\varepsilon^4) \]

\[\Gamma_{22} = \left(\frac{A_2}{A_{2}} \right)^2 \left[\frac{\xi_3 \csc \theta_{12}}{n_{21}} \left(\hat{\alpha}_1 \cdot \frac{1}{A_2} \frac{\partial \gamma}{\partial \xi_2} \right) \right. \\
\left. + \left(1 + \frac{\xi_3}{n_{22}} - \frac{\xi_3 \cot \theta_{12}}{n_{21}} \right) \left(\hat{\alpha}_2 \cdot \frac{1}{A_2} \frac{\partial \gamma}{\partial \xi_2} \right) \right] + O(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[2\Gamma_{12} = \frac{A_1 A_2}{A_1 A_2} \left[\frac{\xi_3 \csc \theta_{12}}{r_{21}} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \gamma}{\partial \xi_1} \right) - \frac{\xi_3 \csc \theta_{12}}{r_{12}} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \gamma}{\partial \xi_2} \right) \right. \]
\[+ \left. \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \gamma}{\partial \xi_2} \right) \right] \]
\[+ \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \gamma}{\partial \xi_1} \right) \] + \mathcal{O}(\varepsilon^4)

- The next step in the analysis is to simplify Γ_{11}, Γ_{22}, and $2\Gamma_{12}$ for “small” strains and their derivatives

- First, consider the terms

\[\hat{a}_\alpha \cdot \frac{1}{A_{(\beta)}} \frac{\partial \gamma}{\partial \xi_\beta} \]
PARALLEL-SURFACE TANGENTIAL STRAINS CONTINUED

By direct analogy, the components of the derivatives of the deformed-surface vector field

\[\mathbf{a}(\xi_1, \xi_2) = \mathbf{\hat{a}}_1 + \mathbf{\hat{a}}_2 + \mathbf{\hat{a}}_3 \]

for general nonorthogonal Gaussian reference-surface coordinates, are given by

\[\mathbf{\hat{a}}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{a}}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\alpha_1 + \alpha_2 \cos \theta_{12} \right) - \frac{\alpha_2 \sin \theta_{12}}{\rho_{11}} + \frac{\alpha_3}{\nu_{11}} \]

\[\mathbf{\hat{a}}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{a}}}{\partial \xi_1} = \left(\frac{1}{A_1} \frac{\partial \alpha_1}{\partial \xi_1} + \frac{\alpha_3}{\nu_{11}} \right) \cos \theta_{12} + \frac{1}{A_1} \frac{\partial \alpha_2}{\partial \xi_1} + \left(\frac{\alpha_1}{\rho_{11}} - \frac{\alpha_3}{\nu_{12}} \right) \sin \theta_{12} \]

\[\mathbf{\hat{a}} \cdot \frac{1}{A_1} \frac{\partial \mathbf{\hat{a}}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \alpha_3}{\partial \xi_1} - \frac{\alpha_1}{\nu_{11}} + \alpha_2 \left(\frac{\sin \theta_{12}}{\nu_{12}} - \frac{\cos \theta_{12}}{\nu_{11}} \right) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[
\hat{\alpha}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\alpha}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \alpha_1}{\partial \xi_2} + \left(\frac{1}{A_2} \frac{\partial \alpha_2}{\partial \xi_2} + \frac{\alpha_3}{\rho_{22}}\right) \cos \theta_{12} + \left(\frac{\alpha_3}{\rho_{21}} - \frac{\alpha_2}{\rho_{22}}\right) \sin \theta_{12}
\]

\[
\hat{\alpha}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\alpha}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\alpha_2 + \alpha_1 \cos \theta_{12}\right) + \frac{\alpha_1 \sin \theta_{12}}{\rho_{22}} + \frac{\alpha_3}{\rho_{22}}
\]

\[
\hat{\alpha} \cdot \frac{1}{A_2} \frac{\partial \hat{\alpha}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \alpha_3}{\partial \xi_2} - \alpha_1 \left(\frac{\sin \theta_{12}}{\rho_{21}} + \frac{\cos \theta_{12}}{\rho_{22}}\right) - \frac{\alpha_2}{\rho_{22}}
\]

- In these expressions,

\[
\frac{1}{\rho_{11}} = \csc \theta_{12} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12}\right] - \frac{\partial A_1}{\partial \xi_2}\right)
\]

and

\[
\frac{1}{\rho_{22}} = - \csc \theta_{12} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12}\right] - \frac{\partial A_2}{\partial \xi_1}\right)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- Previously, it was shown that \(\vec{\gamma} = \gamma_1 \hat{\mathbf{a}}_1 + \gamma_2 \hat{\mathbf{a}}_2 \), where

\[
\gamma_1 = F_1(\xi_3) \left(2\varepsilon^\circ_{13} - 2\varepsilon^\circ_{23} \cos \theta_{12} \right) \csc^2 \theta_{12} + O(\varepsilon^4) = F_1(\xi_3) \gamma_1^\circ + O(\varepsilon^4)
\]

and

\[
\gamma_2 = F_2(\xi_3) \left(2\varepsilon^\circ_{23} - 2\varepsilon^\circ_{13} \cos \theta_{12} \right) \csc^2 \theta_{12} + O(\varepsilon^4) = F_2(\xi_3) \gamma_2^\circ + O(\varepsilon^4)
\]

- Thus, the derivative components of \(\vec{\gamma} = \gamma_1 \hat{\mathbf{a}}_1 + \gamma_2 \hat{\mathbf{a}}_2 \) are given by

\[
\hat{\mathbf{a}}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{1}{\partial \xi_1} \frac{\partial \gamma}{\partial \xi_1} = \frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}}
\]

\[
\hat{\mathbf{a}}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{1}{\partial \xi_1} \frac{\partial \gamma}{\partial \xi_1} = \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12}
\]
Thus, the components

\[
\hat{a}_1 \cdot \frac{1}{A} \frac{\partial \gamma}{\partial \xi_2} = \frac{1}{A} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{A} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12}
\]

\[
\hat{a}_2 \cdot \frac{1}{A} \frac{\partial \gamma}{\partial \xi_2} = \frac{1}{A} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}}
\]

As a result, these components are presumed \(O(\varepsilon^2) \), consistent with the presumption of “small” transverse-shearing strains and their derivatives.
By using $\cos \theta_{12} = 2\varepsilon_{12}^o + \cos \theta_{12} (1 - \varepsilon_{11}^o - \varepsilon_{22}^o) + \mathcal{O}(\varepsilon^4)$ and

\[
\sin \theta_{12} = \sin \theta_{12} - \cos \theta_{12} \gamma_{12}^o + \mathcal{O}(\varepsilon^4),
\]

it follows that

\[
\hat{a}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_1 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{\mathcal{A}_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{\mathcal{A}_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{\mathcal{A}_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} + \mathcal{O}(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Similarly, using

\[
\frac{1}{A_1} = \frac{1}{A_1} \left(1 - \varepsilon_{11}^0 + \mathcal{O}(\varepsilon^4) \right)
\]
and

\[
\frac{1}{A_2} = \frac{1}{A_2} \left(1 - \varepsilon_{22}^0 + \mathcal{O}(\varepsilon^4) \right)
\]
yields

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{A_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} + \mathcal{O}(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Now consider the expressions

\[
\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right)
\]

and

\[
\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right)
\]

Using

\[
A_1 = A_1 \left(1 + \varepsilon_{11}^o + \mathcal{O}(\varepsilon^4) \right) \quad A_2 = A_2 \left(1 + \varepsilon_{22}^o + \mathcal{O}(\varepsilon^4) \right)
\]

\[
\cos \theta_{12} = 2\varepsilon_{12}^o + \cos \theta_{12} \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o \right) + \mathcal{O}(\varepsilon^4)
\]

\[
csc \theta_{12} = \csc \theta_{12} \left[1 + 2\varepsilon_{12}^o \cot \theta_{12} \csc \theta_{12} - \cot^2 \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right] + \mathcal{O}(\varepsilon^4)
\]
gives
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[
\frac{1}{\rho_{11}} = \frac{1}{\rho_{11}} \left[1 + 2\epsilon_{12}^\circ \cot\theta_{12} \csc\theta_{12} - \csc^2\theta_{12} \left(\epsilon_{11}^\circ + \epsilon_{22}^\circ \right) \right] \\
+ \frac{\csc\theta_{12}}{A_1 A_2} \left[\frac{\partial}{\partial \xi_1} \left(A_2 \left[2\epsilon_{12}^\circ - \epsilon_{11}^\circ \cos\theta_{12} \right] \right) - \frac{\partial}{\partial \xi_2} \left[A_1 \epsilon_{11}^\circ \right] \right] + \mathcal{O}(\epsilon^4)
\]

and

\[
\frac{1}{\rho_{22}} = \frac{1}{\rho_{22}} \left[1 + 2\epsilon_{12}^\circ \cot\theta_{12} \csc\theta_{12} - \csc^2\theta_{12} \left(\epsilon_{11}^\circ + \epsilon_{22}^\circ \right) \right] \\
- \frac{\csc\theta_{12}}{A_1 A_2} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \left[2\epsilon_{12}^\circ - \cos\theta_{12} \epsilon_{22}^\circ \right] \right) - \frac{\partial}{\partial \xi_1} \left[A_2 \epsilon_{22}^\circ \right] \right] + \mathcal{O}(\epsilon^4)
\]

for the geodesic curvatures of the deformed reference surface, for “small” strains and their derivatives.
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- As one might expect, the changes in reference-surface geodesic curvature due to deformation depends only on the tangential reference-surface strains and their derivatives.

- The presumption that the derivatives of the tangential reference-surface strains are "small" is consistent with the absence of strain concentrations near a cutout, or other discontinuities, that exhibit extreme localized spatial variations.
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Using geodesic curvatures of the deformed reference surface gives

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} + O(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{A_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12} + O(\varepsilon^4)
\]

\[
\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\gamma}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} + O(\varepsilon^4)
\]

which are expressed entirely in terms of reference-surface geometric parameters and transverse shearing strains.
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- Now, \(\mathcal{A}_1 = A_1 \left(1 + \varepsilon_{11}^o + O(\varepsilon^4) \right) \) and \(\mathcal{A}_2 = A_2 \left(1 + \varepsilon_{22}^o + O(\varepsilon^4) \right) \) are used to get

\[
\left(\frac{\mathcal{A}_1}{A_1} \right)^2 = 1 + 2\varepsilon_{11}^o + O(\varepsilon^4)
\]

\[
\left(\frac{\mathcal{A}_2}{A_2} \right)^2 = 1 + 2\varepsilon_{22}^o + O(\varepsilon^4)
\]

\[
\frac{\mathcal{A}_1 \mathcal{A}_2}{A_1 A_2} = 1 + \varepsilon_{11}^o + \varepsilon_{22}^o + O(\varepsilon^4)
\]

- Hence,

\[
\left(\frac{\mathcal{A}_1}{A_1} \right)^2 \left(\hat{a}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} \right) = \frac{1}{\mathcal{A}_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} + O(\varepsilon^4)
\]

\[
\left(\frac{\mathcal{A}_1}{A_1} \right)^2 \left(\hat{a}_2 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{\gamma}}{\partial \xi_1} \right) = \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{\mathcal{A}_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12} + O(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS CONTINUED

\[
\left(\frac{\mathbf{A}_2}{\mathbf{A}_2} \right)^2 \left(\hat{\mathbf{a}}_1 \cdot \frac{1}{\mathbf{A}_2} \frac{\partial \mathbf{\hat{y}}}{\partial \xi_2} \right) = \frac{1}{\mathbf{A}_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{\mathbf{A}_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]

\[
\left(\frac{\mathbf{A}_2}{\mathbf{A}_2} \right)^2 \left(\hat{\mathbf{a}}_2 \cdot \frac{1}{\mathbf{A}_2} \frac{\partial \mathbf{\hat{y}}}{\partial \xi_2} \right) = \frac{1}{\mathbf{A}_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} + \mathcal{O}(\varepsilon^4)
\]

\[
\frac{\mathbf{A}_1 \mathbf{A}_2}{\mathbf{A}_1 \mathbf{A}_2} \left(\hat{\mathbf{a}}_1 \cdot \frac{1}{\mathbf{A}_1} \frac{\partial \mathbf{\hat{y}}}{\partial \xi_1} \right) = \frac{1}{\mathbf{A}_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} + \mathcal{O}(\varepsilon^4)
\]

\[
\frac{\mathbf{A}_1 \mathbf{A}_2}{\mathbf{A}_1 \mathbf{A}_2} \left(\hat{\mathbf{a}}_2 \cdot \frac{1}{\mathbf{A}_1} \frac{\partial \mathbf{\hat{y}}}{\partial \xi_1} \right) = \frac{1}{\mathbf{A}_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos \theta_{12} + \frac{1}{\mathbf{A}_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \sin \theta_{12} + \mathcal{O}(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[
\frac{A_1A_2}{A_1A_2} \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \vec{y}}{\partial \xi_2} \right) = \frac{1}{A_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos \theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin \theta_{12} + O(\varepsilon^4)
\]

\[
\frac{A_1A_2}{A_1A_2} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \vec{y}}{\partial \xi_2} \right) = \frac{\partial}{A_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} + O(\varepsilon^4)
\]

Using these results with

\[
\cot \theta_{12} = \cot \theta_{12} + 2\varepsilon_{12} \csc^3 \theta_{12} - \left(\varepsilon^\circ_{11} + \varepsilon^\circ_{22} \right) \csc^2 \theta_{12} \cot \theta_{12} + O(\varepsilon^4)
\]

and

\[
\csc \theta_{12} = \csc \theta_{12} \left[1 + 2\varepsilon_{12} \cot \theta_{12} \csc \theta_{12} - \cot^2 \theta_{12} \left(\varepsilon^\circ_{11} + \varepsilon^\circ_{22} \right) \right] + O(\varepsilon^4)
\]

leads to
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[\Gamma_{11} = -\frac{\xi_3}{\zeta_{12}} \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} + \frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_2}{\partial \xi_1} + \frac{\gamma_1}{\rho_{11}} \right) + \left(1 + \frac{\xi_3}{\zeta_{11}} + \frac{\xi_3 \cot \theta_{12}}{\zeta_{12}} \right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}} \right) + O(\varepsilon^4) \]

\[\Gamma_{22} = \frac{\xi_3}{\zeta_{21}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_1}{\partial \xi_2} + \frac{\cot \theta_{12}}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} - \frac{\gamma_2}{\rho_{22}} \right) + \left(1 + \frac{\xi_3}{\zeta_{22}} - \frac{\xi_3 \cot \theta_{12}}{\zeta_{21}} \right) \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}} \right) + O(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[2\Gamma_{12} = \left(\frac{\xi_3}{\nu_{21}} \right) \left(\frac{\csc\theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_1 + \gamma_2 \cos\theta_{12} \right) - \frac{\gamma_2}{\rho_{11}} \right) \]

\[- \left(\frac{\xi_3}{\nu_{12}} \right) \left(\frac{\csc\theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_2 + \gamma_1 \cos\theta_{12} \right) + \frac{\gamma_1}{\rho_{22}} \right) \]

\[+ \left(1 + \frac{\xi_3}{\nu_{11}} \right) \left(1 + \frac{\xi_3 \cot\theta_{12}}{\nu_{22}} \right) \left(\frac{1}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} \cos\theta_{12} - \frac{\gamma_2}{\rho_{22}} \sin\theta_{12} \right) \]

\[+ \left(1 + \frac{\xi_3}{\nu_{22}} \right) \left(1 - \frac{\xi_3 \cot\theta_{12}}{\nu_{21}} \right) \left(\frac{1}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} \cos\theta_{12} + \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} + \frac{\gamma_1}{\rho_{11}} \sin\theta_{12} \right) + \mathcal{O}(\varepsilon^4) \]

- Next, using \(\cot\theta_{12} = \cot\theta_{12} + 2\varepsilon_{12}^0 \csc^3\theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2\theta_{12} \cot\theta_{12} + \mathcal{O}(\varepsilon^4) \)

and the identity \(\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot\theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \) with
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[- \frac{1}{\tau_{12}} = \kappa_{12}^o - \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + \kappa_{11}^o - \kappa_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \]

\[\frac{1}{\tau_{21}} = \kappa_{12}^o + \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + \kappa_{11}^o - \kappa_{22}^o \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \]

gives

\[- \frac{1}{\tau_{12}} = - \frac{1}{r_{12}} + \kappa_{12}^o - \frac{\cot \theta_{12}}{2} \left(\kappa_{11}^o - \kappa_{22}^o \right) \]

\[- \frac{1}{2} \left[2\varepsilon_{12}^o \csc^3 \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \csc^2 \theta_{12} \cot \theta_{12} \right] \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) + \mathcal{O}(\varepsilon^4) \]

\[\frac{1}{\tau_{21}} = \frac{1}{r_{21}} + \kappa_{12}^o + \frac{\cot \theta_{12}}{2} \left(\kappa_{11}^o - \kappa_{22}^o \right) \]

\[+ \frac{1}{2} \left[2\varepsilon_{12}^o \csc^3 \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \csc^2 \theta_{12} \cot \theta_{12} \right] \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) + \mathcal{O}(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- Using these expressions with \(\frac{1}{r_{11}} = \frac{1}{r_{11}} + \kappa_{11}^o \) and \(\frac{1}{r_{22}} = \frac{1}{r_{22}} + \kappa_{22}^o \) yields

\[
\Gamma_{11} = \left(1 + \frac{\xi_3}{r_{11}}\right) \frac{1}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} - \frac{\xi_3}{r_{12}} \frac{\gamma_1}{\rho_{11}} - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_2}{\partial \xi_1}\right)
\]
\[
+ \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2 \cos \theta_{12}\right) - \frac{\gamma_2 \sin \theta_{12}}{\rho_{11}}\right) + O(\varepsilon^4)
\]

\[
\Gamma_{22} = \left(1 + \frac{\xi_3}{r_{22}}\right) \frac{1}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} - \frac{\xi_3}{r_{21}} \frac{\gamma_2}{\rho_{22}} + \frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_1}{\partial \xi_2}\right)
\]
\[
+ \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right) \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_1 \cos \theta_{12}\right) + \frac{\gamma_1 \sin \theta_{12}}{\rho_{22}}\right) + O(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[2 \Gamma_{12} = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \frac{1}{A_2} \frac{\partial \gamma_1}{\partial \xi_2} + \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{\cos \theta_{12}}{A_1} \frac{\partial \gamma_1}{\partial \xi_1} + \frac{\gamma_1 \sin \theta_{12}}{\rho_{11}} \right) \]

\[+ \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \frac{1}{A_1} \frac{\partial \gamma_2}{\partial \xi_1} + \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{\cos \theta_{12}}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} - \frac{\gamma_2 \sin \theta_{12}}{\rho_{22}} \right) \]

\[+ \frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_1}{\partial \xi} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_1 \cos \theta_{12} \right) + \frac{\gamma_1}{\rho_{22}} \right) \]

\[+ \frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2 \cos \theta_{12} \right) - \frac{\gamma_2}{\rho_{11}} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_2}{\partial \xi_2} \right) + O(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

- Next, \(\gamma_1 = F_1(\xi_3)\gamma_1^\circ \) and \(\gamma_2 = F_2(\xi_3)\gamma_2^\circ \) are used to express \(\Gamma_{11}, \Gamma_{22}, \) and \(2\Gamma_{12} \) in terms of the primary unknowns as follows:

\[
\Gamma_{11} = F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2^\circ \cos \theta_{12} \right) - \frac{\gamma_2^\circ \sin \theta_{12}}{\rho_{11}} \right) - F_2(\xi_3) \frac{\xi_3}{r_{12}} \left(\csc \theta_{12} \frac{\partial \gamma_2^\circ}{\partial \xi_1} \right) + F_1(\xi_3) \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \gamma_1^\circ}{\partial \xi_1} - \frac{\xi_3}{r_{12}} \frac{\gamma_1^\circ}{\rho_{11}} \right] + \mathcal{O}(\varepsilon^4)
\]

\[
\Gamma_{22} = F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_1^\circ \cos \theta_{12} \right) + \frac{\gamma_1^\circ \sin \theta_{12}}{\rho_{22}} \right) + F_1(\xi_3) \frac{\xi_3}{r_{21}} \left(\csc \theta_{12} \frac{\partial \gamma_1^\circ}{\partial \xi_2} \right) + F_2(\xi_3) \left[\left(1 + \frac{\xi_3}{r_{22}} \right) \frac{1}{A_2} \frac{\partial \gamma_2^\circ}{\partial \xi_2} - \frac{\xi_3}{r_{21}} \frac{\gamma_2^\circ}{\rho_{22}} \right] + \mathcal{O}(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[2 \Gamma_{12} = F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \frac{1}{A_2} \frac{\partial \gamma_1^o}{\partial \xi_2} + F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \frac{1}{A_1} \frac{\partial \gamma_2^o}{\partial \xi_1} \]

\[+ F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{\cos \theta_{12}}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} + \frac{\gamma_1^o \sin \theta_{12}}{\rho_{11}} \right) \]

\[+ F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{\cos \theta_{12}}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} - \frac{\gamma_2^o \sin \theta_{12}}{\rho_{22}} \right) \]

\[+ F_1(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_1^o}{\partial \xi_2} \left(\gamma_1^o \cos \theta_{12} \right) + \frac{\gamma_1^o}{\rho_{22}} \right) \right] \]

\[+ F_2(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_2^o}{\partial \xi_1} \left(\gamma_2^o \cos \theta_{12} \right) - \frac{\gamma_2^o}{\rho_{11}} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} \right) \right] + \mathcal{O}(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Now, consider the simplification of the shell-strain expression by using the “small-strain” approximations; that is

\[2\varepsilon_{\alpha\beta} = \frac{A_{(\alpha)} A_{(\beta)}}{H_{(\alpha)} H_{(\beta)}} \left[\left(\frac{\hat{g}_\alpha}{A_{(\alpha)}} \cdot \frac{\hat{g}_\beta}{A_{(\beta)}} \right) - \left(\frac{\hat{g}_\alpha}{A_{(\alpha)}} \cdot \frac{\hat{g}_\beta}{A_{(\beta)}} \right) \right] \]

\[\frac{\hat{g}_1 \cdot \hat{g}_1}{A_1 A_1} = \left(\frac{A_1}{A_1} \right)^2 \left(1 + \frac{2\xi_3}{\varepsilon_{11}} + \left(\frac{\xi_3}{\varepsilon_{11}} \right)^2 + \left(\frac{\xi_3}{\varepsilon_{12}} \right)^2 \right) + 2\Gamma_{11} + O(\varepsilon^4) \]

\[\frac{\hat{g}_2 \cdot \hat{g}_2}{A_2 A_2} = \left(\frac{A_2}{A_2} \right)^2 \left(1 + \frac{2\xi_3}{\varepsilon_{22}} + \left(\frac{\xi_3}{\varepsilon_{21}} \right)^2 + \left(\frac{\xi_3}{\varepsilon_{22}} \right)^2 \right) + 2\Gamma_{22} + O(\varepsilon^4) \]

\[\frac{\hat{g}_1 \cdot \hat{g}_2}{A_1 A_2} = \frac{A_1 A_2}{A_1 A_2} \left[1 + \frac{\xi_3}{\varepsilon_{11}} + \frac{\xi_3}{\varepsilon_{22}} \right] \cos \theta_{12} + \left(\frac{\xi_3}{\varepsilon_{21}} - \frac{\xi_3}{\varepsilon_{12}} \right) \sin \theta_{12} \]

\[+ \left(\frac{\xi_3}{\varepsilon_{11}} \frac{\xi_3}{\varepsilon_{22}} - \frac{\xi_3}{\varepsilon_{12}} \frac{\xi_3}{\varepsilon_{21}} \right) \sin \theta_{12} + \left(\frac{\xi_3}{\varepsilon_{11}} \frac{\xi_3}{\varepsilon_{21}} + \frac{\xi_3}{\varepsilon_{12}} \frac{\xi_3}{\varepsilon_{22}} \right) \cos \theta_{12} + 2\Gamma_{12} + O(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

are used with

\[
\frac{\hat{g}_1}{A_1} \cdot \frac{\hat{g}_1}{A_1} = 1 + 2 \frac{\xi_3}{r_{11}} + \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2
\]

\[
\frac{\hat{g}_2}{A_2} \cdot \frac{\hat{g}_2}{A_2} = 1 + 2 \frac{\xi_3}{r_{22}} + \left(\frac{\xi_3}{r_{21}} \right)^2 + \left(\frac{\xi_3}{r_{22}} \right)^2
\]

\[
\frac{\hat{g}_1}{A_1} \cdot \frac{\hat{g}_2}{A_2} = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \right) \sin \theta_{12}
\]

\[
+ \left(\frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{22}} \right) \sin \theta_{12} + \left(\frac{\xi_3}{r_{12}} \frac{\xi_3}{r_{21}} + \frac{\xi_3}{r_{11}} \frac{\xi_3}{r_{22}} \right) \cos \theta_{12}
\]

to get

\[
2 \epsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \left(\frac{A_2}{A_1} \right)^2 \left[1 + 2 \frac{\xi_3}{r_{11}} + \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right]
\]

\[- \left[1 + 2 \frac{\xi_3}{r_{11}} + \left(\frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + 2 \Gamma_{11} + \mathcal{O}(\epsilon^4)
\]

556
PARALLEL-SURFACE TANGENTIAL STRAINS CONTINUED

\[2\varepsilon_{12} \frac{H_1 H_2}{A_1 A_2} = \frac{A_1 A_2}{A_1 A_2} \left(1 + \frac{\xi_3}{\varphi_{11}} + \frac{\xi_3}{\varphi_{22}} \right) \cos \theta_{12} - \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cos \theta_{12} \]

\[+ \frac{A_1 A_2}{A_1 A_2} \left(\frac{\xi_3}{\varphi_{21}} - \frac{\xi_3}{\varphi_{12}} \right) \sin \theta_{12} - \left(\frac{\xi_3}{r_{21}} - \frac{\xi_3}{r_{12}} \right) \sin \theta_{12} \]

\[+ \frac{A_1 A_2}{A_1 A_2} \left(\frac{\xi_3 \xi_3}{\varphi_{11} \varphi_{21}} - \frac{\xi_3 \xi_3}{\varphi_{12} \varphi_{22}} \right) \sin \theta_{12} - \left(\frac{\xi_3 \xi_3}{r_{11} r_{21}} - \frac{\xi_3 \xi_3}{r_{12} r_{22}} \right) \sin \theta_{12} \]

\[+ \frac{A_1 A_2}{A_1 A_2} \left(\frac{\xi_3 \xi_3}{\varphi_{12} \varphi_{21}} + \frac{\xi_3 \xi_3}{\varphi_{11} \varphi_{22}} \right) \cos \theta_{12} - \left(\frac{\xi_3 \xi_3}{r_{12} r_{21}} + \frac{\xi_3 \xi_3}{r_{11} r_{22}} \right) \cos \theta_{12} + 2\Gamma_{12} + O(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Next,

\[
\cot \theta_{12} = \cot \theta_{12} + 2 \varepsilon^{o}_{12} \csc^{3} \theta_{12} - \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right) \csc^{2} \theta_{12} \cot \theta_{12} + \mathcal{O} (\varepsilon^{4})
\]

and the identity

\[
\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)
\]

are used with

\[
- \frac{1}{\varepsilon_{12}} = K^{o}_{12} - \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + K^{o}_{11} - K^{o}_{22} \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)
\]

and

\[
\frac{1}{\varepsilon_{21}} = K^{o}_{12} + \frac{\cot \theta_{12}}{2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} + K^{o}_{11} - K^{o}_{22} \right) + \frac{1}{2} \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right)
\]
to get
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

\[
\frac{1}{\tau_{12}} = \frac{1}{r_{12}} - K_{12}^o + \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right)
\]

\[
\longleftarrow + \frac{1}{2} \left[2 \varepsilon_{12}^o \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \csc^2 \theta_{12} + O(\varepsilon^4)
\]

and

\[
\frac{1}{\tau_{21}} = \frac{1}{r_{21}} + K_{12}^o + \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right)
\]

\[
\longleftarrow + \frac{1}{2} \left[2 \varepsilon_{12}^o \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \csc^2 \theta_{12} + O(\varepsilon^4)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

The strains are simplified by using these “small-strain” expressions for the torsions of the deformed reference surface along with

\[A_1 = A_1 \left(1 + \varepsilon_{11}^o + O\left(\varepsilon^4 \right) \right) \]
\[A_2 = A_2 \left(1 + \varepsilon_{22}^o + O\left(\varepsilon^4 \right) \right) \]

\[\frac{1}{r_{11}} = \frac{1}{r_{11}} + K_{11}^o \]
\[\cos \theta_{12} = 2\varepsilon_{12}^o + \cos \theta_{12} \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o \right) + O\left(\varepsilon^4 \right) \]

\[\frac{1}{r_{22}} = \frac{1}{r_{22}} + K_{22}^o \]
\[\sin \theta_{12} = \sin \theta_{12} - \cot \theta_{12} \left[2\varepsilon_{12}^o - \cos \theta_{12} \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \right] + O\left(\varepsilon^4 \right) \]

and the identity

\[\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

This process yields

\[
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^0 \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{11}^0 \left(1 + \frac{\xi_3}{r_{11}} \right)
\]

\[
+ \frac{1}{2} \left(\frac{\xi_3}{r_{12}} \right) \left[2\varepsilon_{12}^0 \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right.
\]

\[
- \xi_3 \left(\frac{\xi_3}{r_{12}} \right) \left[K_{12}^0 - \frac{1}{2} \cot \theta_{12} \left(K_{11}^0 - K_{22}^0 \right) \right] + \Gamma_{11} + O(\varepsilon^4)
\]

where

\[
\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2
\]

and

\[
\Gamma_{11} = \Gamma_{11} \left(\frac{\xi_3}{r_{11}}, \frac{\xi_3}{r_{12}}, \frac{\xi_3}{r_{21}}, \frac{\xi_3}{r_{22}}, F_1(\xi_3), F_2(\xi_3), 2\varepsilon_{13}^0, 2\varepsilon_{23}^0 \right)
\]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONTINUED

Likewise

$$\epsilon_{22}\left(\frac{H_2}{A_2}\right)^2 = \epsilon_{22}^0 \left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{21}} \right)^2 + \xi_3 \kappa_{22}^0 \left(1 + \frac{\xi_3}{r_{22}} \right)$$

$$+ \frac{1}{2} \left(\frac{\xi_3}{r_{21}} \right) \left[2 \epsilon_{12}^0 \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\epsilon_{11}^0 + \epsilon_{22}^0 \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} \right]$$

$$+ \xi_3 \left(\frac{\xi_3}{r_{21}} \right) \left[\kappa_{12}^0 + \frac{1}{2} \cot \theta_{12} \left(\kappa_{11}^0 - \kappa_{22}^0 \right) \right] + \Gamma_{22} + o(\epsilon^4)$$

where

$$\left(\frac{H_2}{A_2} \right)^2 = \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2$$

and

$$\Gamma_{22} = \Gamma_{22} \left(\frac{\xi_3}{r_{11}}, \frac{\xi_3}{r_{12}}, \frac{\xi_3}{r_{21}}, \frac{\xi_3}{r_{22}}, F_1(\xi_3), F_2(\xi_3), 2\epsilon_{13}^0, 2\epsilon_{23}^0 \right)$$
PARALLEL-SURFACE TANGENTIAL STRAINS

CONTINUED

\[2\varepsilon_{12} \frac{H_1 H_2}{A_1 A_2} = \varepsilon_{12}^0 \left[1 + \left(\frac{\xi_3}{r_{11}} \right)^2 - \left(\frac{\xi_3}{r_{12}} \right)^2 + \left(1 + \frac{\xi_3}{r_{22}} \right)^2 - \left(\frac{\xi_3}{r_{21}} \right)^2 \right] \]

\[+ \varepsilon_{12}^0 \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} + \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right)^2 \left(\csc^4 \theta_{12} - 1 \right) \right] \]

\[- \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) + \left(\frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right)^2 \csc \theta_{12} \right] \frac{\csc \theta_{12}}{2} \]

\[+ \frac{\xi_3}{2} \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right] \csc \theta_{12} - \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \sin \theta_{12} \]

\[+ \frac{\xi_3}{2} \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right] \csc \theta_{12} - \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \sin \theta_{12} \]

\[+ \xi_3 K_{12}^0 \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} + \left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \csc \theta_{12} \right] \sin \theta_{12} + 2\Gamma_{12} + \mathcal{O}(\varepsilon^4) \]
PARALLEL-SURFACE TANGENTIAL STRAINS
CONCLUDED

where

\[
\frac{H_1 H_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2 \right] \left[\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 \right]^{\frac{1}{2}}
\]

and

\[
2\Gamma_{12} = 2\Gamma_{12} \left(\frac{\xi_3}{r_{11}}, \frac{\xi_3}{r_{12}}, \frac{\xi_3}{r_{21}}, \frac{\xi_3}{r_{22}}, F_1(\xi_3), F_2(\xi_3), 2\varepsilon_1, 2\varepsilon_2 \right)
\]
DISPLACEMENT-VECTOR FIELD

- The displacement fields are obtained by using \(\mathbf{X} = \mathbf{x} + \xi_3 \mathbf{n} \), \(\mathbf{\tilde{X}} = \mathbf{x} + \mathbf{U} \), and \(\mathbf{\tilde{z}} = \mathbf{\tilde{x}} + \mathbf{\tilde{u}} \) with \(\mathbf{x} + \xi_3 \mathbf{\hat{a}} + F_1(\xi_3)\gamma_1^\circ \mathbf{\hat{a}}_1 + F_2(\xi_3)\gamma_2^\circ \mathbf{\hat{a}}_2 + O(\varepsilon^4) \) to get
 \[
 \mathbf{\tilde{U}} = \mathbf{\tilde{u}} + \xi_3 (\mathbf{\hat{a}} - \mathbf{n}) + F_1(\xi_3)\gamma_1^\circ \mathbf{\hat{a}}_1 + F_2(\xi_3)\gamma_2^\circ \mathbf{\hat{a}}_2 + O(\varepsilon^4)
 \]

- The component form of this equation, with respect to the basis \(\{\mathbf{\hat{a}}_1, \mathbf{\hat{a}}_2, \mathbf{n}\} \), given by \(\mathbf{\tilde{U}} = U_1^0 \mathbf{\hat{a}}_1 + U_2^0 \mathbf{\hat{a}}_2 + U_3^0 \mathbf{n} \), is obtained by using

\[
\mathbf{\hat{a}}_1 = \left[(1 + \Delta_{11})\mathbf{\hat{a}}_1 + \Delta_{12} \mathbf{\hat{a}}_2 + \Delta_{13} \mathbf{n}\right] \left(1 - \varepsilon_{11}^\circ + O(\varepsilon^4)\right)
\]
\[
\mathbf{\hat{a}}_2 = \left[\Delta_{21} \mathbf{\hat{a}}_1 + (1 + \Delta_{22}) \mathbf{\hat{a}}_2 + \Delta_{23} \mathbf{n}\right] \left(1 - \varepsilon_{22}^\circ + O(\varepsilon^4)\right)
\]
\[
\mathbf{\hat{a}} = \frac{\sqrt{\mathbf{a}}}{\sqrt{a}} (m_1 \mathbf{\hat{a}}_1 + m_2 \mathbf{\hat{a}}_2 + m_3 \mathbf{n})
\]
DISPLACEMENT-VECTOR FIELD
CONTINUED

\[
\frac{\sqrt{a}}{\sqrt{a}} = 1 + 2\varepsilon_1^\circ \cot\theta_{12} \csc\theta_{12} - \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right)csc^2\theta_{12} + O(\varepsilon^4)
\]

and

\[\tilde{u} = u_1\hat{a}_1 + u_2\hat{a}_2 + w\hat{n}\]

- The resulting expressions are

\[
U_1^0 = u_1 + \xi_3^m_1 \left(1 + 2\varepsilon_1^\circ \cot\theta_{12} \csc\theta_{12} - \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right)csc^2\theta_{12} + O(\varepsilon^4) \right) \\
+ \left(1 + \Delta_{11} \right) \left(F_1(\xi_3)\gamma_1^\circ + O(\varepsilon^4) \right) + \Delta_{21} \left(F_2(\xi_3)\gamma_2^\circ + O(\varepsilon^4) \right)
\]

\[
U_2^0 = u_2 + \xi_3^m_2 \left(1 + 2\varepsilon_1^\circ \cot\theta_{12} \csc\theta_{12} - \left(\varepsilon_{11}^\circ + \varepsilon_{22}^\circ \right)csc^2\theta_{12} + O(\varepsilon^4) \right) \\
+ \Delta_{12} \left(F_1(\xi_3)\gamma_1^\circ + O(\varepsilon^4) \right) + \left(1 + \Delta_{22} \right) \left(F_2(\xi_3)\gamma_2^\circ + O(\varepsilon^4) \right)
\]
DISPLACEMENT-VECTOR FIELD
CONTINUED

These equations for the displacements are “exact” within the precision associated with “small” strains and strain derivatives.
The component form of the displacement vector field at an arbitrary point of a parallel reference surface, with respect to the basis \(\{ \hat{g}_1, \hat{g}_2, \hat{g}_3 \} \), given by

\[
\vec{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3
\]

Next, it is recalled that

\[
\hat{g}_1 = \mu_{11} \hat{a}_1 + \mu_{12} \hat{a}_2 \quad \text{and} \quad \hat{g}_2 = \mu_{21} \hat{a}_1 + \mu_{22} \hat{a}_2
\]

where

\[
\mu_{\alpha\beta} = \mu_{\alpha\beta}(\xi_1, \xi_2, \xi_3)
\]

are shifters that are defined as follows
DISPLACEMENT-VECTOR FIELD
CONTINUED

\[
\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]

\[
\mu_{12} = \frac{-\frac{\xi_3 \csc \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]

\[
\mu_{21} = \frac{\frac{\xi_3 \csc \theta_{12}}{r_{21}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}
\]

\[
\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}
\]
DISPLACEMENT-VECTOR FIELD
CONTINUED

Undeformed reference surface, \(S_0(\xi_3) \)

\[\mathbf{X} = \mathbf{x}_k(\xi_1, \xi_2, \xi_3) \hat{i}_k \]
DISPLACEMENT-VECTOR FIELD
CONCLUDED

By using the shifters, it follows that

\[\mu_{11} U_1 + \mu_{21} U_2 = U_1^0 \]
\[\mu_{12} U_1 + \mu_{22} U_2 = U_2^0 \]
\[U_3 = U_3^0 \]

Thus, \[U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]
and \[U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]

These expressions give the components of the displacement vector field at an arbitrary point of a parallel reference surface, with no simplifications made that are based on the thinness of the shell.
RESUME' OF EQUATIONS FOR
“SMALL” STRAINS AND FINITE ROTATIONS -
GENERAL GAUSSIAN COORDINATES
EQUATIONS FOR GENERAL COORDINATES

- The Green-Lagrange shell strains \(\{ \varepsilon_{11}, \varepsilon_{22}, 2\varepsilon_{12}, 2\varepsilon_{13}, 2\varepsilon_{23} \} \) are given by

\[
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \frac{\xi_3}{r_{12}}^2 \right] + \xi_3 K_{11}^o \left(1 + \frac{\xi_3}{r_{11}} \right) \\
+ \frac{1}{2} \left(\frac{\xi_3}{r_{12}} \right) \left[2\varepsilon_{12}^o \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc\theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \right] \csc^2\theta_{12} \\
- \xi_3 \left(\frac{\xi_3}{r_{12}} \right) \left[K_{12}^o - \frac{1}{2} \cot\theta_{12} \left(K_{11}^o - K_{22}^o \right) \right] + \Gamma_{11} + O(\varepsilon^4)
\]

where

\[
\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot\theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc\theta_{12}}{r_{12}} \right)^2
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\varepsilon_{22} \left(\frac{H_2}{A_2} \right)^2 = \varepsilon_{22}^o \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{21}} \right)^2 \right] + \xi_3 \kappa_{22}^o \left(1 + \frac{\xi_3}{r_{22}} \right) \\
+ \frac{1}{2} \left(\frac{\xi_3}{r_{21}} \right) \left[2\varepsilon_{12}^o \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc\theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2\theta_{12} \right] \\
+ \xi_3 \left(\frac{\xi_3}{r_{21}} \right) \left[\kappa_{12}^o + \frac{1}{2} \cot\theta_{12} \left(\kappa_{11}^o - \kappa_{22}^o \right) \right] + \Gamma_{22} + \mathcal{O}(\varepsilon^4)
\]

where

\[
\left(\frac{H_2}{A_2} \right)^2 = \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc\theta_{12}}{r_{21}} \right)^2
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[2\varepsilon_{12} \frac{H_1 H_2}{A_1 A_2} = \varepsilon_{12}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 - \left(\frac{\xi_3}{r_{12}} \right)^2 + \left(1 + \frac{\xi_3}{r_{22}} \right)^2 - \left(\frac{\xi_3}{r_{21}} \right)^2 \right] \]

\[+ \varepsilon_{12}^o \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right)^2 \left(\csc^4 \theta_{12} - 1 \right) \right] \]

\[- \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) + \left(\frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right)^2 \cot \theta_{12} \right] \frac{\csc \theta_{12}}{2} \]

\[+ \frac{\xi_3}{2} \frac{K_{11}^o}{2} \left[\left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right] \sin \theta_{12} \]

\[+ \frac{\xi_3}{2} \frac{K_{22}^o}{2} \left[\left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} - \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right] \sin \theta_{12} \]

\[+ \frac{\xi_3}{2} K_{12}^o \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} + \left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \cot \theta_{12} \right] \sin \theta_{12} + 2\Gamma_{12} + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

where

\[
\frac{H_1 H_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2 \right]^{\frac{1}{2}} \left[\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 \right]^{\frac{1}{2}}
\]

\[
\Gamma_{11} = F_2(\xi) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma^o \cos \theta_{12} \right) - \frac{\gamma^o \sin \theta_{12}}{\rho_{11}} \right) - F_2(\xi) \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma^o}{\partial \xi_1} \right) + F_1(\xi) \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} - \frac{\xi_3}{r_{12}} \frac{\gamma_1^o}{\rho_{11}} \right] + O(\varepsilon^4)
\]

\[
\Gamma_{22} = F_1(\xi) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma^o \cos \theta_{12} \right) + \frac{\gamma^o \sin \theta_{12}}{\rho_{22}} \right) + F_1(\xi) \frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{22}}{A_2} \frac{\partial \gamma^o}{\partial \xi_2} \right) + F_2(\xi) \left[\left(1 + \frac{\xi_3}{r_{22}} \right) \frac{1}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} - \frac{\xi_3}{r_{21}} \frac{\gamma_2^o}{\rho_{22}} \right] + O(\varepsilon^4)
\]
\[2\Gamma_{12} = F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \frac{1}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} + F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \frac{1}{A_1} \frac{\partial \gamma_2^o}{\partial \xi_1} \]

\[+ F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{\cos \theta_{12}}{A_2} \frac{\partial \gamma_1^o}{\partial \xi_2} + \frac{\gamma_1^o \sin \theta_{12}}{\rho_{11}} \right) \]

\[+ F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{\cos \theta_{12}}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} - \frac{\gamma_2^o \sin \theta_{12}}{\rho_{22}} \right) \]

\[+ F_1(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_1^o}{\partial \xi} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial}{\partial \xi} \left(\gamma_1^o \cos \theta_{12} \right) + \frac{\gamma_1^o}{\rho_{22}} \right) \right] \]

\[+ F_2(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi} \left(\gamma_2^o \cos \theta_{12} \right) - \frac{\gamma_2^o}{\rho_{11}} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} \right) \right] + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES

CONTINUED

\[\gamma_1^o = \csc^2 \theta_{12} \left(2\varepsilon_{13}^o - 2\varepsilon_{23}^o \cos \theta_{12}\right)\]

\[\gamma_2^o = \csc^2 \theta_{12} \left(2\varepsilon_{23}^o - 2\varepsilon_{13}^o \cos \theta_{12}\right)\]

and where it is noted that \(2\varepsilon_{13}^o\) and \(2\varepsilon_{23}^o\) are fundamental unknowns

- The transverse shearing strains are given by

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left[F_1'(\xi_3) + \frac{P_1(\xi_3)}{r_{11}} \right] \gamma_1^o + \left[\left(F_2'(\xi_3) + \frac{P_2(\xi_3)}{r_{11}} \right) \cos \theta_{12} - \frac{P_2(\xi_3) \sin \theta_{12}}{r_{21}} \right] \gamma_2^o + O(\varepsilon^4)
\]

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left[F_2'(\xi_3) + \frac{P_2(\xi_3)}{r_{22}} \right] \gamma_2^o + \left[\left(F_1'(\xi_3) + \frac{P_1(\xi_3)}{r_{22}} \right) \cos \theta_{12} + \frac{P_1(\xi_3) \sin \theta_{12}}{r_{21}} \right] \gamma_1^o + O(\varepsilon^4)
\]

where \(P_1(\xi_3) = \xi_3 F_1'(\xi_3) - F_1(\xi_3)\) and \(P_2(\xi_3) = \xi_3 F_2'(\xi_3) - F_2(\xi_3)\)
EQUATIONS FOR GENERAL COORDINATES CONTINUED

- The reference-surface membrane strains are given by

\[
\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left[(e_{11}^o \csc \theta_{12})^2 + (e_{12}^o \csc \theta_{12} + \varphi)^2 \right] \\
- 2e_{12}^o (e_{12}^o \csc \theta_{12} + \varphi) \cot \theta_{12} + (\varphi_1 + \varphi_2 \cos \theta_{12})^2 \right] + O(\varepsilon^4)
\]

\[
\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left[(e_{22}^o \csc \theta_{12})^2 + (e_{12}^o \csc \theta_{12} - \varphi)^2 \right] \\
- 2e_{22}^o (e_{12}^o \csc \theta_{12} - \varphi) \cot \theta_{12} + (\varphi_1 \cos \theta_{12} + \varphi_2)^2 \right] + O(\varepsilon^4)
\]

\[
2\varepsilon_{12}^o = 2e_{12}^o + \left[e_{11}^o (e_{12}^o - \varphi \sin \theta_{12}) + e_{22}^o (e_{12}^o + \varphi \sin \theta_{12}) \right] \csc^2 \theta_{12} \\
- \left[e_{11}^o e_{22}^o + (e_{12}^o + \varphi \sin \theta_{12}) (e_{12}^o - \varphi \sin \theta_{12}) \right] \csc \theta_{12} \cot \theta_{12} \\
+ (\varphi_1 + \varphi_2 \cos \theta_{12}) (\varphi_1 \cos \theta_{12} + \varphi_2) + O(\varepsilon^4)
\]
The reference-surface bending strains are given by

\[
K_{11}^o = \frac{1}{\tilde{\boldsymbol{\iota}}_{11}} - \frac{1 + 3\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + O(\varepsilon^4)
\]

\[
K_{22}^o = \frac{1}{\tilde{\boldsymbol{\iota}}_{22}} - \frac{1 + \varepsilon_{11}^o + 3\varepsilon_{22}^o}{r_{22}} + O(\varepsilon^4)
\]

\[
2K_{12}^o = - \left[\frac{1}{\tilde{\boldsymbol{\iota}}_{12}} - \frac{1}{\tilde{\boldsymbol{\iota}}_{21}} - \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] + 3 \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) (\varepsilon_{11}^o + \varepsilon_{22}^o)
\]

\[
+ \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) (\varepsilon_{22}^o - \varepsilon_{11}^o) \cot \theta_{12} + O(\varepsilon^4)
\]

where

\[
\frac{1}{\tilde{\boldsymbol{\iota}}_{11}} = \left(1 + e_{11}^o \right) m^{(1)}_{(1)} + \left(\cos \theta_{12} + e_{12}^o + \varphi \sin \theta_{12} \right) m^{(2)}_{(1)} - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) m^{(3)}_{(1)}
\]

\[
\frac{1}{\tilde{\boldsymbol{\iota}}_{22}} = \left(\cos \theta_{12} + e_{12}^o - \varphi \sin \theta_{12} \right) m^{(1)}_{(2)} + \left(1 + e_{22}^o \right) m^{(2)}_{(2)} - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) m^{(3)}_{(2)}
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\frac{1}{\tilde{r}_{12}} = \left(1 + e_{11}^o \csc^2 \theta_{12} - (e_{12}^o \csc \theta_{12} + \varphi) \cot \theta_{12} \right) \begin{bmatrix}
 m_3 m^{(2)} \\ m_1 m^{(1)} \\ m_2 m^{(3)}
\end{bmatrix}
\begin{bmatrix}
 (1) \\ (1) \\ (1)
\end{bmatrix}
\sin \theta_{12}
\]

\[
+ \left(e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12} \right) \begin{bmatrix}
 m_1 m^{(3)} \\ m_3 m^{(1)} \\ m_2 m^{(1)}
\end{bmatrix}
\begin{bmatrix}
 (1) \\ (1) \\ (1)
\end{bmatrix}
\sin \theta_{12}
\]

\[
+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \begin{bmatrix}
 m_1 m^{(2)} \\ m_2 m^{(1)} \\ m_3 m^{(2)}
\end{bmatrix}
\begin{bmatrix}
 (1) \\ (1) \\ (1)
\end{bmatrix}
\sin \theta_{12}
\]

\[
\frac{1}{\tilde{r}_{21}} = \left(1 + e_{22}^o \csc^2 \theta_{12} - (e_{12}^o \csc \theta_{12} - \varphi) \cot \theta_{12} \right) \begin{bmatrix}
 m_3 m^{(1)} \\ m_1 m^{(3)} \\ m_2 m^{(2)}
\end{bmatrix}
\begin{bmatrix}
 (2) \\ (2) \\ (2)
\end{bmatrix}
\sin \theta_{12}
\]

\[
+ \left(e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12} \right) \begin{bmatrix}
 m_2 m^{(3)} \\ m_3 m^{(2)} \\ m_1 m^{(2)}
\end{bmatrix}
\begin{bmatrix}
 (2) \\ (2) \\ (2)
\end{bmatrix}
\sin \theta_{12}
\]

\[
+ \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \begin{bmatrix}
 m_2 m^{(1)} \\ m_2 m^{(2)} \\ m_1 m^{(2)}
\end{bmatrix}
\begin{bmatrix}
 (2) \\ (2) \\ (2)
\end{bmatrix}
\sin \theta_{12}
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\left. m^{(1)} \right|_{(1)} = \frac{1}{A_1} \frac{\partial m_1}{\partial \xi_1} - \frac{m_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right)
\]

\[
\left. m^{(2)} \right|_{(1)} = \frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} \left(m_1 + m_2 \cos \theta_{12} \right) + \frac{m_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - m_3 \frac{\csc \theta_{12}}{r_{12}}
\]

\[
\left. m^{(3)} \right|_{(1)} = \frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - \frac{m_1}{r_{11}} + m_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right)
\]

\[
\left. m^{(1)} \right|_{(2)} = \frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \frac{\csc \theta_{12}}{r_{21}}
\]

\[
\left. m^{(2)} \right|_{(2)} = \frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} - \frac{m_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \frac{\csc \theta_{12}}{\rho_{22}} \left(m_1 + m_2 \cos \theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right)
\]

\[
\left. m^{(3)} \right|_{(2)} = \frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - m_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{m_2}{r_{22}}
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\begin{align*}
\mathbf{m}_1 &= \varphi_1 - \left(e_{12} \csc \theta_{12} + \varphi \right) \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right) \\
&\quad + e_{12} \csc \theta_{12} \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right)
\end{align*}
\]

\[
\begin{align*}
\mathbf{m}_2 &= \varphi_2 - \left(e_{12} \csc \theta_{12} - \varphi \right) \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right) \\
&\quad + e_{12} \csc \theta_{12} \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right)
\end{align*}
\]

\[
\begin{align*}
\mathbf{m}_3 &= 1 + \varphi^2 + \left(e_{11} + e_{22} + e_{11} e_{22} - (e_{12})^2 \right) \csc^2 \theta_{12} \\
&\quad - 2e_{12} \cot \theta_{12} \csc \theta_{12}
\end{align*}
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\Delta_{11} = e_{11}^o \csc \theta_{12}^2 - \left(e_{12}^o \csc \theta_{12} + \varphi \right) \cot \theta_{12} \]

\[\Delta_{12} = \left(e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12} \right) \csc \theta_{12} \]

\[\Delta_{13} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \]

\[\Delta_{21} = \left(e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12} \right) \csc \theta_{12} \]

\[\Delta_{22} = e_{22}^o \csc \theta_{12}^2 - \left(e_{12}^o \csc \theta_{12} - \varphi \right) \cot \theta_{12} \]

\[\Delta_{23} = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\varphi_1 = \left(\frac{u_1}{r_{11}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \right) \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_2} \frac{\partial \xi_2}{\partial \xi_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12} \]

\[\varphi_2 = \left(\frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \right) \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_1} \frac{\partial \xi_1}{\partial \xi_1} - \frac{u_1}{r_{12}} \right) \csc \theta_{12} \]

\[2\varphi = \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cot \theta_{12} + \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} \right) \csc \theta_{12} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \]

\[e_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(u_1 + u_2 \cos \theta_{12} \right) - \frac{u_2 \sin \theta_{12}}{\rho_{11}} + \frac{w}{r_{11}} \]

\[e_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(u_2 + u_1 \cos \theta_{12} \right) + \frac{u_1 \sin \theta_{12}}{\rho_{22}} + \frac{w}{r_{22}} \]

\[2e_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cos \theta_{12} \]

\[+ \left(\frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} \right) \sin \theta_{12} + w \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} + w \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \sin \theta_{12} \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right)
\]

\[
\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right)
\]

- The displacement fields for points of the shell are given by

\[
\hat{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3 \quad \text{with}
\]

\[
U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad \text{and} \quad U_3 = U_3^0 \quad \text{; and where}
\]

\[
\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

$$\mu_{12} = \frac{-\xi_3 \csc\theta_{12}}{r_{12}} \sqrt{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot\theta_{12}}{r_{12}}} + \left(\frac{\xi_3 \csc\theta_{12}}{r_{12}}\right)^2$$

$$\mu_{21} = \frac{\xi_3 \csc\theta_{12}}{r_{21}} \sqrt{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}}} + \left(\frac{\xi_3 \csc\theta_{12}}{r_{21}}\right)^2$$

$$\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}}}{\sqrt{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot\theta_{12}}{r_{21}}} + \left(\frac{\xi_3 \csc\theta_{12}}{r_{21}}\right)^2}$$
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[U_1^0 = u_1 + \xi_3 m_1 \left(1 + 2 \varepsilon_{12} \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2 \theta_{12} + O(\varepsilon^4) \right) \]

\[+ \left(1 + \Delta_{11} \right) \left(F_1(\xi_3) \gamma_1^0 + O(\varepsilon^4) \right) + \Delta_{21} \left(F_2(\xi_3) \gamma_2^0 + O(\varepsilon^4) \right) \]

\[U_2^0 = u_2 + \xi_3 m_2 \left(1 + 2 \varepsilon_{12} \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2 \theta_{12} + O(\varepsilon^4) \right) \]

\[+ \Delta_{12} \left(F_1(\xi_3) \gamma_1^0 + O(\varepsilon^4) \right) + \left(1 + \Delta_{22} \right) \left(F_2(\xi_3) \gamma_2^0 + O(\varepsilon^4) \right) \]

\[U_3^0 = w + \xi_3 \left[m_3 \left(1 + 2 \varepsilon_{12} \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \csc^2 \theta_{12} + O(\varepsilon^4) \right) \right] - 1 \]

\[+ \Delta_{13} \left(F_1(\xi_3) \gamma_1^0 + O(\varepsilon^4) \right) + \Delta_{23} \left(F_2(\xi_3) \gamma_2^0 + O(\varepsilon^4) \right) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

- The compatibility equations are given by

\[
\begin{align*}
C_{11}^o (\varepsilon_{11}^o) &+ C_{12}^o (\varepsilon_{22}^o) + C_{13}^o (\varepsilon_{12}^o) + C_{14}^o (\kappa_{11}^o) + C_{15}^o (\kappa_{22}^o) + C_{16}^o (\kappa_{12}^o) = 0 \\
C_{21}^o (\varepsilon_{11}^o) &+ C_{22}^o (\varepsilon_{22}^o) + C_{23}^o (\varepsilon_{12}^o) + C_{24}^o (\kappa_{11}^o) + C_{25}^o (\kappa_{22}^o) + C_{26}^o (\kappa_{12}^o) = 0 \\
C_{31}^o (\varepsilon_{11}^o) &+ C_{32}^o (\varepsilon_{22}^o) + C_{33}^o (\varepsilon_{12}^o) + C_{34}^o (\kappa_{11}^o) + C_{35}^o (\kappa_{22}^o) + C_{36}^o (\kappa_{12}^o) = 0
\end{align*}
\]

where

\[
C_{11}^o (\varepsilon_{11}^o) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2^2 \csc^2 \theta_{12} \varepsilon_{11}^o}{\rho_{22}} \right) - \frac{\partial}{\partial \xi_2} \left(\frac{A_1 \cot^2 \theta_{12} \varepsilon_{11}^o}{\rho_{11}} \right) \\
- \frac{\partial}{\partial \xi_2} \left(\frac{\csc \theta_{12}}{A_2} \left[\frac{\partial}{\partial \xi_1} \left(A_2 \cos \theta_{12} \varepsilon_{11}^o \right) + \frac{\partial}{\partial \xi_2} \left(A_1 \varepsilon_{11}^o \right) \right] \right) + \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\cot \theta_{12} \varepsilon_{11}^o \right) \\
- \left(\frac{1}{r_{11}} + \frac{1}{r_{12}} \right) A_1 A_2 \csc \theta_{12} \varepsilon_{11}^o + O(\varepsilon^4)
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\mathcal{C}_{12}(\mathcal{E}^o_{22}) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \cot^2 \theta_{12} \mathcal{E}^o_{22} \right) - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \csc^2 \theta_{12} \mathcal{E}^o_{22} \right) \]

\[- \frac{\partial}{\partial \xi_1} \left(\frac{\csc \theta_{12}}{A_1} \left[\frac{\partial}{\partial \xi_2} \left(A_1 \cos \theta_{12} \mathcal{E}^o_{22} \right) + \frac{\partial}{\partial \xi_1} \left(A_2 \mathcal{E}^o_{22} \right) \right] \right) + \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\cot \theta_{12} \mathcal{E}^o_{22} \right) \]

\[- \left(\frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} \right) A_1 A_2 \csc \theta_{12} \mathcal{E}^o_{22} + O(\varepsilon^4) \]

\[\mathcal{C}_{14}(\mathcal{K}^o_{11}) = - A_1 A_2 \left(\frac{\sin \theta_{12}}{r_{22}} - \frac{\cos \theta_{12}}{r_{21}} \right) \mathcal{K}^o_{11} + O(\varepsilon^4) \]

\[\mathcal{C}_{15}(\mathcal{K}^o_{22}) = - A_1 A_2 \left(\frac{\sin \theta_{12}}{r_{11}} + \frac{\cos \theta_{12}}{r_{12}} \right) \mathcal{K}^o_{22} + O(\varepsilon^4) \]

\[\mathcal{C}_{16}(\mathcal{K}^o_{12}) = - A_1 A_2 \left[\left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \sin \theta_{12} - \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} \right] \mathcal{K}^o_{12} + O(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\epsilon_{13}^{\circ}(\epsilon_{12}^{\circ}) = \frac{\partial}{\partial \xi_1} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial}{\partial \xi_2} \left(A_1 2\epsilon_{12}^{\circ} \right) \right) - \frac{\partial}{\partial \xi_1} \left(\frac{A_2 \cot \theta_{12} \csc \theta_{12}}{\rho_{22}} 2\epsilon_{12}^{\circ} \right) + \frac{\partial}{\partial \xi_2} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial}{\partial \xi_1} \left(A_2 2\epsilon_{12}^{\circ} \right) \right) + \frac{\partial}{\partial \xi_2} \left(\frac{A_1 \cot \theta_{12} \csc \theta_{12}}{\rho_{11}} 2\epsilon_{12}^{\circ} \right) - \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \left(\csc \theta_{12} 2\epsilon_{12}^{\circ} \right) + A_1 A_2 \left(1 - \cos \theta_{12} \right) \cot^2 \theta_{12} \left(\frac{1}{r_{12} r_{22}} - \frac{1}{r_{21} r_{11}} \right) 2\epsilon_{12}^{\circ} + A_1 A_2 \cot \theta_{12} \left(\frac{1}{r_{11} r_{22}} + \frac{1}{r_{12} r_{21}} \right) 2\epsilon_{12}^{\circ} + \mathcal{O}(\epsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
\mathcal{C}_{21}(\varepsilon^o) = - \left[\frac{\csc \theta_{12}}{2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \frac{1}{A_1} \frac{\partial \varepsilon^o}{\partial \xi_1} - \left[\left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} - \frac{2 \cot \theta_{12}}{r_{12}} \right] \frac{1}{A_2} \frac{\partial \varepsilon^o}{\partial \xi_2}
\]

\[
- \csc \theta_{12} \left[\frac{1}{2A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) + \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \sin 2 \theta_{12} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) \cos 2 \theta_{12} \right] \varepsilon^o_{11}
\]

\[
+ \csc \theta_{12} \left[\left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \right) \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \csc \theta_{12} + \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \right] \varepsilon^o_{11} + \mathcal{O}(\varepsilon^4)
\]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[C_{22}(E_{22}^o) = \frac{\csc \theta_{12}}{2} \left[\frac{1}{r_{21}} - \frac{3}{r_{12}} \right] \frac{1}{A_1} \frac{\partial E_{22}^o}{\partial \xi_1} \]

\[+ \frac{\csc \theta_{12}}{2} \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{21}} \right) \cos 2 \theta_{12} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} \right) \right] E_{22}^o \]

\[+ \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \cos \theta_{12} \right] - \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \frac{\cot \theta_{12} \csc \theta_{12}}{\rho_{11}} \]

\[- \csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left[\left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} - \frac{4 \cot \theta_{12}}{r_{12}} \right] E_{22}^o \]

\[- \cot \theta_{12} \left(\frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left[\left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} - \frac{2 \cot \theta_{12}}{r_{12}} \right] E_{22}^o + O(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\(\mathcal{C}_{23}(\varepsilon_{12}^o) = \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12} + \frac{2}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} \right) - 2 \cot \theta_{12} \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \right] \varepsilon_{12}^o + \mathcal{O}(\varepsilon^4) \)

\[+ \csc^2 \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \frac{1}{A_1} \frac{\partial \varepsilon_{12}^o}{\partial \xi_1} \]

\[- \csc^2 \theta_{12} \left[\left(\frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left(\frac{1}{r_{21}} + \frac{5}{r_{12}} \right) + \frac{2}{\rho_{11}} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] \varepsilon_{12}^o + \mathcal{O}(\varepsilon^4) \]

\[\mathcal{C}_{24}(K_{11}^o) = \cos \theta_{12} \frac{1}{2} \frac{\partial K_{11}^o}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial K_{11}^o}{\partial \xi_2} \]

\[+ \left[\csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{2} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \cot \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K_{11}^o + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[C_{25}(K^0_{22}) = \frac{\cos \theta_{12}}{2} \frac{1}{A_1} \frac{\partial K^0_{22}}{\partial \xi_1} \]

\[\quad - \left[\csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{2} \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \cot \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K^0_{22} + O(\varepsilon^4) \]

\[C_{26}(K^0_{12}) = \sin \theta_{12} \frac{1}{A_1} \frac{\partial K^0_{12}}{\partial \xi_1} - 2 \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) K^0_{12} + O(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[E_{31}(\varepsilon_1) = \csc_{12} \left(\frac{3}{r_{21}} - \frac{1}{r_{12}} \right) \frac{1}{A_2} \frac{\partial \varepsilon_1}{\partial \xi_2} \right] \varepsilon_1^{\circ} \]

\[+ \csc_{12} \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{21}} \right) - \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) \cos \theta_{12} \right] \varepsilon_1^{\circ} \]

\[+ \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) - \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) \cos \theta_{12} - \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \csc \theta_{12} \right] \rho_{22} \varepsilon_1^{\circ} \]

\[- \cot \theta_{12} \left(\frac{1}{\rho_1} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2\cot \theta_{12}}{r_{21}} \right] \varepsilon_1^{\circ} \]

\[- \csc \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{4\cot \theta_{12}}{r_{21}} \right] \varepsilon_1^{\circ} + O(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[
C_{32}(\varepsilon_{22}^o) = - \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2 \cot \theta_{12}}{r_{21}} \right] \frac{1}{A_1} \frac{\partial \varepsilon_{22}^o}{\partial \xi_1} + \left[\frac{\csc \theta_{12}}{2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \frac{1}{A_2} \frac{\partial \varepsilon_{22}^o}{\partial \xi_2}
\]

\[
- \csc \theta_{12} \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) \sin 2 \theta_{12} + \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) \cos 2 \theta_{12} - \frac{1}{2A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \right] \varepsilon_{22}^o
\]

\[
+ \csc \theta_{12} \left[\left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \csc \theta_{12} - \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \left(\frac{1}{r_{12}} + \frac{1}{r_{21}} \right) \cot \theta_{12} \right] \varepsilon_{22}^o + O(\varepsilon^4)
\]

\[
C_{34}(K_{11}^o) = \cos \theta_{12} \frac{1}{2} \frac{\partial K_{11}^o}{\partial \xi_2}
\]

\[
- \csc \theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc \theta_{12} \left(- \frac{1}{\rho_{22}} + \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K_{11}^o + O(\varepsilon^4)
\]

597
EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[C_{33}(\varepsilon^o_{12}) = \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} + \frac{2}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{11}} \right) + 2\cot\theta_{12} \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) \right] \varepsilon^o_{12} \]

\[+ \csc^2 \theta_{12} \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_2} \frac{\partial \varepsilon_{12}^o}{\partial \xi_2} \]

\[+ \csc^2 \theta_{12} \left[\left(\frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \left(\frac{1}{r_{12}} + \frac{5}{r_{12}} \right) + \frac{2}{\rho_{22}} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] \varepsilon^o_{12} + \mathcal{O}(\varepsilon^4) \]

\[C_{35}(K^o_{22}) = -\frac{1}{A_1} \frac{\partial K^o_{22}}{\partial \xi_1} + \frac{\cos\theta_{12}}{2} \frac{1}{A_2} \frac{\partial K^o_{22}}{\partial \xi_2} \]

\[+ \left[\cot\theta_{12} \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) + \csc\theta_{12} \left(-\frac{1}{\rho_{22}} + \frac{1}{2} \frac{1}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} \right) \right] K^o_{22} + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR GENERAL COORDINATES

CONCLUDED

\[E_{36} \left(K_{12}^\circ \right) = \sin \theta_{12} \frac{1}{A_2} \frac{\partial K_{12}^\circ}{\partial \xi_2} - 2 \left(\frac{1}{\rho_{11}} + \frac{1}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} \right) K_{12}^\circ + \mathcal{O}(\varepsilon^4) \]
RESUME' OF EQUATIONS FOR "SMALL" STRAINS AND FINITE ROTATIONS - ORTHOGONAL GAUSSIAN COORDINATES
EQUATIONS FOR ORTHOGONAL COORDINATES

For orthogonal reference-surface Gaussian coordinates, the Green-Lagrange shell strains \(\{ \varepsilon_{11}, \varepsilon_{22}, 2\varepsilon_{12}, 2\varepsilon_{13}, 2\varepsilon_{23} \} \) are given by

\[
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^0 \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{11}^o \left(1 + \frac{\xi_3}{r_{11}} \right) + \varepsilon_{12}^o \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \nonumber \\
- \xi_3 K_{12}^o \left(\frac{\xi_3}{r_{12}} \right) + \Gamma_{11} + \mathcal{O}(\varepsilon^4)
\]

\[
\varepsilon_{22} \left(\frac{H_2}{A_2} \right)^2 = \varepsilon_{22}^o \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{22}^o \left(1 + \frac{\xi_3}{r_{22}} \right) - \varepsilon_{12}^o \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \nonumber \\
- \xi_3 K_{12}^o \left(\frac{\xi_3}{r_{12}} \right) + \Gamma_{22} + \mathcal{O}(\varepsilon^4)
\]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

\[2\epsilon_{12} \frac{H_1 H_2}{A_1 A_2} = \epsilon_1^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(1 + \frac{\xi_3}{r_{12}} \right)^2 - 2 \left(\frac{\xi_3}{r_{12}} \right)^2 \right] - \left(\epsilon_{11}^o + \epsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) - \xi_3 \left(K_{11}^o + K_{22}^o \right) \left(\frac{\xi_3}{r_{12}} \right) + \xi_3 K_{12}^o \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right] + 2\Gamma_{12} + O(\epsilon^4)\]

\[2\epsilon_{13} \frac{H_1}{A_1} = \left[F_1^\prime(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} \right) - \frac{F_1(\xi_3)}{r_{11}} \right] 2\epsilon_{13}^o - \left[\frac{\xi_3 F_2^\prime(\xi_3) - F_2(\xi_3)}{r_{12}} \right] 2\epsilon_{23}^o + O(\epsilon^4)\]

\[2\epsilon_{23} \frac{H_2}{A_2} = \left[F_2^\prime(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} \right) - \frac{F_2(\xi_3)}{r_{22}} \right] 2\epsilon_{23}^o - \left[\frac{\xi_3 F_1^\prime(\xi_3) - F_1(\xi_3)}{r_{12}} \right] 2\epsilon_{13}^o + O(\epsilon^4)\]

with

\[\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2\]

\[\left(\frac{H_2}{A_2} \right)^2 = \left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2\]

\[\frac{H_1 H_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right]^{\frac{1}{2}} \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right]^{\frac{1}{2}}\]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

where

\[\Gamma_{11} = \left(1 + \frac{\xi_3}{r_{11}}\right) \left[F_1(\xi_3) \frac{1}{A_1} \frac{\partial 2\varepsilon^{\circ}_{13}}{\partial \xi_1} - F_2(\xi_3) \frac{2\varepsilon^{\circ}_{23}}{\rho_{11}} \right] \\
- \frac{\xi_3}{r_{12}} \left[F_1(\xi_3) \frac{2\varepsilon^{\circ}_{13}}{\rho_{11}} + F_2(\xi_3) \frac{1}{A_1} \frac{\partial 2\varepsilon^{\circ}_{23}}{\partial \xi_1} \right] + O(\varepsilon^4) \]

\[\Gamma_{22} = \left(1 + \frac{\xi_3}{r_{22}}\right) \left[F_1(\xi_3) \frac{2\varepsilon^{\circ}_{13}}{\rho_{22}} + F_2(\xi_3) \frac{1}{A_2} \frac{\partial 2\varepsilon^{\circ}_{23}}{\partial \xi_2} \right] \\
- \frac{\xi_3}{r_{12}} \left[F_1(\xi_3) \frac{1}{A_2} \frac{\partial 2\varepsilon^{\circ}_{13}}{\partial \xi_2} - F_2(\xi_3) \frac{2\varepsilon^{\circ}_{23}}{\rho_{22}} \right] + O(\varepsilon^4) \]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

\[
2\Gamma_{12} = \left(1 + \frac{\xi_3}{r_{11}}\right) \left[F_1(\xi_3) \frac{1}{A_2} \frac{\partial 2\varepsilon_{13}^o}{\partial \xi_2} - F_2(\xi_3) \frac{2\varepsilon_{23}^o}{\rho_{22}} \right] \\
+ \left(1 + \frac{\xi_3}{r_{22}}\right) \left[F_2(\xi_3) \frac{1}{A_1} \frac{\partial 2\varepsilon_{23}^o}{\partial \xi_1} + F_1(\xi_3) \frac{2\varepsilon_{13}^o}{\rho_{11}} \right] \\
- \frac{\xi_3}{r_{12}} \left[F_1(\xi_3) \left(\frac{1}{A_1} \frac{\partial 2\varepsilon_{13}^o}{\partial \xi_1} + \frac{2\varepsilon_{13}^o}{\rho_{22}} \right) \right] \left[F_2(\xi_3) \left(\frac{1}{A_2} \frac{\partial 2\varepsilon_{23}^o}{\partial \xi_2} - \frac{2\varepsilon_{23}^o}{\rho_{11}} \right) \right] + O(\varepsilon^4)
\]

and where it is noted that \(2\varepsilon_{13}^o\) and \(2\varepsilon_{23}^o\) are fundamental unknowns...
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

- The reference-surface membrane strains are given by

$$\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left((e_{11}^o)^2 + (e_{12}^o + \varphi)^2 + \varphi_1^2 \right) + O(\varepsilon^4)$$

$$\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left((e_{12}^o - \varphi)^2 + (e_{22}^o)^2 + \varphi_2^2 \right) + O(\varepsilon^4)$$

$$2\varepsilon_{12}^o = 2e_{12}^o + e_{11}^o(e_{12}^o - \varphi) + e_{22}^o(e_{12}^o + \varphi) + \varphi_1\varphi_2 + O(\varepsilon^4)$$

- The reference-surface bending strains are given by

$$K_{11}^o = \frac{1}{\bar{r}_{11}} - \frac{1 + 3\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + O(\varepsilon^4)$$

$$K_{22}^o = \frac{1}{\bar{r}_{22}} - \frac{1 + \varepsilon_{11}^o + 3\varepsilon_{22}^o}{r_{22}} + O(\varepsilon^4)$$

$$2K_{12}^o = \frac{1}{\bar{r}_{21}} - \frac{1}{\bar{r}_{12}} + 2 \frac{1 + 3(\varepsilon_{11}^o + \varepsilon_{22}^o)}{r_{12}} + O(\varepsilon^4)$$
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

where

\[
\frac{1}{\tilde{r}_{11}} = (1 + e_1^o) \left[m_3 \left| m_1 \right\rangle_{1} - m_2 \left| m_3 \right\rangle_{1} \right]
+ (e_1^o + \phi) \left[m_1 \left| m_3 \right\rangle_{1} - m_3 \left| m_1 \right\rangle_{1} \right] + \phi \left[m_1 \left| m_2 \right\rangle_{1} - m_2 \left| m_1 \right\rangle_{1} \right]
\]

\[
\frac{1}{\tilde{r}_{22}} = (e_1^o - \phi) \left[m_2 \left| m_1 \right\rangle_{2} - m_3 \left| m_2 \right\rangle_{2} \right]
+ (1 + e_2^o) \left[m_2 \left| m_3 \right\rangle_{2} - m_3 \left| m_2 \right\rangle_{2} \right] + \phi \left[m_2 \left| m_1 \right\rangle_{2} - m_1 \left| m_2 \right\rangle_{2} \right]
\]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

and where

\[m_1 = \varphi_1(1 + e_{22}^\circ) - \varphi_2(e_{12}^\circ + \varphi) \]

\[m_2 = \varphi_2(1 + e_{11}^\circ) - \varphi_1(e_{12}^\circ - \varphi) \]

\[m_3 = (1 + e_{11}^\circ)(1 + e_{22}^\circ) - (e_{12}^\circ + \varphi)(e_{12}^\circ - \varphi) \]

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\xi_1)</th>
<th>(\xi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\frac{1}{A_1} \frac{\partial m_1}{\partial \xi_1} - \frac{m_2}{\rho_{11}} + \frac{m_3}{r_{11}})</td>
<td>(\frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} + \frac{m_1}{\rho_{22}} - \frac{m_3}{r_{22}})</td>
</tr>
<tr>
<td>(2)</td>
<td>(\frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{m_1}{\rho_{11}} - \frac{m_3}{r_{12}})</td>
<td>(\frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - \frac{m_2}{\rho_{22}} - \frac{m_1}{r_{12}})</td>
</tr>
<tr>
<td>(3)</td>
<td>(\frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - \frac{m_1}{r_{11}} + \frac{m_2}{r_{12}})</td>
<td>(\frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1}{r_{12}} - \frac{m_2}{r_{22}})</td>
</tr>
</tbody>
</table>
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

In addition, the linear deformation measures are given by:

\[e_{11}^o = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} - \frac{w}{r_{11}} \]

\[e_{22}^o = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{\rho_{22}} + \frac{w}{r_{22}} \]

\[2e_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} - \frac{2w}{r_{12}} \]

\[\varphi_1 = \frac{u_1}{r_{11}} - \frac{u_2}{r_{12}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \]

\[\varphi_2 = \frac{u_2}{r_{22}} - \frac{u_1}{r_{12}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \]

\[\varphi = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \right) \]

where

\[\frac{1}{\rho_{11}} = - \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \]

and

\[\frac{1}{\rho_{22}} = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

- The displacement fields for points of the shell are given by

\[\hat{\mathbf{U}} = U_1 \hat{\mathbf{g}}_1 + U_2 \hat{\mathbf{g}}_2 + U_3 \hat{\mathbf{g}}_3 \]

with

\[U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]
\[U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]
\[U_3 = U_3^0 \]

and where

\[\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}}}{\sqrt{(1 + \frac{\xi_3}{r_{11}})^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \]
\[\mu_{12} = \frac{-\frac{\xi_3}{r_{12}}}{\sqrt{(1 + \frac{\xi_3}{r_{11}})^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \]
\[\mu_{21} = \frac{-\frac{\xi_3}{r_{12}}}{\sqrt{(1 + \frac{\xi_3}{r_{22}})^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \]
\[\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}}}{\sqrt{(1 + \frac{\xi_3}{r_{22}})^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}} \]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

\[U_1^0 = u_1 + \xi_3^m_1 \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o + O(\varepsilon^4) \right) + F(\xi_3) \left(1 + e_{11}^o \right) \left(2\varepsilon_{13}^o + O(\varepsilon^4) \right) \]

\[+ F(\xi_3) \left(e_{12}^o - \varphi \right) \left(2\varepsilon_{23}^o + O(\varepsilon^4) \right) \]

\[U_2^0 = u_2 + \xi_3^m_2 \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o + O(\varepsilon^4) \right) + F(\xi_3) \left(e_{12}^o + \varphi \right) \left(2\varepsilon_{13}^o + O(\varepsilon^4) \right) \]

\[+ F(\xi_3) \left(1 + e_{22}^o \right) \left(2\varepsilon_{23}^o + O(\varepsilon^4) \right) \]

\[U_3^0 = w + \xi_3 \left[m_3 \left(1 - \varepsilon_{11}^o - \varepsilon_{22}^o + O(\varepsilon^4) \right) - 1 \right] - F(\xi_3) \varphi_1 \left(2\varepsilon_{13}^o + O(\varepsilon^4) \right) \]

\[- F(\xi_3) \varphi_2 \left(2\varepsilon_{23}^o + O(\varepsilon^4) \right) \]
EQUATIONS FORORTHOGONAL COORDINATES
CONTINUED

The compatibility equations are given by

\[\mathcal{C}_{11}(\varepsilon_{11}) + \mathcal{C}_{12}(\varepsilon_{22}) + \mathcal{C}_{13}(\varepsilon_{12}) + \mathcal{C}_{14}(\kappa_{11}) + \mathcal{C}_{15}(\kappa_{22}) + \mathcal{C}_{16}(\kappa_{12}) = 0 \]

\[\mathcal{C}_{21}(\varepsilon_{11}) + \mathcal{C}_{22}(\varepsilon_{22}) + \mathcal{C}_{23}(\varepsilon_{12}) + \mathcal{C}_{24}(\kappa_{11}) + \mathcal{C}_{25}(\kappa_{22}) + \mathcal{C}_{26}(\kappa_{12}) = 0 \]

\[\mathcal{C}_{31}(\varepsilon_{11}) + \mathcal{C}_{32}(\varepsilon_{22}) + \mathcal{C}_{33}(\varepsilon_{12}) + \mathcal{C}_{34}(\kappa_{11}) + \mathcal{C}_{35}(\kappa_{22}) + \mathcal{C}_{36}(\kappa_{12}) = 0 \]

where

\[\mathcal{C}_{11}(\varepsilon_{11}) = \frac{\partial}{\partial \xi_1} \left(\frac{A_2}{\rho_{22}} \varepsilon_{11}^o \right) - \frac{\partial}{\partial \xi_2} \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\varepsilon_{11}^o} \right) \right) \]

\[- \left(\frac{1}{r_{11}r_{22}} - \frac{1}{(r_{12})^2} \right) A_1 A_2 \varepsilon_{11}^o + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

\[\mathcal{C}_{12}(\varepsilon_{22}^o) = - \frac{\partial}{\partial \xi_2} \left(\frac{A_1}{\rho_{11}} \varepsilon_{22}^o \right) - \frac{\partial}{\partial \xi_1} \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} (A_2 \varepsilon_{22}^o) \right) \]
\[- \left(\frac{1}{r_{11} r_{22}} - \frac{1}{(r_{12})^2} \right) A_1 A_2 \varepsilon_{22}^o + \mathcal{O}(\varepsilon^4) \]

\[\mathcal{C}_{13}(\varepsilon_{12}^o) = \frac{\partial}{\partial \xi_1} \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_2} (A_1 \varepsilon_{12}^o) + \frac{\partial}{\partial \xi_2} \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_1} (A_2 \varepsilon_{12}^o) \right) \right) \]
\[- \frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \xi_2} (2\varepsilon_{12}^o) + \mathcal{O}(\varepsilon^4) \]

\[\mathcal{C}_{14}(\kappa_{11}^o) = - \frac{A_1 A_2}{r_{22}} \kappa_{11}^o + \mathcal{O}(\varepsilon^4) \]
\[\mathcal{C}_{15}(\kappa_{22}^o) = - \frac{A_1 A_2}{r_{11}} \kappa_{22}^o + \mathcal{O}(\varepsilon^4) \]
\[\mathcal{C}_{16}(\kappa_{12}^o) = - \frac{2A_1 A_2}{r_{12}} \kappa_{12}^o + \mathcal{O}(\varepsilon^4) \]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONTINUED

\[
\mathcal{C}_{21}(\xi_{11}^o) = - \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \frac{1}{A_2} \frac{\partial \xi_{11}^o}{\partial \xi_{22}} + \frac{\xi_{11}^o}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{12}} \right) + \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_2} \left(\frac{2}{r_{12}} \right) \xi_{11}^o + O(\varepsilon^4)
\]

\[
\mathcal{C}_{22}(\xi_{22}^o) = \frac{\xi_{22}^o}{A_2} \frac{\partial}{\partial \xi_{22}} \left(\frac{1}{r_{11}} \right) - \frac{2}{r_{12}} \frac{1}{A_1} \frac{\partial \xi_{22}^o}{\partial \xi_1} + \frac{\xi_{22}^o}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) + O(\varepsilon^4)
\]

\[
\mathcal{C}_{23}(\xi_{12}^o) = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \xi_{12}^o + \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \frac{1}{A_1} \frac{\partial \xi_{12}^o}{\partial \xi_1} + \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \frac{4 \xi_{12}^o}{r_{12}^4} + O(\varepsilon^4)
\]

\[
\mathcal{C}_{24}(K_{11}^o) = - \frac{1}{A_2} \frac{\partial K_{11}^o}{\partial \xi_2} - \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} K_{11}^o + O(\varepsilon^4)
\]

\[
\mathcal{C}_{25}(K_{22}^o) = \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} K_{22}^o + O(\varepsilon^4)
\]

\[
\mathcal{C}_{26}(K_{12}^o) = \frac{1}{A_1} \frac{\partial K_{12}^o}{\partial \xi_1} + \frac{2}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} K_{12}^o + O(\varepsilon^4)
\]
EQUATIONS FOR ORTHOGONAL COORDINATES
CONCLUDED

\[C_{31}(\varepsilon^{\circ}_{11}) = \left[\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\frac{1}{r_{22}} \right) \right] \varepsilon^{\circ}_{11} - \frac{2}{r_{12}} \frac{1}{A_2} \frac{\partial \varepsilon^{\circ}_{11}}{\partial \xi_2} + \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \left[\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \right] \varepsilon^{\circ}_{11} + O(\varepsilon^4) \]

\[C_{32}(\varepsilon^{\circ}_{22}) = -\left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \varepsilon^{\circ}_{22}}{\partial \xi_1} + \frac{\varepsilon^{\circ}_{22}}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{12}} \right) + \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_1} \frac{2\varepsilon^{\circ}_{22}}{r_{12}} + O(\varepsilon^4) \]

\[C_{33}(\varepsilon^{\circ}_{12}) = \left[\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\frac{1}{r_{22}} + \frac{1}{r_{11}} \right) \right] \varepsilon^{\circ}_{12} + \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \frac{1}{A_2} \frac{\partial \varepsilon^{\circ}_{12}}{\partial \xi_2} + \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \frac{4\varepsilon^{\circ}_{12}}{r_{12}} + O(\varepsilon^4) \]

\[C_{34}(K^{\circ}_{11}) = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} K^{\circ}_{11} + O(\varepsilon^4) \]

\[C_{35}(K^{\circ}_{22}) = -\frac{1}{A_1} \frac{\partial K^{\circ}_{22}}{\partial \xi_1} - \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} K^{\circ}_{22} + O(\varepsilon^4) \]

\[C_{36}(K^{\circ}_{12}) = \frac{1}{A_2} \frac{\partial K^{\circ}_{12}}{\partial \xi_2} + \frac{2}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} K^{\circ}_{12} + O(\varepsilon^4) \]
SIMPLIFICATION OF THE NONLINEAR SHELL STRAINS
BASIS FOR SIMPLIFICATION OF THE NONLINEAR SHELL STRAINS

- The nonlinear shell strains presented herein for “small” strains consist of complicated expressions that are difficult, at best, to apply to practical situations.

- Thus, a great deal of effort has been expended over nearly 70 years to systematically simplify these equations.

- To simplify the membrane strains, changes in the curvatures, and changes in the torsions for the shell reference surface, the magnitude of the linear-deformation parameters appearing in the expressions must be established on a physically meaningful basis.

- Because shell deformation generally consists of strain and rotation, and a restriction on the order of the strains has been given, the order of magnitude of the rotation of infinitesimal material line elements of a shell are needed to quantify the deformation.
Basis for Simplification of the Nonlinear Shell Strains - Concluded

- In addition, for many practical applications, the maximum thickness of a shell is small compared to its other areal dimensions.

- Thus, two sets of criteria for simplifying the nonlinear “small-strain” shell equations have emerged that are based on placing restrictions on the magnitude of the rotational part of deformation and on placing restrictions on the relative thickness.

- When these two sets are combined, significant simplification of the nonlinear shell equations is obtained.
SIMPLIFICATIONS BASED ON ROTATION SIZE

- The rotation of infinitesimal material line elements of a shell can be characterized fully by the rotations of the convected base-vector fields \(\{ \hat{a}_1, \hat{a}_2, \hat{a}\} \) during deformation, as illustrated in the figure.
SIMPLIFICATIONS BASED ON ROTATION SIZE
CONTINUED

- In general, **finite rotations** of infinitesimal material line elements can be represented by the magnitude and direction of a **finite-rotation pseudo vector** given by
\[\mathbf{\Omega} = \Omega_1 \hat{\mathbf{a}}_1 + \Omega_2 \hat{\mathbf{a}}_2 + \Omega_3 \hat{\mathbf{n}} = \hat{\mathbf{\Omega}} \sin \omega \] where \(\hat{\mathbf{\Omega}} \) is a unit vector, \(\sin \omega = |\mathbf{\Omega}| \), and \(\omega \) is the angle of rotation about \(\hat{\mathbf{\Omega}} \).

- It has been shown in the references:

that for “small” strains, the components of \(\mathbf{\Omega}(\xi_1, \xi_2, \tau) \), are given in terms of the linear deformation parameters by
SIMPLIFICATIONS BASED ON ROTATION SIZE
CONTINUED

\[\Omega_1 = \left[\varphi_1 \left(\cot \theta_{12} + \frac{1}{2} \varphi - \frac{1}{2} e_{12}^o \sin \theta_{12} \right) + \varphi_2 \left(\csc \theta_{12} + \frac{1}{2} e_{11}^o \sin \theta_{12} \right) \right] \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

\[\Omega_2 = \left[- \varphi_1 \left(\csc \theta_{12} + \frac{1}{2} e_{22}^o \sin \theta_{12} \right) + \varphi_2 \left(\frac{1}{2} e_{12}^o \sin \theta_{12} + \frac{1}{2} \varphi - \cot \theta_{12} \right) \right] \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

\[\Omega_3 = \varphi \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

- Also, in these references:
 - "Small" rotations correspond to \(\omega = \mathcal{O}(\theta^2) \), where \(0 < \theta < 1 \)
 - "Moderate" rotations correspond to \(\omega = \mathcal{O}(\theta) \)
 - "Large" rotations correspond to \(\omega = \mathcal{O}\left(\sqrt{\theta}\right) \)
 - Unrestricted, finite rotations correspond to \(\omega \geq \mathcal{O}(1) \)
SIMPLIFICATIONS BASED ON ROTATION SIZE
CONTINUED

- Here, θ is a “small” positive quantity associated with rotations

- A practical alternative to using $|\Omega|$ for characterizing rotation size, given in the references by Pietraszkiewicz, is to place restrictions directly on the $|\Omega_k|$

- This approach is physically appealing because Ω_1 and Ω_2 represent the rotation of the tangent plane at a point of the shell reference surface during deformation, and Ω_3 represent the rotation about the normal vector at that point

- Thus, insight can be gained by comparing the flexibility of a shell with respect to “in-surface” and “out-of-surface” deformations

- To illustrate this approach, consider the class of rotations defined by $|\Omega_k| \leq \mathcal{O}(\theta^2)$, such that θ is approximately 100 times smaller than unity
Then, from

\[\Omega_1 = \left[\varphi_1 \left(\cot \theta_{12} + \frac{1}{2} \varphi - \frac{1}{2} e_{12}^o \sin \theta_{12} \right) + \varphi_2 \left(\csc \theta_{12} + \frac{1}{2} e_{11}^o \sin \theta_{12} \right) \right] \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

\[\Omega_2 = \left[-\varphi_1 \left(\csc \theta_{12} + \frac{1}{2} e_{22}^o \sin \theta_{12} \right) + \varphi_2 \left(\frac{1}{2} e_{12}^o \sin \theta_{12} + \frac{1}{2} \varphi - \cot \theta_{12} \right) \right] \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

and \[\Omega_3 = \varphi \left[1 + \mathcal{O}(\varepsilon^2) \right] \]

it follows that

\[|\varphi_{\alpha}| \leq \mathcal{O}(\Theta^2), \quad |\varphi| \leq \mathcal{O}(\Theta^2), \quad \text{and} \quad |\varphi_{\alpha} e_{\beta\gamma}^o| \leq \mathcal{O}(\Theta^2) \]
SIMPLIFICATIONS BASED ON ROTATION SIZE
CONTINUED

Next, from examination of the strains

\[\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left[(e_{11}^o \csc \theta_{12})^2 + (e_{12}^o \csc \theta_{12} + \varphi)^2 \right. \]
\[\quad \left. - 2e_{11}^o (e_{12}^o \csc \theta_{12} + \varphi) \cot \theta_{12} + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 \right] + O(\varepsilon^4) \]

\[\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left[(e_{22}^o \csc \theta_{12})^2 + (e_{12}^o \csc \theta_{12} - \varphi)^2 \right. \]
\[\quad \left. - 2e_{22}^o (e_{12}^o \csc \theta_{12} - \varphi) \cot \theta_{12} + \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)^2 \right] + O(\varepsilon^4) \]

\[2\varepsilon_{12}^o = 2e_{12}^o + \left[e_{11}^o (e_{12}^o - \varphi \sin \theta_{12}) + e_{22}^o (e_{12}^o + \varphi \sin \theta_{12}) \right] \csc^2 \theta_{12} \]
\[\quad - \left[e_{11}^o e_{22}^o + (e_{12}^o + \varphi \sin \theta_{12})(e_{12}^o - \varphi \sin \theta_{12}) \right] \csc \theta_{12} \cot \theta_{12} \]
\[\quad + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + O(\varepsilon^4) \]
it is seen that \(|e_{\beta\gamma}^0| \) are the largest quantities appearing in strain expressions.

- Thus, for "small" strains characterized by \(|\varepsilon_{\beta\gamma}^0| \leq O(\varepsilon^2) \), the magnitude of \(e_{\beta\gamma}^0 \) must be \(|e_{\beta\gamma}^0| \leq O(\theta^2) \) to yield "small" strains that are consistent with \(\varepsilon_{\alpha\beta}^0 \) being of \(O(\varepsilon^2) \).

- A similar procedure is followed to obtain magnitude estimates for the linear deformation parameters that correspond to different size restrictions placed on the magnitudes of \(\Omega_k \).

- The results of this approach are given in references by Pietraszkiewicz for several classes of rotations and are stated in the following Table.
Order of magnitude estimates for the linear deformation parameters are given for the case of “small” strains as follows, where θ is a small positive-valued parameter and $\theta^2 \ll 1$

| $|\Omega_1|, |\Omega_2|$ | $|\Omega_3|$ | $|\varphi_1|, |\varphi_2|$ | φ | $e_{\alpha\beta}^\circ$ |
|-----------------|-----------------|-----------------|---------------|-----------------|
| small | small | θ^2 | θ^2 | θ^2 |
| moderate | small | θ | θ^2 | θ^2 |
| moderate | moderate | θ | θ | θ^2 |
| large | small | $\theta^{1/2}$ | θ^2 | θ |
| large | moderate | $\theta^{1/2}$ | θ | θ |
| large | large | $\theta^{1/2}$ | $\theta^{1/2}$| θ |
| finite | small | 1 | θ^2 | 1 |
| finite | moderate | 1 | θ | 1 |
| finite | large | 1 | $\theta^{1/2}$| 1 |
| finite | finite | 1 | 1 | 1 |
SIMPLIFICATIONS BASED ON ROTATION SIZE
CONCLUDED

- In this table, the magnitudes of Ω_1, Ω_2, and Ω_3 in the shaded columns are considered as input and the information in the unshaded columns are the output.

- The term "small" used in the table corresponds to magnitudes smaller than or equal to $O(\theta^2)$, where $\theta^2 << 1$.

- The term "moderate" corresponds to magnitudes smaller than or equal to $O(\theta)$.

- The term "large" corresponds to magnitudes smaller than or equal to $\leq O(\theta^{1/2})$.

- The term "finite" means that the magnitudes are ≥ 1.

626
SIMPLIFICATIONS BASED ON SHELL THINNESS

Let \(h \) denote the maximum value of the shell thickness, \(h(\xi_1, \xi_2) \), and let \(R \) denote the smallest magnitude of the reference-surface curvatures and torsions given by the reciprocals of \(r_{\alpha\beta}(\xi_1, \xi_2) \).

Simplifications based on the shell thinness involve placing limitations on the size of \(\frac{h}{R} \).

To take advantage of shell thinness, it is noted that \(\frac{\xi_3}{r_{\alpha\beta}} \leq \frac{h}{R} \) and that \(\frac{h}{R} \ll 1 \) in many practical cases.

For this case, binomial expansions of quantities involving powers and products of \(\frac{\xi_3}{r_{11}}, \frac{\xi_3}{r_{12}}, \frac{\xi_3}{r_{22}}, \) and \(\frac{\xi_3}{r_{21}} \) are used to simplify the expressions for the shell strains.
SIMPLIFICATIONS BASED ON SHELL THINNESS
CONTINUED

For example, consider the Green-Lagrange shell strain

\[
\begin{align*}
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 &= \varepsilon_{11}^o \left[1 + \frac{\xi_3}{r_{11}} \right]^2 + \varepsilon_{33}^o K_{11} \left(1 + \frac{\xi_3}{r_{11}} \right) \\
+ \frac{1}{2} \left(\frac{\xi_3}{r_{12}} \right) \left[2\varepsilon_{12}^o \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \right] \csc^2 \theta_{12} \\
- \frac{1}{2} \varepsilon_{33} \left(\frac{\xi_3}{r_{12}} \right) K_{12}^o - \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right) \right] + \Gamma_{11} + O(\varepsilon^4)
\end{align*}
\]

where

\[
\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2
\]

and
SIMPLIFICATIONS BASED ON SHELL THINNESS
 CONTINUED

\[\Gamma_{11} = F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2^\circ \cos \theta_{12} \right) - \frac{\gamma_2^\circ \sin \theta_{12}}{\rho_{11}} \right) \]
\[- F_2(\xi_3) \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_2^\circ}{\partial \xi_1} \right) + F_1(\xi_3) \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \gamma_1^\circ}{\partial \xi_1} - \frac{\xi_3}{r_{12}} \frac{\gamma_1^\circ}{\rho_{11}} \right] + O(\varepsilon^4) \]

- Applying the binomial theorem to \(\frac{H_1}{A_1} \) gives

\[\left(\frac{H_1}{A_1} \right)^{-2} = 1 - \frac{2\xi_3}{r_{11}} - \frac{2\xi_3}{r_{12}} \cot \theta_{12} - \left(\frac{\xi_3}{r_{11}} \right)^2 - \frac{2\xi_3}{r_{11}} \frac{\xi_3}{r_{12}} \cot \theta_{12} \]
\[- \left(\frac{\xi_3}{r_{12}} \right)^2 \left(\cot^2 \theta_{12} + \csc^2 \theta_{12} \right) + O\left(\left(\frac{\varepsilon}{R} \right)^3 \right) \]
Thus, it follows that

\[
\left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] \left(\frac{H_1}{A_1} \right)^{-2} = 1 - \frac{2\xi_3}{r_{12}} \cot \theta_{12} - \frac{6\xi_3}{r_{11}} \frac{\xi_3}{r_{12}} \cot \theta_{12}
\]

\[- 2 \left(\frac{\xi_3}{r_{12}} \right)^2 \cot^2 \theta_{12} - 4 \left(\frac{\xi_3}{r_{11}} \right)^2 + \mathcal{O} \left(\left(\frac{4}{R} \right)^3 \right) \]

\[
\left(1 + \frac{\xi_3}{r_{11}} \right) \left(\frac{H_1}{A_1} \right)^{-2} = 1 - \frac{\xi_3}{r_{11}} - \frac{2\xi_3}{r_{12}} \cot \theta_{12} - 3 \left(\frac{\xi_3}{r_{11}} \right)^2 - \frac{4\xi_3}{r_{11}} \frac{\xi_3}{r_{12}} \cot \theta_{12}
\]

\[- \left(\frac{\xi_3}{r_{12}} \right)^2 \left(\cot^2 \theta_{12} + \csc^2 \theta_{12} \right) + \mathcal{O} \left(\left(\frac{4}{R} \right)^3 \right) \]

\[
\left(\frac{\xi_3}{r_{12}} \right) \left(\frac{H_1}{A_1} \right)^{-2} = \frac{\xi_3}{r_{12}} - \frac{2\xi_3}{r_{11}} \frac{\xi_3}{r_{12}} - 2 \left(\frac{\xi_3}{r_{12}} \right)^2 \cot \theta_{12} + \mathcal{O} \left(\left(\frac{4}{R} \right)^3 \right)
\]
Likewise,

\[
\left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \left(\frac{H_1}{A_1} \right)^{-2} = \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) + \mathcal{O} \left(\frac{\ell}{R} \right)^3
\]

\[
\left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \left(\frac{H_1}{A_1} \right)^{-2} = \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) + \mathcal{O} \left(\frac{\ell}{R} \right)^3
\]

Applying these simplifications yields

\[
\varepsilon_{11} = \varepsilon_{11}^0 + \xi_3 K_{11}^0 + F_1(\xi_3) \frac{1}{A_1} \frac{\partial \gamma_1^0}{\partial \xi_1} + F_2(\xi_3) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2^0 \cos \theta_{12} \right) - \frac{\gamma_2^0 \sin \theta_{12}}{\rho_{11}} \right) + \mathcal{O}(\varepsilon^2) \mathcal{O} \left(\frac{\ell}{R} \right) + \mathcal{O}(\varepsilon^4)
\]
Likewise,

\[
\varepsilon_{22} = \varepsilon_{22}^o + \xi_3 K_{22}^o + F_2(\xi_3) \frac{1}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} \left(\gamma_1^o \cos \theta_{12} + \frac{\gamma_1^o \sin \theta_{12}}{\rho_{22}} \right) + O(\varepsilon^2)O\left(\frac{\epsilon}{R}\right) + O(\varepsilon^4)
\]

\[
2\varepsilon_{12} = 2\varepsilon_{12}^o + \xi_3 \left[2K_{12}^o \sin \theta_{12} + \left(K_{11}^o + K_{22}^o \right) \cos \theta_{12} \right] + F_1(\xi_3) \left(\frac{\cos \theta_{12}}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial \gamma_1^o}{\partial \xi_2} + \frac{\gamma_1^o \sin \theta_{12}}{\rho_{11}} \right) + F_2(\xi_3) \left(\frac{1}{A_1} \frac{\partial \gamma_2^o}{\partial \xi_1} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} - \frac{\gamma_2^o \sin \theta_{12}}{\rho_{22}} \right) + O(\varepsilon^2)O\left(\frac{\epsilon}{R}\right) + O(\varepsilon^4)
\]
SIMPLIFICATIONS BASED ON SHELL THINNESS
CONTINUED

\[
2\varepsilon_{13} = \left[F_1'(\xi_3) - \frac{F_1(\xi_3)}{r_{11}} \right] \gamma_1^o \\
+ \left[\left(F_2'(\xi_3) - \frac{F_2(\xi_3)}{r_{11}} \right) \cos\theta_{12} + \frac{F_2(\xi_3)\sin\theta_{12}}{r_{12}} \right] \gamma_2^o + \mathcal{O}(\varepsilon^2)\mathcal{O}\left(\frac{\varepsilon}{R}\right) + \mathcal{O}(\varepsilon^4)
\]

\[
2\varepsilon_{23} = \left[F_2'(\xi_3) - \frac{F_2(\xi_3)}{r_{22}} \right] \gamma_2^o \\
+ \left[\left(F_1'(\xi_3) - \frac{F_1(\xi_3)}{r_{22}} \right) \cos\theta_{12} - \frac{F_1(\xi_3)\sin\theta_{12}}{r_{21}} \right] \gamma_1^o + \mathcal{O}(\varepsilon^2)\mathcal{O}\left(\frac{\varepsilon}{R}\right) + \mathcal{O}(\varepsilon^4)
\]

- The shifters \(\mu_{\alpha\beta}(\xi_1, \xi_2, \xi_3) \) that have been defined herein and used in \(\hat{g}_1 = \mu_{11} \hat{a}_1 + \mu_{12} \hat{a}_2 \) and \(\hat{g}_2 = \mu_{21} \hat{a}_1 + \mu_{22} \hat{a}_2 \) are also simplified by using power series.
SIMPLIFICATIONS BASED ON SHELL THINNESS
CONTINUED

In particular,

\[\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \]

\[\mu_{11} = 1 - \frac{1}{2} \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2 + \mathcal{O}\left(\frac{1}{R^3}\right) \]

\[\mu_{12} = \frac{-\frac{\xi_3 \csc \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \]

\[\mu_{12} = -\frac{\xi_3 \csc \theta_{12}}{r_{12}} \left(1 - \frac{\xi_3}{r_{11}} - \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right) + \mathcal{O}\left(\frac{1}{R^3}\right) \]
SIMPLIFICATIONS BASED ON SHELL THINNESS

CONCLUDED

\[\mu_{21} = \frac{\xi_3 \csc \theta_{12}}{r_{21}} \sqrt{1 + \left(\frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2} \]

\[\mu_{21} = \frac{\xi_3 \csc \theta_{12}}{r_{21}} \left(1 - \frac{\xi_3}{r_{22}} + \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) + O \left(\left(\frac{\xi}{R} \right)^3 \right) \]

\[\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}{\sqrt{1 + \left(\frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2}} \]

\[\mu_{22} = 1 - \frac{1}{2} \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 + O \left(\left(\frac{\xi}{R} \right)^3 \right) \]
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS

- A variety of expressions for the nonlinear shell strains have appeared in the literature that can be obtained from the baseline equations presented herein for “small” strains.

- For example, in the paper:

Koiter indicates that for thin-shell elastic stability problems, it is reasonable to use the exact form of the “small-strain” equations for the membrane strains and a set of linearized equations for the changes in reference-surface curvatures and torsions.

- This statement is based on the presumption that the effects of the changes in reference-surface curvatures and torsions are relatively much smaller than the nonlinear effects of the membrane strains that generate interaction between membrane stresses and shell deformations.
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
CONTINUED

In particular, Koiter presents the tensor form of the following equations

\[
\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left((e_{11}^o \csc \theta_{12})^2 + \left(e_{12}^o + \varphi \sin \theta_{12} \right)^2 \csc^2 \theta_{12} \right) - 2e_{11}^o \left((e_{12}^o + \varphi \sin \theta_{12}) \csc \theta_{12} \cot \theta_{12} + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 \right) + O(\varepsilon^4)
\]

\[
\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left((e_{22}^o \csc \theta_{12})^2 + \left(e_{12}^o - \varphi \sin \theta_{12} \right)^2 \csc^2 \theta_{12} \right) - 2e_{22}^o \left((e_{12}^o - \varphi \sin \theta_{12}) \csc \theta_{12} \cot \theta_{12} + \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)^2 \right) + O(\varepsilon^4)
\]

\[
2\varepsilon_{12}^o = 2e_{12}^o + \left[e_{11}^o (e_{12}^o - \varphi \sin \theta_{12}) + e_{22}^o (e_{12}^o + \varphi \sin \theta_{12}) \right] \csc^2 \theta_{12} - \left[e_{11}^o e_{22}^o + (e_{12}^o + \varphi \sin \theta_{12}) (e_{12}^o - \varphi \sin \theta_{12}) \right] \csc \theta_{12} \cot \theta_{12} + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + O(\varepsilon^4)
\]
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
CONTINUED

\[\kappa_{11} = \chi_{11} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}} \]

\[\kappa_{22} = \chi_{22} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}} \]

\[2\kappa_{12} = 2\chi_{12} = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} \]

\[+ \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12} \]

where

\[\varphi_1 = \left(\frac{u_1}{r_{11}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \right) \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12}}{A_2} \frac{\partial w}{\partial \xi_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12} \]

\[\varphi_2 = \left(\frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \right) \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial w}{\partial \xi_1} - \frac{u_1}{r_{12}} \right) \csc \theta_{12} \]
These membrane strains are exact within the realm of “small” strains, and the changes in reference-surface curvatures and torsions are identical to those used in the Sanders-Budiansky-Koiter linear shell theory, that is considered presently to be the best first-approximation shell theory.
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
CONTINUED

The expressions for the shell strains are given by

\[
\begin{align*}
\varepsilon_{11} &= \varepsilon_{11}^o + \xi_3 K_{11}^o + \mathcal{O}\left(\frac{\varepsilon^2}{R}, \varepsilon^4\right) \\
\varepsilon_{22} &= \varepsilon_{22}^o + \xi_3 K_{22}^o + \mathcal{O}\left(\frac{\varepsilon^2}{R}, \varepsilon^4\right) \\
2\varepsilon_{12} &= 2\varepsilon_{12}^o + \xi_3 \left[2K_{12}^o \sin\theta_{12} + \left(K_{11}^o + K_{22}^o \right) \cos\theta_{12} \right] + \mathcal{O}\left(\frac{\varepsilon^2}{R}, \varepsilon^4\right)
\end{align*}
\]

where the effects of transverse shearing deformations have been neglected.

It is noteworthy to point out that these equations are identical to those presented by Budiansky in the paper:

For orthogonal reference-surface Gaussian coordinates, the equations presented by Koiter and by Budiansky reduce to

$$\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left[(e_{11}^o)^2 + (e_{12}^o + \varphi)^2 + \varphi_1^2 \right] + O(\varepsilon^4)$$

$$\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left[(e_{12}^o - \varphi)^2 + (e_{22}^o)^2 + \varphi_2^2 \right] + O(\varepsilon^4)$$

$$2\varepsilon_{12}^o = 2e_{12}^o + e_{11}^o(e_{12}^o - \varphi) + e_{22}^o(e_{12}^o + \varphi) + \varphi_1\varphi_2 + O(\varepsilon^4)$$

$$K_{11}^o = \chi_{11}^o \quad K_{22}^o = \chi_{22}^o \quad 2K_{12}^o = 2\chi_{12}^o$$

$$\varepsilon_{11} = \varepsilon_{11}^o + \xi_3 K_{11}^o + O\left(\varepsilon^2 \frac{h}{R}, \varepsilon^4\right)$$

$$\varepsilon_{22} = \varepsilon_{22}^o + \xi_3 K_{22}^o + O\left(\varepsilon^2 \frac{h}{R}, \varepsilon^4\right)$$

$$2\varepsilon_{12} = 2\varepsilon_{12}^o + 2\xi_3 K_{12}^o + O\left(\varepsilon^2 \frac{h}{R}, \varepsilon^4\right)$$
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
CONTINUED

where the linear deformation measures are given by

\[e_{11}^0 = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2 + w}{\rho_{11}} r_{11} \]

\[e_{22}^0 = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1 + w}{\rho_{22}} r_{22} \]

\[2e_{12}^0 = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1 - u_2 - 2w}{\rho_{11} \rho_{22}} r_{12} \]

\[\chi_{11}^0 = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \frac{\varphi_2 - \varphi}{\rho_{11}} r_{12} \]

\[\chi_{22}^0 = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\varphi_1 + \varphi}{\rho_{22}} r_{12} \]

\[2\chi_{12}^0 = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \]

\[\varphi_1 = \frac{u_1 - u_2}{r_{11} - r_{12}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \]

\[\varphi_2 = \frac{u_2 - u_1}{r_{22} - r_{12}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \]

\[\varphi = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1 + u_2}{\rho_{11} \rho_{22}} \right) \]

\[\frac{1}{\rho_{11}} = - \frac{1}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} \]

\[\frac{1}{\rho_{22}} = \frac{1}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} \]
Following a similar line of reasoning, in the paper:

Geier uses the same membrane strains as Koiter, but uses the following linear expressions for the changes in reference-surface curvatures and torsions:

\[
\kappa_{11}^o = \chi_{11}^o + \frac{1}{r_{12}} \left(e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} \right) - \frac{e_{11}^o}{r_{11}}
\]

\[
\kappa_{22}^o = \chi_{22}^o + \frac{1}{r_{21}} \left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} \right) - \frac{e_{22}^o}{r_{22}}
\]

\[
2\kappa_{12}^o = 2\chi_{12}^o \csc \theta_{12} - \left(\chi_{11}^o + \chi_{22}^o \right) \cot \theta_{12} + \frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}}
\]

\[
- \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{11}} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{22}}
\]
SPECIAL CASES OF THE NONLINEAR SHELL STRAINS
CONCLUDED

- For orthogonal reference-surface Gaussian coordinates, the equations for the changes in reference-surface curvatures and torsions reduce to

\[\kappa_{11}^o = \chi_{11}^o - \frac{e_{11}^o}{r_{11}} - \frac{e_{12}^o}{r_{12}} \]
\[\kappa_{22}^o = \chi_{22}^o - \frac{e_{22}^o}{r_{22}} - \frac{e_{12}^o}{r_{12}} \]
\[2\kappa_{12}^o = 2\chi_{12}^o + \frac{e_{11}^o + e_{22}^o}{r_{12}} - e_{12}^o \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \]

- Rigorous, systematic simplification of the nonlinear shell equations have been presented by Sanders (1963), Koiter (1966), Budiansky (1968), and Pietraszkiewicz (1977).

- For the most part, the equations given are very complicated.

- In contrast, the simplified equations that are based on “small” strains and “moderate” rotations are manageable and described in the next section.
“SMALL” STRAINS AND “MODERATE” ROTATIONS

Consider the special case of the “small” strain and “moderate” rotation theory of Pietraszkiewicz (1980), where the magnitudes of the linear deformation parameters are restricted by

\[|\varphi_\alpha| \leq O(\theta), \quad |\varphi| \leq O(\theta), \quad \text{and} \quad |e_{\rho\tau}^o| \leq O(\theta^2) \]

For this case,

\[\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left(e_{12}^o \csc\theta_{12} \right)^2 + \left(e_{12}^o + \varphi \sin\theta_{12} \right)^2 \csc^2\theta_{12} \]

\[-2e_{11}^o \left(e_{12}^o + \varphi \sin\theta_{12} \right) \csc\theta_{12} \cot\theta_{12} + \left(\varphi_1 + \varphi_2 \cos\theta_{12} \right)^2 \right] + O(\varepsilon^4) \]

reduces to

\[\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left(\varphi_1 + \varphi_2 \cos\theta_{12} \right)^2 + \frac{1}{2} \varphi^2 \]

\[+ \varphi \left(e_{12}^o \csc\theta_{12} - e_{11}^o \cot\theta_{12} \right) + O(\theta^4, \varepsilon^4) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[
\varepsilon_{22}^{} = \varepsilon_{22}^{} + \frac{1}{2} \left[\left(\varepsilon_{22}^{} \csc \theta_{12}^{} \right)^2 + \left(\varepsilon_{12}^{} - \phi \sin \theta_{12}^{} \right)^2 \csc^2 \theta_{12}^{} \right] - 2\varepsilon_{22}^{} \left(\varepsilon_{12}^{} - \phi \sin \theta_{12}^{} \right) \csc \theta_{12}^{} \cot \theta_{12}^{} + \left(\phi_1 \cos \theta_{12}^{} + \phi_2 \right)^2 \right] + \mathcal{O}(\varepsilon^4)
\]

reduces to

\[
\varepsilon_{22}^{} = \varepsilon_{22}^{} + \frac{1}{2} \left(\phi_2 + \phi_1 \cos \theta_{12}^{} \right)^2 + \frac{1}{2} \phi^2
\]

\[
+ \phi \left(\varepsilon_{22}^{} \cot \theta_{12}^{} - \varepsilon_{12}^{} \csc \theta_{12}^{} \right) + \mathcal{O}(\theta^4, \varepsilon^4)
\]

and

\[
2\varepsilon_{12}^{} = 2\varepsilon_{12}^{} + \left[\varepsilon_{11}^{} \left(\varepsilon_{12}^{} - \phi \sin \theta_{12}^{} \right) + \varepsilon_{22}^{} \left(\varepsilon_{12}^{} + \phi \sin \theta_{12}^{} \right) \right] \csc^2 \theta_{12}^{} - \left[\varepsilon_{11}^{} \varepsilon_{22}^{} + \left(\varepsilon_{12}^{} + \phi \sin \theta_{12}^{} \right) \left(\varepsilon_{12}^{} - \phi \sin \theta_{12}^{} \right) \right] \csc \theta_{12}^{} \cot \theta_{12}^{}
\]

\[
+ \left(\phi_1 + \phi_2 \cos \theta_{12}^{} \right) \left(\phi_1 \cos \theta_{12}^{} + \phi_2 \right) + \mathcal{O}(\varepsilon^4)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

reduces to

\[
2\varepsilon_{12}^o = 2e_{12}^o + (\varphi_1 + \varphi_2 \cos \theta_{12})(\varphi_2 + \varphi_1 \cos \theta_{12})
- \varphi^2 \cos \theta_{12} + \varphi(e_{22}^o - e_{11}^o) \csc \theta_{12} + O(\theta^4, \varepsilon^4)
\]

- In these strain expressions, \(O(\theta^4, \varepsilon^4)\) indicates that terms fourth order in the rotations and fourth order in the strains are neglected; that is,

\[
O(\theta^4, \varepsilon^4) \sim O(\theta^4) + O(\varepsilon^4)
\]

- To obtain changes in reference-surface curvatures and torsions that have a consistent order-of-magnitude accuracy, it is useful to examine the Green-Lagrange shell strains
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

In particular, consider the following general expression for the Green-Lagrange strain ε_{11}

$$
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^0 \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{11}^o \left(1 + \frac{\xi_3}{r_{11}} \right)
+ \frac{1}{2} \left(\frac{\xi_3}{r_{12}} \right)^2 \left[2 \varepsilon_{12} \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^0 + \varepsilon_{22}^0 \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \right] \csc^2 \theta_{12}
- \xi_3 \left(\frac{\xi_3}{r_{12}} \right) \left[K_{12}^o - \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right) \right] + \Gamma_{11} + O(\varepsilon^4)
$$

Let ε^o denote that maximum magnitude of the reference-surface membrane strains that occur during deformation.
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Examination of the expression for the Green-Lagrange strain ε_{11} indicates that the maximum bending strain contribution occurs on the parallel surface the farthest from the reference surface.

- Thus, let κ° denote that maximum bending strain of the shell with respect to the reference surface, where κ denote the maximum value of the shell thickness, $h(\xi_1, \xi_2)$.

- Examination of the expression for the Green-Lagrange strain ε_{11} also indicates the relative proportions of membrane strain to bending strain is determined by the relative proportions of ε° and κ°.

- The same observation applies to the other Green-Lagrange strains.
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

● If the magnitudes of the bending strains are on the same order as the magnitudes of the membrane strains, then it follows that

\[o(\kappa^\circ) \approx o(\varepsilon^\circ) \]

● As a result, \(o\left(\kappa^\circ\right) \approx o\left(\frac{\varepsilon^\circ}{h}\right) \), which indicates that the changes in surface curvatures and torsions do not need to be represented to the same degree of accuracy as the membrane strains.

● For “small” strains and “moderate” rotations, terms in the membrane strains given herein that are \(o\left(\theta^4, \varepsilon^4\right) \) are neglected.
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Thus, in the presentation that follows, terms are neglected in quantities needed to obtain the changes in reference-surface curvatures and torsions that are \(O(\theta^3, \varepsilon^4) \) and smaller.

- In addition, it is presumed that
 \[
 \left| \frac{\partial \varphi_\alpha}{\partial \xi_\beta} \right| \leq O(\theta) \quad \text{and} \quad \left| \frac{\partial \varphi}{\partial \xi_\beta} \right| \leq O(\theta)
 \]

- The changes in the reference-surface curvatures and torsions, associated with “small” strains and “moderate” rotations, can be obtained by systematic simplification of the corresponding full nonlinear equations previously derived herein.

- However, because of the practical significance of this special class of shell deformations, these quantities are re-derived subsequently from first principles, applying the order-of-magnitude simplifications at each step.
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

Hence, substituting the simplified membrane strain expressions for “small” strains and “moderate” rotations into

\[
\mathcal{A}_1 = A_1 \left[1 + \varepsilon_{11}^o + O(\varepsilon^4) \right]
\]

\[
\hat{a}_1 = \frac{A_1}{\mathcal{A}_1} \left[(1 + \Delta_{11}) \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n} \right]
\]

\[
\mathcal{A}_2 = A_2 \left[1 + \varepsilon_{22}^o + O(\varepsilon^4) \right]
\]

\[
\hat{a}_2 = \frac{A_2}{\mathcal{A}_2} \left[\Delta_{21} \hat{a}_1 + (1 + \Delta_{22}) \hat{a}_2 + \Delta_{23} \hat{n} \right]
\]

applying the binomial theorem and neglecting terms \(O(\theta^3, \varepsilon^4) \) and smaller gives

\[
\hat{a}_1 = \left[1 - \frac{1}{2} (\varphi_1 + \varphi_2 \cos \theta_{12})^2 - \frac{1}{2} \varphi^2 + \left(e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} + \varphi \right) \cot \theta_{12} \right] \hat{a}_1
\]

\[
+ \left[\left(e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12} + \varphi \right) \csc \theta_{12} \right] \hat{a}_2 - \left[\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \right] \hat{n} + O\left(\theta^3, \varepsilon^4 \right)
\]
"SMALL" STRAINS AND "MODERATE" ROTATIONS
CONTINUED

\[
\hat{a}_2 = \left[1 - \frac{1}{2} (\varphi_2 + \varphi_1 \cos \theta_{12})^2 - \frac{1}{2} \varphi^2 + \left(e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} + \varphi\right) \cot \theta_{12}\right] \hat{a}_2 \\
+ \left[\left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} - \varphi\right) \csc \theta_{12}\right] \hat{a}_1 - \left[\left(\varphi_2 + \varphi_1 \cos \theta_{12}\right)\right] \hat{n} + O(\theta^3, \varepsilon^4)
\]

where

\[
\Delta_{11} = e_{11}^o \csc \theta_{12}^2 - \left(e_{12}^o \csc \theta_{12} + \varphi\right) \cot \theta_{12}
\]

\[
\Delta_{12} = \left(e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12}\right) \csc \theta_{12}
\]

\[
\Delta_{13} = -\left(\varphi_1 + \varphi_2 \cos \theta_{12}\right)
\]

\[
\Delta_{21} = \left(e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12}\right) \csc \theta_{12}
\]

\[
\Delta_{22} = e_{22}^o \csc \theta_{12}^2 - \left(e_{12}^o \csc \theta_{12} - \varphi\right) \cot \theta_{12}
\]

\[
\Delta_{23} = -\left(\varphi_1 \cos \theta_{12} + \varphi_2\right)
\]

have been used
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Similarly, \(\frac{\sqrt{a}}{\sqrt{a}} = 1 + 2\varepsilon^{o}_{12}\cot\theta_{12}\csc\theta_{12} - \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right)\csc^2\theta_{12} + \mathcal{O}(\varepsilon^4) \) reduces to

\[
\frac{\sqrt{a}}{\sqrt{a}} = 1 - \frac{1}{2} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi^2 \right) - \varphi_1\varphi_2\cos\theta_{12} + 2\varepsilon^{o}_{12}\cot\theta_{12}\csc\theta_{12}
- \left(\varepsilon^{o}_{11} + \varepsilon^{o}_{22} \right)\csc^2\theta_{12} + \mathcal{O}(\theta^3, \varepsilon^4)
\]

- Recalling that \(\hat{a} = \frac{\sqrt{a}}{\sqrt{a}} \left(m_1\hat{a}_1 + m_2\hat{a}_2 + m_3\hat{n} \right) \), where

\[
m_1 = \varphi_1 - \left(\varepsilon^{o}_{12}\csc\theta_{12} + \varphi \right) \left(\varphi_1\cot\theta_{12} + \varphi_2\csc\theta_{12} \right)
+ \varepsilon^{o}_{22}\csc\theta_{12} \left(\varphi_1\csc\theta_{12} + \varphi_2\cot\theta_{12} \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

\[\mathbf{m}_2 = \varphi_2 - \left(e_{12} \csc \theta_{12} - \varphi \right) \left(\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12} \right) + e_{11} \csc \theta_{12} \left(\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} \right) \]

\[\mathbf{m}_3 = 1 + \varphi^2 + \left(e_{11} + e_{22} + e_{11} e_{22} - \left(e_{12} \right)^2 \right) \csc^2 \theta_{12} - 2e_{12} \cot \theta_{12} \csc \theta_{12} \]

and simplifying for “small” strains and “moderate” rotations yields

\[\mathbf{m}_1 = \varphi_1 - \varphi \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\mathbf{m}_2 = \varphi_2 + \varphi \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\mathbf{m}_3 = 1 + \varphi^2 - 2e_{12} \cot \theta_{12} \csc \theta_{12} + \left(e_{11} + e_{22} \right) \csc^2 \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

In addition, the components of the vector field normal to the deformed reference surface, \(\hat{n} = n_1 \hat{a}_1 + n_2 \hat{a}_2 + n_3 \hat{n} \), reduce to

\[
\begin{align*}
\alpha_1 &= \varphi_1 - \varphi(\varphi_2 + \varphi_1 \cos \theta_{12}) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \\
\alpha_2 &= \varphi_2 + \varphi(\varphi_1 + \varphi_2 \cos \theta_{12}) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \\
\alpha_3 &= 1 - \frac{1}{2}(\varphi_1^2 + \varphi_2^2) - \varphi_1 \varphi_2 \cos \theta_{12} + O(\theta^3, \varepsilon^4)
\end{align*}
\]

Moreover, the finite-rotation vector field reduces as follows:

\[
\Omega_1 = \begin{bmatrix}
\varphi_1 \left(\cot \theta_{12} + \frac{1}{2} \varphi - \frac{1}{2} e_1^\circ \sin \theta_{12} \right) + \varphi_2 \left(\csc \theta_{12} + \frac{1}{2} e_1^\circ \sin \theta_{12} \right) \\
1 + O(\varepsilon^2)
\end{bmatrix}
\]

becomes
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[\Omega_1 = \left[\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12} + \frac{1}{2} \varphi_1 \varphi_2 \right]
\left[1 + O \left(\theta^3, \varepsilon^2 \right) \right] \]

\[\Omega_2 = \left[-\varphi_1 \left(\csc \theta_{12} + \frac{1}{2} e^{o}_{22} \sin \theta_{12} \right) + \varphi_2 \left(\frac{1}{2} e^{o}_{12} \sin \theta_{12} + \frac{1}{2} \varphi - \cot \theta_{12} \right) \right]
\left[1 + O \left(\varepsilon^2 \right) \right] \]

becomes

\[\Omega_2 = \left[-\varphi_1 \csc \theta_{12} - \varphi_2 \cot \theta_{12} + \frac{1}{2} \varphi_2 \varphi \right]
\left[1 + O \left(\theta^3, \varepsilon^2 \right) \right] \]

and \[\Omega_3 = \varphi \left[1 + O \left(\varepsilon^2 \right) \right] \]
becomes \[\Omega_3 = \varphi \left[1 + O \left(\theta^3, \varepsilon^2 \right) \right] \]

- The next step in the derivation is to recall that the deformed reference-surface curvatures are given by

\[\frac{1}{\nu_{11}} = \hat{a}_1 \cdot \frac{1}{\mathcal{A}_1} \frac{\partial \hat{a}}{\partial \xi_1} \]

and \[\frac{1}{\nu_{22}} = \hat{a}_2 \cdot \frac{1}{\mathcal{A}_2} \frac{\partial \hat{a}}{\partial \xi_2} \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- These expressions re-written as

\[
\frac{1}{v_{11}} = \frac{A_1}{\mathcal{A}_1} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) = \left[1 - \varepsilon_{11}^o + \mathcal{O}(\varepsilon^4) \right] \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right)
\]

and

\[
\frac{1}{v_{22}} = \frac{A_2}{\mathcal{A}_2} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) = \left[1 - \varepsilon_{22}^o + \mathcal{O}(\varepsilon^4) \right] \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right)
\]

and simplified by using the previous expressions for \(\hat{a}_1 \) and \(\hat{a}_2 \) to get

\[
\frac{1}{v_{11}} = C_{11} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + C_{12} \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + C_{13} \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + \mathcal{O}(\theta^3, \varepsilon^4)
\]

and

\[
\frac{1}{v_{22}} = C_{21} \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + C_{22} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + C_{23} \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + \mathcal{O}(\theta^3, \varepsilon^4)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

where

\[
C_{11} = 1 - e_{11}^o - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 - \varphi^2 - \left(e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12} + \varphi \right) \cot \theta_{12}
\]

\[
C_{12} = \left(e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12} + \varphi \right) \csc \theta_{12}
\]

\[
C_{13} = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)
\]

\[
C_{22} = 1 - e_{22}^o - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)^2 - \varphi^2 - \left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} - \varphi \right) \cot \theta_{12}
\]

\[
C_{21} = \left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} - \varphi \right) \csc \theta_{12}
\]

\[
C_{23} = - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)
\]

● Additionally, the deformed reference-surface torsions are given by

\[
\frac{1}{n_{12}} = - \hat{a}^2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}
\]

and

\[
\frac{1}{n_{21}} = \hat{a}^1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}
\]

660
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

● These expressions are re-written as

\[
\frac{1}{\mathbf{r}_{12}} = -\frac{A_1}{\mathcal{A}_1}\left(\hat{a} \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}\right) = -\left[1 - \varepsilon_{11}^o + \mathcal{O}(\varepsilon^4)\right]\left(\hat{a} \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1}\right)
\]

\[
\frac{1}{\mathbf{r}_{21}} = \frac{A_2}{\mathcal{A}_2}\left(\hat{a} \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}\right) = \left[1 - \varepsilon_{22}^o + \mathcal{O}(\varepsilon^4)\right]\left(\hat{a} \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2}\right)
\]

● From \(\hat{a}^1 = \hat{a}_2 \times \hat{a}\) and \(\hat{a}^2 = \hat{a} \times \hat{a}_1\), it follows that

\[
\hat{a}^1 = A_{11}\hat{a}^1 + A_{12}\hat{a}^2 + A_{13}\hat{n} \quad \text{and} \quad \hat{a}^2 = A_{21}\hat{a}^1 + A_{22}\hat{a}^2 + A_{23}\hat{n}
\]

where

\[
A_{11} = 1 - e_{22}^o - \frac{1}{2}(\varphi_1)^2\left(1 + \cos^2\theta_{12}\right) - \frac{1}{2}\varphi^2 - \varphi_1\varphi_2\cos\theta_{12}
\]

\[
+ \left(e_{22}^o\csc\theta_{12} - e_{12}^o\cot\theta_{12} + \varphi\cos\theta_{12}\right)\csc\theta_{12} + \mathcal{O}\left(\theta^3, \varepsilon^4\right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[A_{12} = - \varphi_1 (\varphi_2 + \varphi_1 \cos \theta_{12}) + \left(e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} + \varphi \right) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[A_{13} = - \varphi_1 \sin \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[A_{21} = - \varphi_2 (\varphi_1 + \varphi_2 \cos \theta_{12}) + \left(e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} - \varphi \right) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[A_{22} = 1 - e_{11}^o - \frac{1}{2} (\varphi_2)^2 \left(1 + \cos^2 \theta_{12} \right) - \frac{1}{2} \varphi^2 - \varphi_1 \varphi_2 \cos \theta_{12} + \left(e_{11}^o \csc \theta_{12} - e_{12}^o \cot \theta_{12} - \varphi \cos \theta_{12} \right) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[A_{23} = - \varphi_2 \sin \theta_{12} + O(\theta^3, \varepsilon^4) \]

and

\[\hat{a}^1 = \hat{a}_1 \csc \theta_{12} - \hat{a}_2 \cot \theta_{12} \]

\[\hat{a}^2 = \hat{a}_2 \csc \theta_{12} - \hat{a}_1 \cot \theta_{12} \]
"SMALL" STRAINS AND "MODERATE" ROTATIONS
CONTINUED

- The surface torsions are simplified to get

\[
\frac{1}{\nu_{12}} = D_{11} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + D_{12} \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + D_{13} \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

\[
\frac{1}{\nu_{21}} = D_{21} \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + D_{22} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + D_{23} \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

where

\[
D_{11} = \varphi + \left(e_{12}^\circ - \varphi_1 \varphi_2 \cos 2\theta_{12} - \frac{1}{4} \varphi_2^2 \cos 3\theta_{12} \right) \csc \theta_{12}
\]

\[
+ \left[1 - 2e_{11}^\circ - \frac{1}{4} \left(\varphi_2^2 + 2\varphi_1^2 + 4\varphi_2^2 \right) \right] \cot \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[D_{12} = \varphi_1 \varphi_2 \cot \theta_{12} - \left[1 - e_{11}^o - \frac{1}{2} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi_2^2 \right) \right] \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[D_{13} = \varphi_2 \sin \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[D_{21} = -\varphi_1 \varphi_2 \cot \theta_{12} + \left[1 - e_{22}^o - \frac{1}{2} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi_2^2 \right) \right] \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[D_{22} = \varphi - \left(e_{12}^o - \varphi_1 \varphi_2 \cos 2\theta_{12} - \frac{1}{4} \varphi_1^2 \cos 3\theta_{12} \right) \csc \theta_{12} \]
\[- \left[1 - 2e_{22}^o - \frac{1}{4} \left(\varphi_1^2 + 2\varphi_2^2 + 4\varphi_2^2 \right) \right] \cot \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[D_{23} = -\varphi_1 \sin \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Examination of the components of \(\vec{\alpha} = \alpha_1 \hat{a}_1 + \alpha_2 \hat{a}_2 + \alpha_3 \hat{n} \) suggests that it is beneficial to express this vector field as \(\vec{\alpha} = \hat{n} + \vec{\phi} + \vec{\Psi} \), where \(\vec{\phi} = \varphi_1 \hat{a}_1 + \varphi_2 \hat{a}_2 \) is the linear-difference-vector field defined previously herein and \(\vec{\Psi} = \psi_1 \hat{a}_1 + \psi_2 \hat{a}_2 + \psi_3 \hat{n} \) contains the nonlinear terms given by

\[
\Psi_1 = - \varphi (\varphi_2 + \varphi_1 \cos \alpha_{12}) \csc \alpha_{12} + \mathcal{O} (\theta^3, \varepsilon^4)
\]

\[
\Psi_2 = \varphi (\varphi_1 + \varphi_2 \cos \alpha_{12}) \csc \alpha_{12} + \mathcal{O} (\theta^3, \varepsilon^4)
\]

\[
\Psi_3 = - \frac{1}{2} (\varphi_1^2 + \varphi_2^2) - \varphi_1 \varphi_2 \cos \alpha_{12} + \mathcal{O} (\theta^3, \varepsilon^4)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

Thus,

\[
\frac{1}{A_1} \frac{\partial \hat{\alpha}}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial \hat{\nu}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \hat{\psi}}{\partial \xi_1}
\]

and

\[
\frac{1}{A_2} \frac{\partial \hat{\alpha}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \hat{\nu}}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} + \frac{1}{A_2} \frac{\partial \hat{\psi}}{\partial \xi_2}
\]

The components of these derivatives are simplified by using

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\nu}}{\partial \xi_1} = \frac{1}{r_{11}}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\nu}}{\partial \xi_1} = \frac{\cos \theta_{12}}{r_{11}} - \frac{\sin \theta_{12}}{r_{12}}
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{\nu}}{\partial \xi_2} = \frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\nu}}{\partial \xi_2} = \frac{1}{r_{22}}
\]

and the previously defined linear deformation quantities

\[
\chi_{11}^o = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\phi}}{\partial \xi_1} \right) - \frac{\varphi}{r_{12}}
\]

\[
\chi_{22}^o = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{\phi}}{\partial \xi_2} \right) - \frac{\varphi}{r_{21}}
\]
Moreover, it is convenient to introduce

\[\tilde{\chi}_{12}^\circ \equiv \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) \quad \text{and} \quad \tilde{\chi}_{21}^\circ \equiv \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) \]

such that

\[\tilde{\chi}_{12}^\circ + \tilde{\chi}_{21}^\circ = 2\chi_{12}^\circ - \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} + \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12} \]

where \(2\chi_{12}^\circ \) is the following previously defined linear deformation quantity given by

\[2\chi_{12}^\circ \equiv \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) + \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12} \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

- Using the previously derived general expressions for the components of the derivatives of a vector field given by

\[
\mathbf{\hat{a}}_1 \cdot \frac{1}{A_1} \frac{\partial \mathbf{V}}{\partial \xi_1} = \frac{1}{A_1} \left(\frac{\partial}{\partial \xi_1} \left(V_1 + V_2 \cos \theta_{12} \right) - \frac{V_2 \sin \theta_{12}}{\rho_{11}} + \frac{V_3}{r_{11}} \right)
\]

\[
\mathbf{\hat{a}}_2 \cdot \frac{1}{A_1} \frac{\partial \mathbf{V}}{\partial \xi_1} = \left(\frac{\partial V_1}{A_1 \partial \xi_1} + \frac{V_3}{r_{11}} \right) \cos \theta_{12} + \frac{1}{A_1} \left(\frac{\partial V_2}{\partial \xi_1} + \left(\frac{V_1}{\rho_{11}} - \frac{V_3}{r_{12}} \right) \sin \theta_{12} \right)
\]

\[
\mathbf{\hat{a}}_1 \cdot \frac{1}{A_2} \frac{\partial \mathbf{V}}{\partial \xi_2} = \frac{1}{A_2} \left(\frac{\partial V_1}{\partial \xi_2} + \left(\frac{\partial V_2}{A_2 \partial \xi_2} + \frac{V_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{V_3}{r_{21}} - \frac{V_2}{\rho_{22}} \right) \sin \theta_{12} \right)
\]

\[
\mathbf{\hat{a}}_2 \cdot \frac{1}{A_2} \frac{\partial \mathbf{V}}{\partial \xi_2} = \frac{1}{A_2} \left(\frac{\partial}{\partial \xi_2} \left(V_2 + V_1 \cos \theta_{12} \right) + \frac{V_1 \sin \theta_{12}}{\rho_{22}} + \frac{V_3}{r_{22}} \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

yields

\[
\chi_{11}^o = \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) - \frac{\phi}{r_{12}} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}}
\]

\[
\tilde{\chi}_{12}^o = \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) = \cos \theta_{12} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\varphi_1 \sin \theta_{12}}{\rho_{11}}
\]

\[
\tilde{\chi}_{21}^o = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12} \varphi_2}{\partial \xi_2} - \frac{\varphi_2 \sin \theta_{12}}{\rho_{22}}
\]

\[
\chi_{22}^o = \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) - \frac{\varphi}{r_{21}} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}}
\]

and
In addition, yields the identity
\[
2\chi^o_{12} = \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \phi}{\partial \xi_2} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \phi}{\partial \xi_1} \right) + \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12}
\]
\[
= \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1}
\]
\[
+ \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} + \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} - \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12}
\]

- In addition, \(\hat{\phi} \cdot \hat{n} = 0 \) yields the identity
\[
\hat{n} \cdot \frac{1}{A_{(\alpha)}} \frac{\partial \phi}{\partial \xi_{\alpha}} = - \hat{\phi} \cdot \frac{1}{A_{(\alpha)}} \frac{\partial \hat{n}}{\partial \xi_{\alpha}}
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

- Using these expressions gives

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} = \frac{1}{r_{11}} + \chi_{11}^\circ + \frac{\varphi}{r_{12}} + \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \Psi}{\partial \xi_1} \right)
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} = \tilde{\chi}_{12}^\circ + \frac{\cos \theta_{12}}{r_{11}} - \frac{\sin \theta_{12}}{r_{12}} + \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \Psi}{\partial \xi_1} \right)
\]

\[
\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} = - \frac{\varphi_1}{r_{11}} + \varphi_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) + \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \Psi}{\partial \xi_1} \right)
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} = \tilde{\chi}_{21}^\circ + \frac{\cos \theta_{12}}{r_{22}} + \frac{\sin \theta_{12}}{r_{21}} + \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} = \frac{1}{r_{22}} + \chi^o_{22} + \frac{\varphi_{r_{21}}}{r_{21}} + \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} \right) \]

\[\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} = -\varphi_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{\varphi_2}{r_{22}} + \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} \right) \]

- The expressions

\[\frac{1}{r_1} = C_{11} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} \right) + C_{12} \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} \right) + C_{13} \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{a}}{\partial \xi_1} \right) + O(\theta^3, \varepsilon^4) \]

and

\[\frac{1}{r_2} = C_{21} \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} \right) + C_{22} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} \right) + C_{23} \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{a}}{\partial \xi_2} \right) + O(\theta^3, \varepsilon^4) \]

reduce to
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[
\frac{1}{\varepsilon_{11}} = \chi_{11}^o + \frac{1 - e_{11}^o}{r_{11}} + \frac{e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{12}} - \left(\frac{\varphi_1 \varphi_2 + \varphi_2^2 \cos \theta_{12}}{r_{12}} \right) \sin \theta_{12} \\
- \varphi^2 \left(\frac{1 - \cot \theta_{12}}{r_{11}} \right) + \varphi \left(\chi_{12}^o \csc \theta_{12} - \chi_{11}^o \cot \theta_{12} \right) + \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \overrightarrow{\psi}}{\partial \xi_1} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

and

\[
\frac{1}{\varepsilon_{22}} = \chi_{22}^o + \frac{1 - e_{22}^o}{r_{22}} + \frac{e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12}}{r_{21}} + \left(\frac{\varphi_1 \varphi_2 + \varphi_1^2 \cos \theta_{12}}{r_{21}} \right) \sin \theta_{12} \\
- \varphi^2 \left(\frac{1 - \cot \theta_{12}}{r_{22}} \right) + \varphi \left(\chi_{22}^o \cot \theta_{12} - \chi_{21}^o \csc \theta_{12} \right) + \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \overrightarrow{\psi}}{\partial \xi_2} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

- Similarly,

\[
\frac{1}{r_{12}} = D_{11} \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + D_{12} \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + D_{13} \left(\hat{n} \cdot \frac{1}{A_1} \frac{\partial \hat{n}}{\partial \xi_1} \right) + O \left(\theta^3, \varepsilon^4 \right)
\]

\[
\frac{1}{r_{21}} = D_{21} \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + D_{22} \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + D_{23} \left(\hat{n} \cdot \frac{1}{A_2} \frac{\partial \hat{n}}{\partial \xi_2} \right) + O \left(\theta^3, \varepsilon^4 \right)
\]
reduce to

\[
\frac{1}{r_{12}} = \frac{1}{r_{12}} + \varphi \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) + \chi_{11}^o \cot \theta_{12} - \chi_{12}^o \csc \theta_{12} + \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{11}} - \frac{e_{11}^o}{r_{12}} - \frac{1}{2r_{12}} \left[\varphi_1^2 + \varphi_2^2 \cos 2\theta_{12} + \varphi_1 \varphi_2 \csc \theta_{12} \sin 2\theta_{12} \right]
\]

\[
+ \varphi \chi_{11}^o + \left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \hat{\psi}}{\partial \xi_1} \right) \cot \theta_{12} - \left(\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \hat{\psi}}{\partial \xi_1} \right) \csc \theta_{12} + O \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[\frac{1}{r_{21}} = \frac{1}{r_{21}} + \varphi \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) - \chi_{22}^o \cot \theta_{12} + \chi_{21}^o \csc \theta_{12} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{22}} \]

\[- \frac{e_{22}^o}{r_{21}} - \frac{1}{2r_{21}} \left[\varphi_1^2 + \varphi_2^2 \cos^2 \theta_{12} + \varphi_1 \varphi_2 \csc \theta_{12} \sin 2 \theta_{12} \right] \]

\[+ \varphi \chi_{22}^o \left(\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} \right) \csc \theta_{12} - \left(\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} \right) \cot \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

Next,

\[\Psi_1 = - \varphi \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\Psi_2 = \varphi \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\Psi_3 = - \frac{1}{2} \left(\varphi_1^2 + \varphi_2^2 \right) - \varphi_1 \varphi_2 \cos \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

are substituted into

\[
\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \Psi}{\partial \xi_1} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\Psi_1 + \Psi_2 \cos \theta_{12} \right) - \frac{\Psi_2 \sin \theta_{12}}{\rho_{11}} + \frac{\Psi_3}{r_{11}}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_1} \frac{\partial \Psi}{\partial \xi_1} = \left(\frac{1}{A_1} \frac{\partial \Psi_1}{\partial \xi_1} + \frac{\Psi_3}{r_{11}} \right) \cos \theta_{12} + \frac{1}{A_1} \frac{\partial \Psi_2}{\partial \xi_1} + \left(\frac{\Psi_1}{\rho_{11}} - \frac{\Psi_3}{r_{12}} \right) \sin \theta_{12}
\]

\[
\hat{a}_1 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial \Psi_1}{\partial \xi_2} + \left(\frac{1}{A_2} \frac{\partial \Psi_2}{\partial \xi_2} + \frac{\Psi_3}{r_{22}} \right) \cos \theta_{12} + \left(\frac{\Psi_3}{r_{21}} - \frac{\Psi_2}{\rho_{22}} \right) \sin \theta_{12}
\]

\[
\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \Psi}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\Psi_2 + \Psi_1 \cos \theta_{12} \right) + \frac{\Psi_1 \sin \theta_{12}}{\rho_{22}} + \frac{\Psi_3}{r_{22}}
\]

and simplified to get

676
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

\[\hat{\mathbf{a}}_1 \cdot \frac{1}{A_1} \frac{\partial \psi}{\partial \xi_1} = -\frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi \varphi_2 \sin \theta_{12}) - \frac{\varphi}{\rho_{11}} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{1}{2r_{11}} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\hat{\mathbf{a}}_2 \cdot \frac{1}{A_1} \frac{\partial \psi}{\partial \xi_1} = \frac{\sin \theta_{12}}{A_1} \frac{\partial}{\partial \xi_1} (\varphi \varphi_1) + \varphi \varphi_2 \csc \theta_{12} - \frac{1}{A_1} \frac{\partial \cos \theta_{12}}{\partial \xi_1} - \frac{\varphi}{\rho_{11}} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[\hat{\mathbf{a}}_1 \cdot \frac{1}{A_2} \frac{\partial \psi}{\partial \xi_2} = -\frac{\sin \theta_{12}}{A_2} \frac{\partial}{\partial \xi_2} (\varphi \varphi_2) - \varphi \varphi_1 \csc \theta_{12} - \frac{1}{A_2} \frac{\partial \cos \theta_{12}}{\partial \xi_2} - \frac{\varphi}{\rho_{22}} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{1}{2r_{22}} \left(\cos \theta_{12} + \sin \theta_{12} \right) \left(\varphi_1^2 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

Moreover,

\[\hat{a}_2 \cdot \frac{1}{A_2} \frac{\partial \bar{\Psi}}{\partial \xi_2} = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi \varphi_1 \sin \theta_1 \rho) - \frac{\varphi}{\rho_{22}} (\varphi_2 + \varphi_1 \cos \theta_1) \]

\[- \frac{1}{2r_{22}} (\varphi_1^2 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_1) + O(\theta^3, \varepsilon^4) \]

Moreover,

\[\left(\hat{a}_1 \cdot \frac{1}{A_1} \frac{\partial \bar{\Psi}}{\partial \xi_1} \right) \cot \theta_1 \rho + \left(\frac{1}{A_1} \frac{\partial \bar{\Psi}}{\partial \xi_1} \right) \csc \theta_1 = \]

\[- \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi \varphi_2 \cos \theta_1) - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi \varphi_1) \]

\[+ \frac{\varphi \varphi_2}{\rho_{11}} \sin \theta_1 - \frac{1}{2r_{12}} (\varphi_1^2 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_1) + O(\theta^3, \varepsilon^4) \]

and
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

Furthermore,

\[
\left(\bar{a}_1 \cdot \frac{1}{A_2} \frac{\partial \tilde{\Psi}}{\partial \xi_2} \right) \csc \theta_{12} \quad \text{and} \quad \left(\bar{a}_2 \cdot \frac{1}{A_1} \frac{\partial \tilde{\Psi}}{\partial \xi_1} \right) \cot \theta_{12} =
\]

\[- \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi_1 \cos \theta_{12}) - \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi_2)
\]

\[- \frac{\varphi_1}{\rho_{22}} \sin \theta_{12} - \frac{1}{2r_{21}} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

\[
\tilde{\chi}_{12} \csc \theta_{12} - \chi_{11} \cot \theta_{12} = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi_2 \sin \theta_{12}) + \frac{\varphi_1 + \varphi_2 \cos \theta_{12}}{\rho_{11}} + \frac{\varphi \cot \theta_{12}}{r_{12}}
\]

\[
\chi_{22} \cot \theta_{12} - \tilde{\chi}_{21} \csc \theta_{12} = \frac{\varphi_1 \cos \theta_{12} + \varphi_2}{\rho_{22}} - \frac{\varphi \cot \theta_{12}}{r_{21}} - \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi_1 \sin \theta_{12})
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

Substituting these simplified expressions, along with

\[
\chi_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}}
\]
and

\[
\chi_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}},
\]

into the most recent expressions for the deformed reference-surface curvatures and torsions yields

\[
\frac{1}{\varepsilon_{11}} = \frac{1}{r_{11}} + \chi_{11}^o + \frac{1}{r_{12}} \left[e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} - \left(\varphi_1 \varphi_2 + \varphi_2^2 \cos \theta_{12} \right) \sin \theta_{12} \right] - \frac{1}{2r_{11}} \left(2e_{11}^o + \varphi_1^2 + \varphi_2^2 + 2\varphi_1^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{A_1} \frac{\partial \varphi}{\partial \xi_1} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[
\frac{1}{r_{22}} = \frac{1}{r_{22}} + \chi_{22}^o + \frac{1}{r_{21}} \left[e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} + \left(\varphi_1 \varphi_2 + \varphi_1^2 \cos \theta_{12} \right) \sin \theta_{12} \right] \\
- \frac{1}{2r_{22}} \left[2e_{22}^o + \varphi_1^2 + \varphi_2^2 + 2 \varphi_2 + 2 \varphi_1 \varphi_2 \cos \theta_{12} \right] + \frac{\varphi_1 \sin \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

\[
\frac{1}{r_{12}} = \frac{1}{r_{12}} + \varphi \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) + \chi_{12}^o \cot \theta_{12} - \bar{\chi}_{12}^o \csc \theta_{12} + \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{11}} \\
- \frac{e_{11}^o}{r_{12}} - \frac{1}{r_{12}} \left[\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \varphi^2 \right] - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

\[
\frac{1}{r_{21}} = \frac{1}{r_{21}} + \varphi \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) - \chi_{22}^o \cot \theta_{12} + \bar{\chi}_{21}^o \csc \theta_{12} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{22}} \\
- \frac{e_{22}^o}{r_{21}} - \frac{1}{r_{21}} \left[\left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)^2 + \varphi^2 \right] - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- The changes in reference-surface curvatures, \(\mathbf{K}^o_{11}(\xi_1, \xi_2, \tau) \) and \(\mathbf{K}^o_{22}(\xi_1, \xi_2, \tau) \), and the change in reference-surface torsion, \(\mathbf{K}^o_{12}(\xi_1, \xi_2, \tau) \), caused by deformation have been defined herein by

\[
\mathbf{K}^o_{11} \equiv \frac{1}{\xi_{11}} - \frac{1}{r_{11}} \quad \mathbf{K}^o_{22} \equiv \frac{1}{\xi_{22}} - \frac{1}{r_{22}} \quad \mathbf{K}^o_{12} \equiv - \frac{1}{2} \left(\frac{1}{\xi_{12}} - \frac{1}{\xi_{21}} \right) - \frac{1}{2} \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right)
\]

- From these definitions, it follows that

\[
\mathbf{K}^o_{11} = \chi^o_{11} + \frac{1}{r_{12}} \left[e^o_{11} \cot \theta_{12} - e^o_{12} \csc \theta_{12} - (\varphi_1 \varphi_2 + \varphi_2^2 \cos \theta_{12}) \sin \theta_{12} \right] - \frac{1}{2r_{11}} \left(2e^o_{11} + \varphi_1 + \varphi_2^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{A_1} \frac{\partial \varphi}{\partial \xi_1} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[\kappa_{22}^o = \chi_{22}^o + \frac{1}{r_{21}} \left[e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} + \left(\varphi_1 \varphi_2 + \varphi_1^2 \cos \theta_{12} \right) \sin \theta_{12} \right] \]
\[- \frac{1}{2r_{22}} \left[2e_{22}^o + \varphi_1^2 + \varphi_2^2 + 2\varphi^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right] + \frac{\varphi_1 \sin \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

and

\[2\kappa_{12}^o = \left(\bar{\chi}_{12}^o + \bar{\chi}_{21}^o \right) \csc \theta_{12} - \left(\chi_{11}^o + \chi_{22}^o \right) \cot \theta_{12} + \varphi \left(\frac{1}{r_{22}} - \frac{1}{r_{11}} \right) \csc^2 \theta_{12} \]
\[+ \left(\frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}} \right) - \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{22}} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{11}} \]
\[+ \frac{1}{r_{12}} \left[\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \varphi^2 \right] - \frac{1}{r_{21}} \left[\left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)^2 + \varphi^2 \right] \]
\[+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

where the identity \(\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \) has been used

- Next,

\[
\bar{\chi}_{12}^o + \bar{\chi}_{21}^o = 2\chi_{12}^o - \left(\frac{\varphi}{r_{22}} - \frac{\varphi}{r_{11}} \right) \sin \theta_{12} + \left(\frac{\varphi}{r_{21}} + \frac{\varphi}{r_{12}} \right) \cos \theta_{12}
\]

is used with the previous identity to get

\[
\left(\bar{\chi}_{12}^o + \bar{\chi}_{21}^o \right) \csc \theta_{12} = 2\chi_{12}^o \csc \theta_{12} + \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc^2 \theta_{12}
\]

- Substituting this expression into the previous expression for the change in reference-surface torsion yields
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

These equations for the changes in reference-surface curvatures and
torsions correspond to a “small” strain and “moderate” rotation theory,
like that of Pietraszkiewicz, that includes nonlinear bending action
"SMALL" STRAINS AND "MODERATE" ROTATIONS
CONTINUED

For orthogonal reference-surface Gaussian coordinates,

\[\kappa_{11}^o = \chi_{11}^o - \frac{e_{11}^o}{r_{11}} - \frac{e_{12}^o}{r_{12}} - \left\{ \frac{1}{2r_{11}} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi^2 \right) + \frac{\varphi_1 \varphi_2}{r_{12}} + \frac{\varphi_2}{A_1} \frac{\partial \varphi}{\partial \xi_1} \right\} + O\left(\theta^3, \varepsilon^4 \right) \]

\[\kappa_{22}^o = \chi_{22}^o - \frac{e_{22}^o}{r_{22}} - \frac{e_{12}^o}{r_{12}} - \left\{ \frac{1}{2r_{22}} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi^2 \right) + \frac{\varphi_1 \varphi_2}{r_{12}} - \frac{\varphi_1}{A_2} \frac{\partial \varphi}{\partial \xi_2} \right\} + O\left(\theta^3, \varepsilon^4 \right) \]

\[\kappa_{12}^o = \chi_{12}^o + \frac{e_{11}^o + e_{22}^o}{2r_{12}} - \frac{e_{12}^o}{2} \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) + \frac{1}{2} \left\{ \frac{1}{r_{12}} \left(\varphi_1^2 + \varphi_2^2 + 2\varphi^2 \right) + \frac{\varphi_1}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \frac{\varphi_2}{A_2} \frac{\partial \varphi}{\partial \xi_2} \right\} + O\left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

● Further simplifications to the changes in reference-surface curvatures and torsion are obtained by examining the terms:

\[
\frac{\varphi_2 \sin \theta_{12}}{A_1} \frac{\partial \varphi}{\partial \xi_1} \quad \text{appearing in } \kappa_{11}^o
\]

\[
\frac{\varphi_1 \sin \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} \quad \text{appearing in } \kappa_{22}^o
\]

\[
\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} \quad \text{appearing in } 2\kappa_{12}^o
\]

● In particular, these simplifications are facilitated by considering the requirement for a single-valued reference-surface displacement vector field; that is

\[
\frac{\partial}{\partial \xi_2} \left(\frac{\partial \tilde{u}}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial \tilde{u}}{\partial \xi_2} \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

By using

\[
\frac{1}{A_1} \frac{\partial \tilde{u}}{\partial \xi_1} = \Delta_{11} \hat{a}_1 + \Delta_{12} \hat{a}_2 + \Delta_{13} \hat{n}
\]

and

\[
\frac{1}{A_2} \frac{\partial \tilde{u}}{\partial \xi_2} = \Delta_{21} \hat{a}_1 + \Delta_{22} \hat{a}_2 + \Delta_{23} \hat{n}
\]

and the general expression for the derivatives of the unit-magnitude base vector fields,

\[
\frac{\partial}{\partial \xi_2} \left(\frac{\partial \tilde{u}}{\partial \xi_1} \right) = \frac{\partial}{\partial \xi_1} \left(\frac{\partial \tilde{u}}{\partial \xi_2} \right)
\]

gives the following three scalar equations

\[
\frac{1}{A_2} \frac{\partial \Delta_{11}}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial \Delta_{21}}{\partial \xi_1} = \frac{\Delta_{21}}{A_1 A_2} \frac{\partial A_2}{\partial \xi_2} - \frac{\Delta_{11}}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} + \frac{1}{\rho_{22}} \left(\Delta_{12} \csc \theta_{12} + \Delta_{11} \cot \theta_{12} \right)
\]

\[
+ \Delta_{23} \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) - \frac{\Delta_{13} \csc \theta_{12}}{r_{21}} - \frac{1}{\rho_{11}} \left(\Delta_{21} \cot \theta_{12} + \Delta_{22} \csc \theta_{12} \right)
\]

\[
+ \Delta_{11} \left(\frac{\csc \theta_{12} \cot \theta_{12}}{A_2} \frac{\partial \cos \theta_{12}}{\partial \xi_2} \right) + \Delta_{22} \left(\frac{\csc^2 \theta_{12} \partial \cos \theta_{12}}{A_1} \frac{\partial \xi_1}{\partial \xi_2} \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

Recall that in these expressions,

\[
\frac{1}{A_1} \frac{\partial \Delta_{22}}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial \Delta_{12}}{\partial \xi_2} = \frac{\Delta_{12}}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} - \frac{\Delta_{22}}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} - \frac{1}{\rho_{11}} \left(\Delta_{21} \csc \theta_{12} + \Delta_{22} \cot \theta_{12} \right)
\]

\[+ \Delta_{13} \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) + \Delta_{23} \frac{\csc \theta_{12}}{r_{12}} + \frac{1}{\rho_{22}} \left(\Delta_{11} \csc \theta_{12} + \Delta_{12} \cot \theta_{12} \right)
\]

\[+ \Delta_{22} \left(\frac{\csc \theta_{12} \cot \theta_{12}}{A_1} \frac{\partial \cos \theta_{12}}{\partial \xi_1} \right) + \Delta_{11} \left(\frac{\csc^2 \theta_{12}}{A_2} \frac{\partial \cos \theta_{12}}{\partial \xi_2} \right)
\]

\[
\frac{1}{A_2} \frac{\partial \Delta_{13}}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial \Delta_{23}}{\partial \xi_1} = \frac{\Delta_{23}}{A_1 A_2} \frac{\partial A_2}{\partial \xi_1} - \frac{\Delta_{13}}{A_1 A_2} \frac{\partial A_1}{\partial \xi_2} + \Delta_{12} \frac{\cot \theta_{12}}{r_{22}} - \frac{\Delta_{21}}{r_{11}} + \Delta_{11} \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) + \Delta_{22} \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right)
\]

\[\Delta_{11} = e_1^o \csc^2 \theta_{12} - \left(e_2^o \csc \theta_{12} + \varphi \right) \cot \theta_{12}
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[\Delta_{12} = \left(e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12} \right) \csc \theta_{12} \]

\[\Delta_{13} = -\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \]

\[\Delta_{21} = \left(e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12} \right) \csc \theta_{12} \]

\[\Delta_{22} = e_{22}^o \csc^2 \theta_{12} - \left(e_{12}^o \csc \theta_{12} - \varphi \right) \cot \theta_{12} \]

\[\Delta_{23} = -\left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \]

- Thus, derivatives of \(\varphi \) appear only in the left-hand-side of the first two scalar equations

- Specifically,
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[
\frac{1}{A_2} \frac{\partial \Delta_{11}}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial \Delta_{21}}{\partial \xi_1} = \frac{\csc \theta_{12}}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \frac{\cot \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \frac{\varphi}{A_1} \frac{\partial \csc \theta_{12}}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left[(e_{11}^o \csc \theta_{12} - e_{12}^o \cot \theta_{12}) \csc \theta_{12} \right] \\
- \frac{\varphi}{A_2} \frac{\partial \cot \theta_{12}}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left[(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12}) \csc \theta_{12} \right]
\]

\[
\frac{1}{A_1} \frac{\partial \Delta_{22}}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial \Delta_{12}}{\partial \xi_2} = \frac{\cot \theta_{12}}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \frac{\csc \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \frac{\varphi}{A_1} \frac{\partial \cot \theta_{12}}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left[(e_{22}^o \csc \theta_{12} - e_{12}^o \cot \theta_{12}) \csc \theta_{12} \right] \\
- \frac{\varphi}{A_2} \frac{\partial \csc \theta_{12}}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left[(e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}) \csc \theta_{12} \right]
\]
"SMALL" STRAINS AND "MODERATE" ROTATIONS CONTINUED

Thus, it follows that multiplying the first two scalar equations by φ_α and using the general expressions for the geodesic curvatures

$$\frac{1}{\rho_{11}} = \frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_1} [A_2 \cos \theta_{12}] - \frac{\partial A_1}{\partial \xi_2} \right)$$

and

$$\frac{1}{\rho_{22}} = -\frac{\csc \theta_{12}}{A_1 A_2} \left(\frac{\partial}{\partial \xi_2} [A_1 \cos \theta_{12}] - \frac{\partial A_2}{\partial \xi_1} \right)$$

yields

$$\varphi_\alpha \left[\frac{\csc \theta_{12} \partial \varphi}{A_1 \partial \xi_1} - \frac{\cot \theta_{12} \partial \varphi}{A_2 \partial \xi_2} \right] =$$

$$-\varphi_\alpha \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) + \varphi_\alpha \left(\frac{\partial e_{12}^o}{\partial \xi_1} \csc \theta_{12} - \frac{\partial e_{22}^o}{\partial \xi_1} \cot \theta_{12} \right) \csc \theta_{12}$$

$$+ \varphi_\alpha \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{\csc \theta_{12}}{r_{21}} - \varphi_\alpha \left(\frac{\partial e_{11}^o}{\partial \xi_2} \csc \theta_{12} - \frac{\partial e_{12}^o}{\partial \xi_2} \cot \theta_{12} \right) \csc \theta_{12} + o \left(\theta^3, \varepsilon^4 \right)$$
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

and

\[
\varphi_\alpha \left[\begin{array}{c}
\cot \theta_{12} \frac{\partial \varphi}{\partial \xi_1} - \csc \theta_{12} \frac{\partial \varphi}{\partial \xi_2} \\
\frac{\partial e^{\circ}_{22}}{A_1 \frac{\partial \xi_1}{\partial \xi_1}} - \frac{\partial e^{\circ}_{11}}{A_2 \frac{\partial \xi_2}{\partial \xi_2}} \cot \theta_{12} \end{array} \right] =
\]

\[
- \varphi_\alpha \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) - \varphi_\alpha \left(\frac{\partial e^{\circ}_{22}}{A_1 \frac{\partial \xi_1}{\partial \xi_1}} - \frac{\partial e^{\circ}_{11}}{A_2 \frac{\partial \xi_2}{\partial \xi_2}} \cot \theta_{12} \right) \csc \theta_{12}
\]

\[
- \varphi_\alpha \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{\csc \theta_{12}}{r_{12}} + \varphi_\alpha \left(\frac{\partial e^{\circ}_{12}}{A_2 \frac{\partial \xi_2}{\partial \xi_2}} \cot \theta_{12} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

Next, these two equations are solved for \(\frac{\varphi_\alpha \frac{\partial \varphi}{\partial \xi_1}}{A_1 \frac{\partial \xi_1}{\partial \xi_1}} \) and \(\frac{\varphi_\alpha \frac{\partial \varphi}{\partial \xi_2}}{A_2 \frac{\partial \xi_2}{\partial \xi_2}} \) to get
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[
\frac{\varphi_\alpha \partial \varphi}{A_1 \partial \xi_1} = \varphi_\alpha \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) - \varphi_\alpha \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{\csc \theta_{12}}{r_{11}} \\
\quad + \varphi_\alpha \left(\frac{1}{A_1} \frac{\partial e^o_{12}}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e^o_{11}}{\partial \xi_2} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]

\[
\frac{\varphi_\alpha \partial \varphi}{A_2 \partial \xi_2} = \varphi_\alpha \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) + \varphi_\alpha \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{\csc \theta_{12}}{r_{22}} \\
\quad + \varphi_\alpha \left(\frac{1}{A_1} \frac{\partial e^o_{22}}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e^o_{12}}{\partial \xi_2} \right) \csc \theta_{12} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

Using these expressions and the identity

\[
\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)
\]

gives

\[
\begin{align*}
\kappa_{11}^\circ &= \chi_{11}^\circ + \frac{1}{r_{12}} \left(e_{11}^\circ \cot \theta_{12} - e_{12}^\circ \csc \theta_{12} \right) - \frac{e_{11}^\circ}{r_{11}} - \varphi_2 \left(\frac{1}{A_1} \frac{\partial e_{12}^\circ}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e_{11}^\circ}{\partial \xi_2} \right) \\
&\quad - \frac{1}{2r_{11}} \left(\varphi_1^2 + \varphi_2^2 \cos 2\theta_{12} + 2\varphi_1^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right) + O \left(\theta^3, \varepsilon^4 \right)
\end{align*}
\]

\[
\kappa_{22}^\circ = \chi_{22}^\circ + \frac{1}{r_{21}} \left(e_{12}^\circ \csc \theta_{12} - e_{22}^\circ \cot \theta_{12} \right) - \frac{e_{22}^\circ}{r_{22}} - \varphi_1 \left(\frac{1}{A_2} \frac{\partial e_{12}^\circ}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial e_{22}^\circ}{\partial \xi_1} \right) \\
&\quad - \frac{1}{2r_{22}} \left[\varphi_1^2 \cos 2\theta_{12} + \varphi_2^2 + 2\varphi_1^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right] + O \left(\theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

\[2\kappa_{12}^o = 2\chi_{12}^o \csc \theta_{12} - \left(\chi_{11}^o + \chi_{22}^o\right) \cot \theta_{12} - \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{11}} \]

\[+ \frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{22}} + \varphi^2 \left(\frac{1}{r_{12}} - \frac{1}{r_{21}}\right) \]

\[+ \left(\varphi_1 \cos \theta_{12} + \varphi_2\right) \left[\frac{\varphi_1 \sin \theta_{12}}{r_{22}} + \left(\frac{1}{A_1} \frac{\partial e_{22}^o}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e_{12}^o}{\partial \xi_2}\right) \csc \theta_{12}\right] \]

\[- \left(\varphi_1 + \varphi_2 \cos \theta_{12}\right) \left[\frac{\varphi_2 \sin \theta_{12}}{r_{11}} - \left(\frac{1}{A_1} \frac{\partial e_{12}^o}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e_{11}^o}{\partial \xi_2}\right) \csc \theta_{12}\right] + \mathcal{O} \left(\theta^3, \varepsilon^4\right)\]
For orthogonal reference-surface Gaussian coordinates, these expressions reduce to

\[K_{11} = \chi_{11} - \frac{e_{12}^o}{r_{12}} - \frac{e_{11}^o}{r_{11}} - \varphi_2 \left(\frac{1}{A_1} \frac{\partial e_{12}^o}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e_{11}^o}{\partial \xi_2} \right) - \frac{1}{2r_{11}} \left(\varphi_1^2 - \varphi_2^2 + 2\varphi_1^2 \right) + O(\theta^3, \varepsilon^4) \]

\[K_{22} = \chi_{22} - \frac{e_{12}^o}{r_{12}} - \frac{e_{22}^o}{r_{22}} - \varphi_1 \left(\frac{1}{A_2} \frac{\partial e_{12}^o}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial e_{22}^o}{\partial \xi_1} \right) - \frac{1}{2r_{22}} \left(\varphi_2^2 - \varphi_1^2 + 2\varphi_2^2 \right) + O(\theta^3, \varepsilon^4) \]

\[2K_{12} = 2\chi_{12} - \left(e_{12}^o + \varphi_1 \varphi_2 \right) \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) + \frac{e_{11}^o + e_{22}^o}{r_{12}} + \frac{2\varphi_1^2}{r_{12}} \]

\[+ \varphi_1 \left(\frac{1}{A_1} \frac{\partial e_{12}^o}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial e_{11}^o}{\partial \xi_2} \right) + \varphi_2 \left(\frac{1}{A_2} \frac{\partial e_{12}^o}{\partial \xi_2} - \frac{1}{A_1} \frac{\partial e_{22}^o}{\partial \xi_1} \right) + O(\theta^3, \varepsilon^4) \]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Let h denote the maximum value of the shell thickness $h(\xi_1, \xi_2)$, and let R denote the smallest magnitude of the reference-surface curvatures and torsions $r_{\alpha\beta}(\xi_1, \xi_2)$.

- Similarly, let l denote the smallest wavelength of the deformation pattern exhibited by the shell reference surface, as illustrated below.
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

- Recalling that the purpose of a shell theory is to circumvent the use of three-dimensional elasticity theory for curved structures with one characteristic dimension significantly smaller than the other two, it follows that for practical applications of shell theory, \(\frac{\epsilon}{R} < 1 \)

- Next, noting that the changes in reference-surface curvatures and torsions only contribute to the shell strains at points off the reference surface, it is seen that terms such as \(\frac{\varphi_\alpha \varphi_\beta}{r_{\gamma\rho}} \), \(\frac{\varphi_\alpha \varphi}{r_{\gamma\rho}} \), \(\frac{\varphi^2}{r_{\gamma\rho}} \), and \(\frac{e^o_{\alpha\beta}}{r_{\gamma\rho}} \) are associated with contributions of \(\mathcal{O}\left(\theta^2 \frac{\epsilon}{R}\right) \) to the shell strains.

- In addition, legitimate applications of most practical shell theories presume the smallest wavelength of the deformation pattern exhibited by the reference surface is large compared to the maximum shell thickness; that is, \(\frac{\epsilon}{\ell} \ll 1 \)
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

The requirement \(\frac{\ell}{h} \ll 1 \) implies that \(\left| \frac{\xi_3}{A_{(\gamma)}} \frac{\partial e^\alpha_{\alpha\beta}}{\partial \xi^\gamma} \right| \ll 1 \); that is, the strain gradients are at most second-order terms.

Thus, all nonlinear terms appearing in the changes in reference-surface curvatures and torsions are associated with third-order contributions to the shell strains and can be neglected for the case of “small” strains and “moderate” rotations.

Enforcing these conditions yields

\[
\xi_3 K_{11}^o = \xi_3 \left[\chi_{11}^o + \frac{1}{r_{12}} \left(e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} \right) - \frac{e_{11}^o}{r_{11}} \right] + \mathcal{O} \left(\frac{h}{l}, \frac{h}{\ell}, \theta^3, \varepsilon^4 \right)
\]

\[
\xi_3 K_{22}^o = \xi_3 \left[\chi_{22}^o + \frac{1}{r_{21}} \left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} \right) - \frac{e_{22}^o}{r_{22}} \right] + \mathcal{O} \left(\frac{h}{l}, \frac{h}{\ell}, \theta^3, \varepsilon^4 \right)
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS
CONTINUED

It is important to point out that the linear terms involving \(e_{q\beta}^o \) are also third-order terms and can also be neglected; however, because these terms are linear they are often retained in “moderate” rotation shell theories.

Thus, two common sets of strains that are based on “small” strains and “moderate” rotations appear in the literature that are referred to herein as the Equations of Pietraszkiewicz and Sanders’ Equations.

These equations are listed subsequently.

\[
2\xi_3\kappa^o_{12} = \xi_3 \left[2\chi_{12}^o \csc\theta_{12} - (\chi_{11}^o + \chi_{22}^o)\cot\theta_{12} - \frac{e_{12}^o \csc\theta_{12} - e_{11}^o \cot\theta_{12}}{r_{11}} \right. \\
+ \frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}} + \frac{e_{22}^o \cot\theta_{12} - e_{12}^o \csc\theta_{12}}{r_{22}} \left] + \mathcal{O} \left(\theta \left(\frac{h}{\ell} \right)^2, \theta^2 \frac{h}{R}, \theta^3, \varepsilon^4 \right) \right.
\]
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

Finally, the general form of the displacement-vector field for points of the shell is given by

$$\vec{U} = \vec{u} + \xi_3 (\hat{n} - \hat{n}) + F_1(\xi_3) \gamma_1^\circ \hat{a}_1 + F_2(\xi_3) \gamma_2^\circ \hat{a}_2 + O(\varepsilon^4)$$

Substituting the expressions for the convected basis, for “small” strains and “moderate” rotations, into the previous expression and simplifying yields

$$\vec{U} = \vec{u} + \xi_3 (\hat{n} - \hat{n}) + F_1(\xi_3) \gamma_1^\circ \hat{a}_1 + F_2(\xi_3) \gamma_2^\circ \hat{a}_2 + O(\theta \varepsilon^2, \varepsilon^4)$$

Next;

$$\vec{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3, \quad \hat{g}_1 = \mu_{11} \hat{a}_1 + \mu_{12} \hat{a}_2, \quad \hat{g}_2 = \mu_{21} \hat{a}_1 + \mu_{22} \hat{a}_2,$$

$$\vec{u} = u_1 \hat{a}_1 + u_2 \hat{a}_2 + w \hat{n}, \quad \text{and} \quad \hat{a} = a_1 \hat{a}_1 + a_2 \hat{a}_2 + a_3 \hat{n}; \quad \text{with}$$
“SMALL” STRAINS AND “MODERATE” ROTATIONS CONTINUED

\[\alpha_1 = \varphi_1 - \varphi(\varphi_2 + \varphi_1 \cos \theta_{12}) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[\alpha_2 = \varphi_2 + \varphi(\varphi_1 + \varphi_2 \cos \theta_{12}) \csc \theta_{12} + O(\theta^3, \varepsilon^4) \]

\[\alpha_3 = 1 - \frac{1}{2}(\varphi_1^2 + \varphi_2^2) - \varphi_1 \varphi_2 \cos \theta_{12} + O(\theta^3, \varepsilon^4) \]

are used to get

\[U_1 = \frac{\mu_{12} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]

\[U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]

and

\[U_3 = U_3^0 \]

where

\[U_1^0 = u_1 + \xi_3 \left[\varphi_1 - \varphi(\varphi_2 + \varphi_1 \cos \theta_{12}) \csc \theta_{12} \right] + F_1(\xi_3) \gamma_1^0 + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]

\[U_2^0 = u_2 + \xi_3 \left[\varphi_2 + \varphi(\varphi_1 + \varphi_2 \cos \theta_{12}) \csc \theta_{12} \right] + F_2(\xi_3) \gamma_2^0 + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]

\[U_3^0 = w - \xi_3 \left[\frac{1}{2}(\varphi_1^2 + \varphi_2^2) + \varphi_1 \varphi_2 \cos \theta_{12} \right] + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]
"SMALL" STRAINS AND "MODERATE" ROTATIONS
CONCLUDED

\[
\begin{align*}
\mu_{11} &= \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \\
\mu_{12} &= -\frac{\frac{\xi_3 \csc \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \\
\mu_{21} &= \frac{\frac{\xi_3 \csc \theta_{12}}{r_{21}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}} \\
\mu_{22} &= \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}
\end{align*}
\]
EQUATIONS OF PIETRASZKIEWICZ

- The “small” strain and “moderate” rotation equations of Pietraszkiewicz are given by

\[
\varepsilon_{11}^o = e_{11}^o + \frac{1}{2} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \frac{1}{2} \varphi^2 + \varphi \left(e_{11}^o \cot \theta_{12} + e_{12}^o \csc \theta_{12} \right)
\]

\[
\varepsilon_{22}^o = e_{22}^o + \frac{1}{2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)^2 + \frac{1}{2} \varphi^2 + \varphi \left(e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} \right)
\]

\[
2\varepsilon_{12}^o = 2e_{12}^o + \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \varphi^2 \cos \theta_{12} + \varphi \left(e_{22}^o - e_{11}^o \right) \csc \theta_{12}
\]

\[
\kappa_{11}^o = \chi_{11}^o + \frac{1}{r_{12}} \left(e_{11}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12} \right) - \frac{e_{11}^o}{r_{11}}
\]

\[
\kappa_{22}^o = \chi_{22}^o + \frac{1}{r_{21}} \left(e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} \right) - \frac{e_{22}^o}{r_{22}}
\]
For orthogonal reference-surface Gaussian coordinates, the equations reduce to

\[
\begin{align*}
\varepsilon_{11}^o &= e_{11}^o + \frac{1}{2}(\varphi_1^2 + \varphi_2^2 + 2e_{12}^o \varphi) \\
\varepsilon_{22}^o &= e_{22}^o + \frac{1}{2}(\varphi_2^2 + \varphi_1^2 - 2e_{12}^o \varphi) \\
2\varepsilon_{12}^o &= 2e_{12}^o + \varphi_1 \varphi_2 + \varphi(e_{22}^o - e_{11}^o) \\
K_{11}^o &= \chi_{11}^o - \frac{e_{11}^o}{r_{11}} - \frac{e_{12}^o}{r_{12}} \\
K_{22}^o &= \chi_{22}^o - \frac{e_{22}^o}{r_{22}} - \frac{e_{12}^o}{r_{12}} \\
K_{12}^o &= \chi_{12}^o + \frac{e_{11}^o + e_{22}^o}{2r_{12}} - \frac{e_{12}^o}{2} \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right)
\end{align*}
\]
SANDERS’ EQUATIONS

- The “small” strain and “moderately small” rotation equations of Sanders are given by

\[
\begin{align*}
\varepsilon_{11}^o &= \varepsilon_{11}^o + \frac{1}{2} (\varphi_1 + \varphi_2 \cos \theta_{12})^2 + \frac{1}{2} \varphi^2 \\
\varepsilon_{22}^o &= \varepsilon_{22}^o + \frac{1}{2} (\varphi_2 + \varphi_1 \cos \theta_{12})^2 + \frac{1}{2} \varphi^2 \\
2\varepsilon_{12}^o &= 2\varepsilon_{12}^o + (\varphi_1 + \varphi_2 \cos \theta_{12})(\varphi_2 + \varphi_1 \cos \theta_{12}) + \varphi^2 \cos \theta_{12}
\end{align*}
\]

\[
\begin{align*}
\kappa_{11}^o &= \chi_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi_1 + \varphi_2 \cos \theta_{12}) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}} \\
\kappa_{22}^o &= \chi_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi_2 + \varphi_1 \cos \theta_{12}) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}}
\end{align*}
\]

\[
\begin{align*}
2\kappa_{12}^o &= 2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} \\
&\quad+ \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12}
\end{align*}
\]
SANDERS’ EQUATIONS
CONCLUDED

- For orthogonal reference-surface Gaussian coordinates, the equations reduce to

\[
\begin{align*}
\varepsilon_{11}^o &= \varepsilon_{11}^o + \frac{1}{2} (\varphi_1^2 + \varphi_2^2) \\
\varepsilon_{22}^o &= \varepsilon_{22}^o + \frac{1}{2} (\varphi_2^2 + \varphi_2^2) \\
2\varepsilon_{12}^o &= 2\varepsilon_{12}^o + \varphi_1\varphi_2
\end{align*}
\]

\[
\begin{align*}
K_{11}^o &= \chi_{11}^o = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \frac{\varphi_2}{\rho_{11}} - \frac{\varphi}{r_{12}} \\
K_{22}^o &= \chi_{22}^o = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\varphi_1}{\rho_{22}} + \frac{\varphi}{r_{12}}
\end{align*}
\]

\[
2K_{12}^o = 2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right)
\]
RESUME' OF EQUATIONS FOR LINEARIZED STRAINS AND ROTATIONS - GENERAL GAUSSIAN COORDINATES
LINEAR EQUATIONS FOR GENERAL COORDINATES

- For the classical case of completely linearized deformation, the magnitude of the linear rotation and strain parameters are presumed to be the same order as the membrane strains.

- The Green-Lagrange shell strains \(\{ \varepsilon_{11}, \varepsilon_{22}, 2\varepsilon_{12}, 2\varepsilon_{13}, 2\varepsilon_{23} \} \) are given by

\[
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^0 \left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 + \xi_3 K_{11}^o \left(1 + \frac{\xi_3}{r_{11}} \right)
\]

\[
+ \frac{1}{2} \left(\frac{\xi_3}{r_{12}} \right) \left[2\varepsilon_{12}^o \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right) \right] \csc^2 \theta_{12}
\]

\[
- \frac{\xi_3^2}{r_{12}^2} \left[K_{12}^o - \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right) \right] + \Gamma_{11}
\]

where

\[
\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2
\]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\varepsilon_{22} \left(\frac{H_2}{A_2} \right)^2 = \varepsilon_{22}^o \left[1 + \frac{\xi_3}{r_{22}} \right]^2 + \frac{\xi_3}{r_{21}} \left[1 + \frac{\xi_3}{r_{22}} \right]^2 + \xi_3 K_{22}^o \left[1 + \frac{\xi_3}{r_{22}} \right] \]

\[+ \frac{1}{2} \left(\frac{\xi_3}{r_{21}} \right) \left[2 \varepsilon_{12}^o \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{22}} \right) \right] \csc^2 \theta_{12} \]

\[+ \frac{\xi_3}{r_{21}} \left[K_{12}^o + \frac{1}{2} \cot \theta_{12} \left(K_{11}^o - K_{22}^o \right) \right] + \Gamma_{22} \]

where

\[\left(\frac{H_2}{A_2} \right)^2 = \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 \]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[2\varepsilon_{12}^{\circ} \frac{H_1 H_2}{A_1 A_2} = \varepsilon_{12}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 - \left(\frac{\xi_3}{r_{12}} \right)^2 + \left(1 + \frac{\xi_3}{r_{22}} \right)^2 - \left(\frac{\xi_3}{r_{21}} \right)^2 \right] \]

\[+ \varepsilon_{12}^o \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right)^2 \left(\csc^4 \theta_{12} - 1 \right) \right] \]

\[- \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left[\left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) + \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{22}} \right)^2 \cot \theta_{12} \right] \frac{\csc \theta_{12}}{2} \]

\[+ \frac{\xi_{11}^o}{2} \left[\left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{22}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right] \sin \theta_{12} \]

\[+ \frac{\xi_{22}^o}{2} \left[\left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} - \left(\frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{22}} \right) \csc^2 \theta_{12} - \frac{\xi_3}{r_{12}} + \frac{\xi_3}{r_{21}} \right] \sin \theta_{12} \]

\[+ \frac{\xi_{12}^o}{2} \left[\left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\xi_3}{r_{12}} - \frac{\xi_3}{r_{21}} \right) \cot \theta_{12} \right] \sin \theta_{12} + 2\Gamma_{12} \]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

where

\[
\frac{H_1 H_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}} \right)^2 \right]^{\frac{1}{2}} \left[\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}} \right)^2 \right]^{\frac{1}{2}}
\]

\[
\Gamma_{11} = F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \right) \left(\frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\gamma_2^o \cos \theta_{12} \right) - \frac{\gamma_2^o \sin \theta_{12}}{\rho_{11}} \right) - F_2(\xi_3) \frac{\xi_3}{r_{12}} \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial \gamma_2^o}{\partial \xi_1} \right) + F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} \right) \frac{1}{A_1} \frac{\partial \gamma_1^o}{\partial \xi_1} - \frac{\xi_3}{r_{12}} \frac{\gamma_1^o}{\rho_{11}} + O(\varepsilon^4)
\]

\[
\Gamma_{22} = F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \right) \left(\frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\gamma_1^o \cos \theta_{12} \right) + \frac{\gamma_1^o \sin \theta_{12}}{\rho_{22}} \right) + F_1(\xi_3) \frac{\xi_3}{r_{21}} \left(\frac{\csc \theta_{12}}{A_2} \frac{\partial \gamma_1^o}{\partial \xi_2} \right) + F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} \right) \frac{1}{A_2} \frac{\partial \gamma_2^o}{\partial \xi_2} - \frac{\xi_3}{r_{21}} \frac{\gamma_2^o}{\rho_{22}} + O(\varepsilon^4)
\]
LINEAR EQUATIONS FOR GENERAL COORDINATES

CONTINUED

\[2\Gamma_{12} = F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3\cot\theta_{12}}{r_{12}} \right) \frac{1}{A_2} \frac{\partial \gamma^1}{\partial \xi_2} \left[\begin{array}{c} \cos\theta_{12} \frac{\partial \gamma^1}{\partial \xi_1} \\ \gamma^1 \sin\theta_{12} \rho_{11} \end{array} \right]
+ F_1(\xi_3) \left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3\cot\theta_{12}}{r_{21}} \right) \frac{1}{A_1} \frac{\partial \gamma^2}{\partial \xi_1} \left[\begin{array}{c} \cos\theta_{12} \frac{\partial \gamma^2}{\partial \xi_2} \\ \gamma^2 \sin\theta_{12} \rho_{22} \end{array} \right]
+ F_2(\xi_3) \left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3\cot\theta_{12}}{r_{12}} \right) \frac{1}{A_2} \frac{\partial \gamma^2}{\partial \xi_2} \left[\begin{array}{c} \cos\theta_{22} \frac{\partial \gamma^2}{\partial \xi_2} \\ \gamma^2 \sin\theta_{22} \rho_{22} \end{array} \right]
+ F_1(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc\theta_{12}}{A_1} \frac{\partial \gamma^1}{\partial \xi} \right) - \frac{\xi_3}{r_{12}} \left(\frac{\csc\theta_{12}}{A_2} \frac{\partial \gamma^1}{\partial \xi_2} \left(\gamma^1 \cos\theta_{12} \right) + \frac{\gamma^1}{\rho_{22}} \right) \right]
+ F_2(\xi_3) \left[\frac{\xi_3}{r_{21}} \left(\frac{\csc\theta_{12}}{A_1} \frac{\partial \gamma^2}{\partial \xi} \right) - \frac{\gamma^2}{\rho_{11}} \right] - \frac{\xi_3}{r_{12}} \left(\frac{\csc\theta_{12}}{A_2} \frac{\partial \gamma^2}{\partial \xi_2} \left(\gamma^2 \cos\theta_{12} \right) \right) \right]
+ O(\varepsilon^4) \]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

\[\gamma_1^o = \csc^2 \theta_{12} \left(2\varepsilon_{13}^o - 2\varepsilon_{23}^o \cos \theta_{12} \right) \]

\[\gamma_2^o = \csc^2 \theta_{12} \left(2\varepsilon_{23}^o - 2\varepsilon_{13}^o \cos \theta_{12} \right) \]

where it is noted that \(2\varepsilon_{13}^o \) and \(2\varepsilon_{23}^o \) are fundamental unknowns and the geodesic curvatures are given by

\[\frac{1}{\rho_{11}} = \csc \theta_{12} \left(\frac{\partial}{\partial \xi_1} \left[A_2 \cos \theta_{12} \right] - \frac{\partial A_1}{\partial \xi_2} \right) \]

\[\frac{1}{\rho_{22}} = -\csc \theta_{12} \left(\frac{\partial}{\partial \xi_2} \left[A_1 \cos \theta_{12} \right] - \frac{\partial A_2}{\partial \xi_1} \right) \]

- The transverse shearing strains are given by

\[2\varepsilon_{13} \frac{H_1}{A_1} = \left[F_1' (\xi_3) + \frac{P_1 (\xi_3)}{r_{11}} \right] \gamma_1^o + \left[F_2' (\xi_3) + \frac{P_2 (\xi_3)}{r_{11}} \right] \cos \theta_{12} - \frac{P_2 (\xi_3) \sin \theta_{12}}{r_{12}} \gamma_2^o \]

\[2\varepsilon_{23} \frac{H_2}{A_2} = \left[F_2' (\xi_3) + \frac{P_2 (\xi_3)}{r_{22}} \right] \gamma_2^o + \left[F_1' (\xi_3) + \frac{P_1 (\xi_3)}{r_{22}} \right] \cos \theta_{12} + \frac{P_1 (\xi_3) \sin \theta_{12}}{r_{21}} \gamma_1^o \]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

where \(P_1(\xi_3) = \xi_3 F'_1(\xi_3) - F_1(\xi_3) \quad \text{and} \quad P_2(\xi_3) = \xi_3 F'_2(\xi_3) - F_2(\xi_3) \)

- The reference-surface membrane strains are given by

\[
\varepsilon_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(u_1 + u_2 \cos \theta_{12} \right) - \frac{u_2 \sin \theta_{12}}{\rho_{11}} + \frac{w}{r_{11}}
\]

\[
\varepsilon_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(u_2 + u_1 \cos \theta_{12} \right) + \frac{u_1 \sin \theta_{12}}{\rho_{22}} + \frac{w}{r_{22}}
\]

\[
2\varepsilon_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} + \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cos \theta_{12}
\]

\[
+ \left(\frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} \right) \sin \theta_{12} + w \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cos \theta_{12} + w \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \sin \theta_{12}
\]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

The reference-surface bending and twisting strains are given by

\[K_{11}^o = \chi_{11}^o - \varepsilon_{11}^o \frac{1}{r_{11}} + \frac{\varepsilon_{11}^o \cot \theta_{12} - \varepsilon_{12}^o \csc \theta_{12}}{r_{12}} \]

\[K_{22}^o = \chi_{22}^o - \varepsilon_{22}^o \frac{1}{r_{22}} + \frac{\varepsilon_{12}^o \csc \theta_{12} - \varepsilon_{22}^o \cot \theta_{12}}{r_{21}} \]

\[2K_{12}^o = 2\chi_{12}^o - \varepsilon_{12}^o \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \csc \theta_{12} \]

\[- \cot \theta_{12} \left[\chi_{11}^o \frac{1}{r_{11}} + \chi_{22}^o \frac{1}{r_{22}} \right] + \frac{\varepsilon_{11}^o}{r_{12}} - \frac{\varepsilon_{22}^o}{r_{21}} \]

where
It is worth noting that no shell thinness approximations have been made to obtain these equations, and the bending-torsion strain parameters defined by \(\chi_{11}^o \), \(\chi_{22}^o \), and \(\chi_{12}^o \) are identical to those of the Sanders-Koiter “best” first approximation thin-shell theory, which vanish under the action of rigid-body rotations, in addition to the linear membrane strains.
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONTINUED

The linear rotation parameters are given by

\[\varphi_1 = \left(\frac{u_1}{r_{11}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \right) \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_2} \frac{\partial \xi_2}{\partial \xi_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12} \]

\[\varphi_2 = \left(\frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \right) \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_1} \frac{\partial \xi_1}{\partial \xi_2} - \frac{u_1}{r_{12}} \right) \csc \theta_{12} \]

\[2\varphi = \left(\frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \right) \cot \theta_{12} + \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} \right) \csc \theta_{12} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \]
The components of the displacement vector field \(\mathbf{U} = U_1 \mathbf{\hat{g}}_1 + U_2 \mathbf{\hat{g}}_2 + U_3 \mathbf{\hat{g}}_3 \) are given by

\[
U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad \text{and} \quad U_3 = U_3^0.
\]

where

\[
U_1^0 = u_1 + \xi_3 \varphi_1 + \frac{F_1(\xi_3)}{\sin^2 \theta_12} \left(2\epsilon_{13} - 2\epsilon_{23} \cos \theta_{12} \right)
\]

\[
U_2^0 = u_2 + \xi_3 \varphi_2 + \frac{F_2(\xi_3)}{\sin^2 \theta_12} \left(2\epsilon_{23} - 2\epsilon_{13} \cos \theta_{12} \right)
\]

and

\[
U_3^0 = w
\]
LINEAR EQUATIONS FOR GENERAL COORDINATES
CONCLUDED

\[\mu_{11} = 1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}} \]
\[\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2 \]

\[\mu_{12} = -\frac{\xi_3 \csc \theta_{12}}{r_{12}} \]
\[\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2 \]

\[\mu_{21} = \frac{\xi_3 \csc \theta_{12}}{r_{21}} \]
\[\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2 \]

\[\mu_{22} = 1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}} \]
\[\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2 \]
RESUME' OF EQUATIONS FOR LINEARIZED STRAINS AND ROTATIONS - ORTHOGONAL GAUSSIAN COORDINATES
LINEAR EQUATIONS FOR ORTHOGONAL COORDINATES

- For orthogonal reference-surface Gaussian coordinates, the Green-Lagrange shell strains \(\{ \varepsilon_{11}, \varepsilon_{22}, 2\varepsilon_{12}, 2\varepsilon_{13}, 2\varepsilon_{23} \} \) are given by

\[
\varepsilon_{11} \left(\frac{H_1}{A_1} \right)^2 = \varepsilon_{11}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{11}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right) \right] + \varepsilon_{12}^o \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) - \xi_3 K_{12}^o \left(\frac{\xi_3}{r_{12}} \right) + \Gamma_{11}
\]

\[
\varepsilon_{22} \left(\frac{H_2}{A_2} \right)^2 = \varepsilon_{22}^o \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right] + \xi_3 K_{22}^o \left[\left(1 + \frac{\xi_3}{r_{22}} \right) \right] - \varepsilon_{12}^o \left(\frac{\xi_3}{r_{12}} \right) \left(\frac{\xi_3}{r_{11}} - \frac{\xi_3}{r_{22}} \right) - \xi_3 K_{12}^o \left(\frac{\xi_3}{r_{12}} \right) + \Gamma_{22}
\]
LINEAR EQUATIONS FOR ORTHOGONAL COORDINATES - CONTINUED

\[2\varepsilon_{12} \frac{H_1 H_2}{A_1 A_2} = \varepsilon_{12}^o \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(1 + \frac{\xi_3}{r_{22}} \right)^2 - 2\left(\frac{\xi_3}{r_{12}} \right)^2 \right] - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \left(\frac{\xi_3}{r_{12}} \right) \left(2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right) \]

\[- \xi_3 \left(K_{11}^o + K_{22}^o \right) \left(\frac{\xi_3}{r_{12}} \right) + \xi_3 K_{12}^o \left[2 + \frac{\xi_3}{r_{11}} + \frac{\xi_3}{r_{22}} \right] + 2 \Gamma_{12} \]

with

\[\left(\frac{H_1}{A_1} \right)^2 = \left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \]

\[\left(\frac{H_2}{A_2} \right)^2 = \left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \]

\[\frac{H_1 H_2}{A_1 A_2} = \left[\left(1 + \frac{\xi_3}{r_{11}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right]^{1/2} \left[\left(1 + \frac{\xi_3}{r_{22}} \right)^2 + \left(\frac{\xi_3}{r_{12}} \right)^2 \right]^{1/2} \]
where

\[
\Gamma_{11} = \left(1 + \frac{\xi_3}{r_{11}}\right) \left[F_1(\xi_3) \frac{1}{A_1} \frac{\partial 2\xi^{o}_{13}}{\partial \xi_1} - F_2(\xi_3) \frac{2\xi^{o}_{23}}{\rho_{11}} \right] - \frac{\xi_3}{r_{11}} \left[F_1(\xi_3) \frac{2\xi^{o}_{13}}{\rho_{11}} + F_2(\xi_3) \frac{1}{A_1} \frac{\partial 2\xi^{o}_{23}}{\partial \xi_1} \right]
\]

\[
\Gamma_{22} = \left(1 + \frac{\xi_3}{r_{22}}\right) \left[F_1(\xi_3) \frac{2\xi^{o}_{13}}{\rho_{22}} + F_2(\xi_3) \frac{1}{A_2} \frac{\partial 2\xi^{o}_{23}}{\partial \xi_2} \right] - \frac{\xi_3}{r_{22}} \left[F_1(\xi_3) \frac{1}{A_2} \frac{\partial 2\xi^{o}_{13}}{\partial \xi_2} - F_2(\xi_3) \frac{2\xi^{o}_{23}}{\rho_{22}} \right]
\]

\[
2\Gamma_{12} = \left(1 + \frac{\xi_3}{r_{11}}\right) \left[F_1(\xi_3) \frac{1}{A_2} \frac{\partial 2\xi^{o}_{13}}{\partial \xi_2} - F_2(\xi_3) \frac{2\xi^{o}_{23}}{\rho_{22}} \right] + \left(1 + \frac{\xi_3}{r_{22}}\right) \left[F_2(\xi_3) \frac{1}{A_1} \frac{\partial 2\xi^{o}_{23}}{\partial \xi_1} + F_1(\xi_3) \frac{2\xi^{o}_{13}}{\rho_{11}} \right]
\]

- \frac{\xi_3}{r_{12}} \left[F_1(\xi_3) \left(\frac{1}{A_1} \frac{\partial 2\xi^{o}_{13}}{\partial \xi_1} + \frac{2\xi^{o}_{13}}{\rho_{22}} \right) - F_2(\xi_3) \left(\frac{1}{A_2} \frac{\partial 2\xi^{o}_{23}}{\partial \xi_2} - \frac{2\xi^{o}_{23}}{\rho_{11}} \right) \right]

and where it is noted that \(2\xi^{o}_{13}\) and \(2\xi^{o}_{23}\) are fundamental unknowns.
LINEAR EQUATIONS FOR ORTHOGONAL COORDINATES - CONTINUED

- The transverse shearing strains are given by

\[
2\varepsilon_{13} \frac{H_1}{A_1} = \left[F_1'(\xi) \left(1 + \frac{\xi_3}{r_{11}} \right) - \frac{F_1(\xi)}{r_{11}} \right] 2\varepsilon_0 - \left[\frac{\xi_3 F_2'(\xi) - F_2(\xi)}{r_{12}} \right] 2\varepsilon_{13}
\]

\[
2\varepsilon_{23} \frac{H_2}{A_2} = \left[F_2'(\xi) \left(1 + \frac{\xi_3}{r_{22}} \right) - \frac{F_2(\xi)}{r_{22}} \right] 2\varepsilon_0 - \left[\frac{\xi_3 F_1'(\xi) - F_1(\xi)}{r_{12}} \right] 2\varepsilon_{13}
\]

- The reference-surface membrane strains are given by

\[
\varepsilon_0^{\circ} = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} + \frac{w}{r_{11}}, \quad \varepsilon_0^{\circ} = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{\rho_{22}} + \frac{w}{r_{22}}
\]

\[
2\varepsilon_0^{\circ} = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}} - \frac{2w}{r_{12}}
\]
LINEAR EQUATIONS FOR ORTHOGONAL COORDINATES - CONTINUED

The reference-surface bending and twisting strains are given by

\[\kappa_{11}^o = \chi_{11}^o - \frac{\varepsilon_{11}^o}{r_{11}} \frac{\varepsilon_{12}^o}{r_{12}} \]
\[\kappa_{22}^o = \chi_{22}^o - \frac{\varepsilon_{22}^o}{r_{22}} \frac{\varepsilon_{12}^o}{r_{12}} \]

\[2\kappa_{12}^o = 2\chi_{12}^o - \varepsilon_{12}^o \left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) + \frac{\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{12}} \]

where

\[\chi_{11}^o = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \frac{\varphi_2}{\rho_{11}} - \frac{\varphi}{r_{12}} \]
\[\chi_{22}^o = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\varphi_1}{\rho_{22}} + \frac{\varphi}{r_{12}} \]
\[2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \]

The linear rotation parameters are given by

\[\varphi_1 = \frac{u_1}{r_{11}} - \frac{u_2}{r_{12}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \]
\[\varphi_2 = -\frac{u_1}{r_{12}} + \frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \]

\[2\varphi = \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \]
LINEAR EQUATIONS FOR ORTHOGONAL COORDINATES - CONCLUDED

- The components of the displacement vector \(\vec{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3 \) are given by

\[
U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad \text{and} \quad U_3 = U_3^0;
\]

where

\[
U_1^0 = u_1 + \xi_3 \varphi_1 + 2\varepsilon_{13}^0 F_1(\xi_3), \quad U_2^0 = u_2 + \xi_3 \varphi_2 + 2\varepsilon_{23}^0 F_2(\xi_3), \quad U_3^0 = w
\]

\[
\mu_{11} = \frac{1 + \xi_3^2}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}, \quad \mu_{12} = \frac{-\xi_3}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}
\]

\[
\mu_{21} = \frac{-\xi_3}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}, \quad \mu_{22} = \frac{1 + \xi_3^2}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}}\right)^2 + \left(\frac{\xi_3}{r_{12}}\right)^2}}
\]
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
The linearized shell-strain equations presented herein contain several special cases of historical interest as proper subsets.

First, consider the specialization of the shell strains for Gaussian reference-surface coordinates that are principal-curvature coordinates.

For this case, \(r_{11} \rightarrow R_1 \), \(r_{22} \rightarrow R_2 \), and \(r_{12} = -r_{21} \rightarrow \infty \).

\(R_1 \) and \(R_2 \) are the principal values of \(r_{11} \) and \(r_{22} \), respectively.

In addition, the Gaussian coordinates of the reference surface are orthogonal; that is, \(\theta_{12} = \frac{\pi}{2} \).

The linear rotations reduce to

\[
\varphi_1 = \frac{u_1}{R_1} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1}, \quad \varphi_2 = \frac{u_2}{R_2} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2}, \quad \varphi = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}} \right).
\]
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
CONTINUED

where the geodesic curvatures are given by

\[
\frac{1}{\rho_{11}} = -\frac{1}{A_1A_2} \frac{\partial A_1}{\partial \xi_2} \quad \text{and} \quad \frac{1}{\rho_{22}} = \frac{1}{A_1A_2} \frac{\partial A_2}{\partial \xi_1}
\]

● Likewise, the linear membrane strains reduce to

\[
\varepsilon_{11}^o = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{u_2}{\rho_{11}} + \frac{w}{R_1} \quad \varepsilon_{22}^o = \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} + \frac{u_1}{\rho_{22}} + \frac{w}{R_2}
\]

\[
2\varepsilon_{12}^o = \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} + \frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} - \frac{u_2}{\rho_{22}}
\]

● The linear-deformation parameters \(\chi_{11}^o \), \(\chi_{22}^o \), and \(\chi_{12}^o \) are given by

\[
\chi_{11}^o = \frac{1}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} - \frac{\varphi_2}{\rho_{11}} \quad \chi_{22}^o = \frac{1}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\varphi_1}{\rho_{22}}
\]
In addition, the changes in reference-surface curvatures and torsion become

\[\kappa_{11}^o = \chi_{11}^o - \frac{\varepsilon_{11}^o}{R_1}, \quad \kappa_{22}^o = \chi_{22}^o - \frac{\varepsilon_{22}^o}{R_2}, \quad \text{and} \quad 2\kappa_{12}^o = 2\chi_{12}^o - \varepsilon_{12}^o \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

For this special class of Gaussian reference-surface coordinates, the normal strains in the shell become

\[\varepsilon_{11} = \frac{1}{1 + \frac{\xi_3}{R_1}} \left[\varepsilon_{11}^o + \xi_3 \chi_{11}^o + F_1(\xi_3) \frac{1}{A_1} \frac{\partial \varepsilon_{13}^o}{\partial \xi_1} - F_2(\xi_3) \frac{2\varepsilon_{23}^o}{\rho_{11}} \right] \]
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS CONTINUED

\[
\varepsilon_{22} = \frac{1}{\left(1 + \frac{\xi_3}{R_2}\right)} \left[\varepsilon_{22}^o + \xi_3 \chi_{22}^o + F_1(\xi_3) \frac{2\varepsilon_{13}^o}{\rho_{22}} + F_2(\xi_3) \frac{1}{A_2} \frac{\partial 2\varepsilon_{23}^o}{\partial \xi_2} \right]
\]

Likewise, the shearing strains reduce to

\[
2\varepsilon_{12} = \frac{2\varepsilon_{12}^o \left[1 - \left(\frac{\xi_3}{R_1R_2}\right)^2 \right] + \left[\chi_{12}^o + \frac{1}{2} \varepsilon_{12}^o \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \right] \left\{ 2\xi_3 + \left(\frac{\xi_3}{R_3}\right)^2 \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \right\} + 2\Gamma_{12}} \left(1 + \frac{\xi_3}{R_1}\right) \left(1 + \frac{\xi_3}{R_2}\right)
\]

with

\[
2\Gamma_{12} = \left(1 + \frac{\xi_3}{R_1}\right) \left[F_1(\xi_3) \frac{1}{A_2} \frac{\partial 2\varepsilon_{13}^o}{\partial \xi_2} - F_2(\xi_3) \frac{2\varepsilon_{23}^o}{\rho_{22}} \right] + \left(1 + \frac{\xi_3}{R_2}\right) \left[F_2(\xi_3) \frac{1}{A_1} \frac{\partial 2\varepsilon_{23}^o}{\partial \xi_1} + F_1(\xi_3) \frac{2\varepsilon_{13}^o}{\rho_{11}} \right]
\]
The shifters are given in terms of the Kronecker Delta symbol by
\[\mu_{\alpha\beta} = \delta_{\alpha\beta} ; \text{thus, } \hat{g}_\alpha = \hat{\alpha}_\alpha \]

The components of the displacement vector field for points of the shell,
\[\hat{U} = U_1\hat{\alpha}_1 + U_2\hat{\alpha}_2 + U_3\hat{n} \], are given by \[\hat{U}_3 = \hat{w} \] and
\[U_1 = \left(1 + \frac{\xi_3}{R_1}\right) \left[u_1 + \xi_3 \varphi_1 + 2\varepsilon_{13}\ F_1(\xi_3)\right] \]
\[U_2 = \left(1 + \frac{\xi_3}{R_2}\right) \left[u_2 + \xi_3 \varphi_2 + 2\varepsilon_{23}\ F_2(\xi_3)\right] \]
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
CONTINUED

By neglecting the transverse shearing strains and noting that

\[
2x^{\circ}_{12} + \varepsilon^{\circ}_{12}\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\varphi_1}{\rho_{11}} + \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} - \frac{\varphi_2}{\rho_{22}}
\]

\[
+ \frac{1}{R_1} \left(\frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} - \frac{u_2}{\rho_{22}} \right) + \frac{1}{R_2} \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} + \frac{u_1}{\rho_{11}} \right)
\]

the strain equations of the present study reduce exactly to the linear strains attributed to Flügge, Lur’e, Byrne, Goldenveizer, and Novozhilov; as given by Leissa and Kraus in the following references

SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
CONTINUED

- It is important to reiterate that no shell thinness approximations have been made to obtain these equations.

- In addition, the bending-torsion strain parameters defined by χ_{11}^0, χ_{22}^0, χ_{12}^0, and χ_{12}^0 are identical to those of the Sanders-Koiter “best” first approximation thin-shell theory.

- These strain parameters vanish under the action of rigid-body rotations, in addition to the linear membrane strains.

- Now consider the case of a thin shell, for which $\frac{\xi_3}{R_\alpha} \ll 1$.
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
CONTINUED

- Expanding \(\left(1 + \frac{\xi_3}{R_1} \right)^{-1} \) and \(\left(1 + \frac{\xi_3}{R_2} \right)^{-1} \) into power series; substituting the results into the strain equations attributed to Flügge, Lur’ë, Byrne, Goldenveizer, and Novozhilov; and neglecting products of \(\frac{\xi_3}{R_\alpha} \) and products of \(\frac{\xi_3}{R_\alpha} \) and linear strain parameters yields

\[
\begin{align*}
\varepsilon_{11} &= \varepsilon_{11}^o + \xi_3 \chi_11 + F_1(\xi_3) \frac{1}{A_1} \frac{\partial 2 \varepsilon_{13}^o}{\partial \xi_1} - F_2(\xi_3) \frac{2 \varepsilon_{23}^o}{\rho_{11}} \\
\varepsilon_{22} &= \varepsilon_{22}^o + \xi_3 \chi_22 + F_1(\xi_3) \frac{2 \varepsilon_{13}^o}{\rho_{22}} + F_2(\xi_3) \frac{1}{A_2} \frac{\partial 2 \varepsilon_{23}^o}{\partial \xi_2}
\end{align*}
\]
Similarly, one can obtain

\[2\varepsilon_{12} = 2\varepsilon^o_{12} + \frac{\xi_3}{R_3} \left[2\chi^o_{12} + \varepsilon^o_{12} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] \]

\[+ F_1(\xi_3) \left[\frac{1}{A_2} \frac{\partial 2\varepsilon^o_{13}}{\partial \xi_2} + \frac{2\varepsilon^o_{13}}{\rho_{11}} \right] + F_2(\xi_3) \left[\frac{1}{A_1} \frac{\partial 2\varepsilon^o_{23}}{\partial \xi_1} - \frac{2\varepsilon^o_{23}}{\rho_{22}} \right] \]

where the negligible products of \(\frac{\xi_3}{R_3} \) and \(\varepsilon^o_{12} \) have been retained.
Furthermore, the transverse shearing strains reduce to

\[2\varepsilon_{13} = 2\varepsilon^o_{13} F_1'(\xi_3) + \left[\xi_3 F_1'(\xi_3) - F_1(\xi_3) \right] \frac{2\varepsilon^o_{13}}{R_1} \] and

\[2\varepsilon_{23} = 2\varepsilon^o_{23} F_2'(\xi_3) + \left[\xi_3 F_2'(\xi_3) - F_2(\xi_3) \right] \frac{2\varepsilon^o_{23}}{R_2} \]

When the transverse shearing strains are neglected in these equations, they reduce to the linear strains attributed to Love and Timoshenko in NASA SP-288.

It is important to note that these strains also vanish for rigid-body motions.
SPECIAL CASES OF THE LINEARIZED SHELL STRAINS
CONTINUED

If the products of $\frac{\xi_3}{R_\alpha}$ and ε_{12}^o are neglected in

$$2\varepsilon_{12} = 2\varepsilon_{12}^o + \xi_3 \left[2\chi_{12}^o + \varepsilon_{12}^o \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right]$$

such that

$$2\varepsilon_{12} = 2\varepsilon_{12}^o + \xi_3 \left[2\chi_{12}^o \right]$$

then the Love-Timoshenko strains reduce to those given by Sanders in

Another well-known derivation of first-approximation, thin-shell strains, based on the work of A. E. H. Love, was given by E. Reissner in

It is important to point out that in Reissner’s derivation, the strains are identical to the Love-Timoshenko strains except for $2\varepsilon_{12}$.

More specifically, in Reissner’s derivation, the quantity

$$\chi_{12}^o + \frac{\varepsilon_{12}^o}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

appearing in

$$2\varepsilon_{12} = 2\varepsilon_{12}^o + \xi_3 \left[2\chi_{12}^o + \varepsilon_{12}^o \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right]$$

is replaced with

$$\chi_{12}^o + \varphi \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \frac{\varphi_1}{\rho_{11}} + \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} - \frac{\varphi_2}{\rho_{22}},$$

which does not vanish for rigid-body motions, but is adequate for many practical applications.
STRAINS FOR SHELLS WITH “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS

- Over the past several decades, many studies have been conducted that show relatively small geometric deviations from the idealized geometry of a thin-walled shell can produce rather significant changes in the structural behavior, compared to that of the corresponding idealized shell.

- Thus, accounting for relatively small geometric deviations in the kinematic equations is important, particularly when buckling must be addressed.

- Following the present custom, relatively “small” geometric deviations from the idealized geometry of a thin-walled shell are referred to herein as “small” initial geometric imperfections.

- In general, the geometry of an imperfect shell is characterized by a set of properties \(\{A_1, A_2, \theta_{12}, r_{11}, r_{12}, r_{21}, r_{22}, \rho_{11}, \rho_{22}\} \) that are slightly different from those of the corresponding idealized, perfect shell.
Once these geometric quantities are known, the shell strains can be obtained from the strain equations presented herein.

Typically, the exact expressions for \(\{A_1, A_2, \theta_{12}, r_{11}, r_{12}, r_{21}, r_{22}, \rho_{11}, \rho_{22} \} \) are very complicated for imperfect shells and involve the use of Fourier series to represent the deviation from an idealized geometry.

Moreover, design engineers are interested in establishing behavioral trends that are based on idealized geometries.

Thus, a simpler approach is used in the present study to account for “small” initial geometric imperfections that follows the approach presented by Donnell on p. 349 of the book:

In particular, the effects of initial geometric imperfections are modeled by representing the deviations from a given idealized geometry by a normal displacement field $w_i(\xi_1, \xi_2)$.

That is, the normal displacement field of the shell reference surface is represented by the sum of a component $w_i(\xi_1, \xi_2)$ associated with the strain-free unloaded state and a corresponding component $w(\xi_1, \xi_2, t)$ that is produced by applied mechanical and thermal loads and by applied displacements.

The total "normal displacement" from the geometrically perfect shell reference surface is given by $w_i(\xi_1, \xi_2) + w(\xi_1, \xi_2, t)$.

Next, $w_i(\xi_1, \xi_2) + w(\xi_1, \xi_2, t)$ is substituted for $w(\xi_1, \xi_2, t)$ in the strain equations, and $u_\alpha(\xi_1, \xi_2, t)$ and $w(\xi_1, \xi_2, t)$ are set equal to zero, consistent with setting the applied loads and displacements to zero.
This step yields residual strains associated with the initial imperfections that must be removed to obtain an unloaded-shell state.

Thus, strain expressions that include the effects of initial geometric imperfections are obtained by taking the strains obtained by replacing \(w(\xi_1, \xi_2, \tau) \) with \(w_l(\xi_1, \xi_2) + w(\xi_1, \xi_2, \tau) \) and then subtracting the corresponding “no-load” residual strains.

With the strains for geometrically imperfect shells known, the geometric parameters \(\{ A_1, A_2, \theta_{12}, \varepsilon_{11}, \varepsilon_{12}, \varepsilon_{21}, \varepsilon_{22}, \rho_{11}, \rho_{22} \} \) that define the deformed-shell reference surface in terms of the strains are also known.

Moreover, the imperfect-shell strains must satisfy the compatibility equations presented herein previously.

Details of this approach are presented subsequently for shells that undergo “small strains” and “finite rotations.”
By observing that the strain fields for the shell depend on the strain fields for the idealized reference surface, it follows that the influence of the initial geometric imperfections enters into the analysis through the reference-surface strains.

Consider the reference-surface strains for a geometrically perfect shell undergoing “small strains” and “finite rotations” that are given by

\[
\varepsilon_{11}^o = \Delta_{11} + \Delta_{12} \cos \theta_{12} + \frac{1}{2} \left(\Delta_{11}^2 + 2 \Delta_{11} \Delta_{12} \cos \theta_{12} + \Delta_{12}^2 + \Delta_{13}^2 \right) + \mathcal{O}(\varepsilon^4)
\]

\[
\varepsilon_{22}^o = \Delta_{21} \cos \theta_{12} + \Delta_{22} + \frac{1}{2} \left(\Delta_{21}^2 + 2 \Delta_{21} \Delta_{22} \cos \theta_{12} + \Delta_{22}^2 + \Delta_{23}^2 \right) + \mathcal{O}(\varepsilon^4)
\]

\[
2\varepsilon_{12}^o = \Delta_{12} + \Delta_{21} + \left(\Delta_{11} + \Delta_{22} \right) \cos \theta_{12} + \Delta_{11} \Delta_{21} + \Delta_{12} \Delta_{22} + \Delta_{13} \Delta_{23} + \left(\Delta_{11} \Delta_{22} + \Delta_{12} \Delta_{21} \right) \cos \theta_{12} + \mathcal{O}(\varepsilon^4)
\]
where

\[\Delta_{11} = e_{11}^o \csc^2 \theta_{12} - (e_{12}^o \csc \theta_{12} + \varphi) \cot \theta_{12} \]

\[\Delta_{12} = (e_{12}^o \csc \theta_{12} + \varphi - e_{11}^o \cot \theta_{12}) \csc \theta_{12} \]

\[\Delta_{13} = - (\varphi_1 + \varphi_2 \cos \theta_{12}) \]

\[\Delta_{21} = (e_{12}^o \csc \theta_{12} - \varphi - e_{22}^o \cot \theta_{12}) \csc \theta_{12} \]

\[\Delta_{22} = e_{22}^o \csc \theta_{12}^2 - (e_{12}^o \csc \theta_{12} - \varphi) \cot \theta_{12} \]

\[\Delta_{23} = - (\varphi_1 \cos \theta_{12} + \varphi_2) \]
These equations show that the reference-surface strains are quadratic in the following terms

\[
\varphi_1 = \frac{u_1}{r_{11}} - \frac{1}{A_1} \frac{\partial w}{\partial \xi_1} \csc^2 \theta_{12} - u_1 \left(\frac{1}{r_{21}} + \frac{\cot \theta_{12}}{r_{22}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_2} + \frac{u_2}{r_{21}} \right) \csc \theta_{12}
\]

\[
\varphi_2 = \frac{u_2}{r_{22}} - \frac{1}{A_2} \frac{\partial w}{\partial \xi_2} \csc^2 \theta_{12} + u_2 \left(\frac{1}{r_{12}} - \frac{\cot \theta_{12}}{r_{11}} \right) \cot \theta_{12} + \left(\frac{\cot \theta_{12} \partial w}{A_1} - \frac{u_1}{r_{12}} \right) \csc \theta_{12}
\]

\[
2\varphi = \frac{1}{A_1} \frac{\partial u_1}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_2}{\partial \xi_2} \cot \theta_{12} + \left(\frac{1}{A_1} \frac{\partial u_2}{\partial \xi_1} - \frac{1}{A_2} \frac{\partial u_1}{\partial \xi_2} \right) \csc \theta_{12} + \frac{u_1}{\rho_{11}} + \frac{u_2}{\rho_{22}}
\]

\[
e_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(u_1 + u_2 \cos \theta_{12} \right) - \frac{u_2 \sin \theta_{12}}{\rho_{11}} + \frac{w}{r_{11}}
\]

\[
e_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(u_2 + u_1 \cos \theta_{12} \right) + \frac{u_1 \sin \theta_{12}}{\rho_{22}} + \frac{w}{r_{22}}
\]
By substituting \(w \to w + w_i \) in the previous equations, it follows that a given equation is converted into itself plus an increment associated with the initial geometric imperfection.

For example substituting \(w \to w + w_i \) into the previous equation for \(\varphi_1 \) produces \(\varphi_1 \) plus the term

\[
\varphi_1 = \frac{\csc \theta_{12} \cot \theta_{12}}{A_2} \frac{\partial w_i}{\partial \xi_2} - \frac{\csc^2 \theta_{12}}{A_1} \frac{\partial w_i}{\partial \xi_1}
\]

This process is indicated by the notation \(\varphi_1 \to \varphi_1 + \varphi_i \).
Similarly, \(\varphi_2 \rightarrow \varphi_2 + \varphi_i \) where

\[
\varphi_i = \frac{\csc \theta_1 \cot \theta_2 \partial w_i}{A_1 \partial \xi_1} - \frac{\csc^2 \theta_2 \partial w_i}{A_2 \partial \xi_2}
\]

In contrast, the rotation \(\varphi \) remains unchanged.

In addition,

\[
e_{11}^o \rightarrow e_{11}^o + \frac{w_i}{r_{11}}
\]

\[
e_{22}^o \rightarrow e_{22}^o + \frac{w_i}{r_{22}}
\]

and

\[
e_{12}^o \rightarrow e_{12}^o + \frac{w_i \sin \theta_{12}}{2} \left[\left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cot \theta_{12} + \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \right]
\]
Moreover, by using the identity
\[
\frac{1}{r_{12}} + \frac{1}{r_{21}} = \cot \theta_{12} \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right),
\]

it follows that

\[
\begin{align*}
\Delta_{11} &\rightarrow \Delta_{11} + w_i \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right), \\
\Delta_{12} &\rightarrow \Delta_{12} - \frac{w_i \csc \theta_{12}}{r_{12}}, \\
\Delta_{13} &\rightarrow \Delta_{13} + \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1}, \\
\Delta_{21} &\rightarrow \Delta_{21} + \frac{w_i \csc \theta_{12}}{r_{21}}, \\
\Delta_{22} &\rightarrow \Delta_{22} + w_i \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right), \\
\Delta_{23} &\rightarrow \Delta_{23} + \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2}.
\end{align*}
\]

Substituting these expressions into the reference-surface strain
\[
\varepsilon_{11}^o = \Delta_{11} + \Delta_{12} \cos \theta_{12} + \frac{1}{2} \left(\Delta_{11}^2 + 2 \Delta_{11} \Delta_{12} \cos \theta_{12} + \Delta_{12}^2 \right) + O(\varepsilon^4)
\]
gives
When the shell is not subjected to loads \((u_1 = u_2 = w = 0)\), this expression reduces to

\[
\varepsilon_{11}^o \rightarrow \varepsilon_{11}^o + \frac{w_i}{r_{11}} + \left(\Delta_{11} + \Delta_{12} \cos \theta_{12} \right) \frac{w_i}{r_{11}} - \Delta_{12} \left(\frac{w_i \sin \theta_{12}}{r_{12}} \right) + \Delta_{13} \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \\
+ \frac{1}{2} \left[\left(\frac{w_i}{r_{11}} \right)^2 + \left(\frac{w_i}{r_{12}} \right)^2 + \left(\frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \right)^2 \right] + \mathcal{O}(\varepsilon^4)
\]

For the shell to be strain free in the unloaded state, these terms must be subtracted from the strain expression given above.
This process yields the strain

\[
\varepsilon_{11}^o = \left(\Delta_{11} + \Delta_{12} \cos \theta_{12} \right) \left(1 + \frac{w_i}{r_{11}} \right) - \Delta_{12} \left(\frac{w_i \sin \theta_{12}}{r_{12}} \right) + \Delta_{13} \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} + \frac{1}{2} \left(\Delta_{11}^2 + 2 \Delta_{11} \Delta_{12} \cos \theta_{12} + \Delta_{12}^2 + \Delta_{13}^2 \right) + \mathcal{O}(\varepsilon^4)
\]

which is the same as

\[
\varepsilon_{11}^o = e_{11}^o \left(1 + \frac{w_i}{r_{11}} - \cot \theta_{12} \frac{w_i}{r_{12}} \right) - \left(e_{12}^o \csc \theta_{12} + \varphi \right) \left(e_{11}^o \cot \theta_{12} + \frac{w_i}{r_{12}} \right) - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} + \frac{1}{2} \left(e_{12}^o \csc \theta_{12} \right)^2 + \frac{1}{2} \left(e_{12}^o \csc \theta_{12} + \varphi \right)^2 + \frac{1}{2} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \mathcal{O}(\varepsilon^4)
\]
To simplify the presentation and enhance clarity, let the reference-surface strains of a geometrically perfect shell be denoted by

\[
\tilde{\varepsilon}_{11}^o = e_{11}^o - \left(e_{12}^o \csc \theta_{12} + \varphi \right) e_{11}^o \cot \theta_{12} + \frac{1}{2} \left(e_{11}^o \csc \theta_{12} \right)^2 + \frac{1}{2} \left(e_{12}^o \csc \theta_{12} + \varphi \right)^2 + \frac{1}{2} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \mathcal{O}(\varepsilon^4)
\]

\[
\tilde{\varepsilon}_{22}^o = e_{22}^o - \left(e_{12}^o \csc \theta_{12} + \varphi \right) e_{22}^o \cot \theta_{12} + \frac{1}{2} \left(e_{22}^o \csc \theta_{12} \right)^2 + \frac{1}{2} \left(e_{12}^o \csc \theta_{12} - \varphi \right)^2 + \frac{1}{2} \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right)^2 + \mathcal{O}(\varepsilon^4)
\]

\[
2\tilde{\varepsilon}_{12}^o = 2e_{12}^o + \left[e_{11}^o \left(e_{12}^o \csc \theta_{12} - \varphi \right) + e_{22}^o \left(e_{12}^o \csc \theta_{12} + \varphi \right) \right] \csc \theta_{12}
\]

\[- \left[\left(e_{12}^o + \varphi \sin \theta_{12} \right) \left(e_{12}^o - \varphi \sin \theta_{12} \right) + e_{11}^o e_{22}^o \right] \cot \theta_{12} \csc \theta_{12}
\]

\[
+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) + \mathcal{O}(\varepsilon^4)
\]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

Then, \(\varepsilon_{11}^o \) for the corresponding imperfect shell is given by

\[
\varepsilon_{11}^o = \tilde{\varepsilon}_{11}^o + \epsilon_{11}^o, \text{ where }
\]

\[
\tilde{\varepsilon}_{11}^o = e_{11}^o \left(\frac{w_i}{r_{11}} - \cot \theta_{12} \frac{w_i}{r_{12}} \right) - \left(e_{12}^o \csc \theta_{12} + \phi \right) \frac{w_i}{r_{12}} - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1}
\]

Likewise, the other two strains are given by

\[
\varepsilon_{22}^o = \tilde{\varepsilon}_{22}^o + \epsilon_{22}^o \quad \text{ and } \quad 2\varepsilon_{12}^o = 2\tilde{\varepsilon}_{12}^o + 2\epsilon_{12}^o, \text{ where }
\]

\[
\tilde{\varepsilon}_{22}^o = e_{22}^o \left(\frac{w_i}{r_{22}} - \cot \theta_{12} \frac{w_i}{r_{21}} \right) + \left(e_{12}^o \csc \theta_{12} - \phi \right) \frac{w_i}{r_{21}} - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2}
\]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[2\bar{\epsilon}^o_{12} = \left(e^o_{12} + \varphi \sin\theta_{12} \right) \left(\frac{w_i}{r_{22}} - \frac{w_i \cot\theta_{12}}{r_{21}} \right) + \left(e^o_{12} - \varphi \sin\theta_{12} \right) \left(\frac{w_i}{r_{11}} + \frac{w_i \cot\theta_{12}}{r_{12}} \right) \]

\[+ \left(e^o_{11} \frac{w_i}{r_{21}} - e^o_{22} \frac{w_i}{r_{12}} \right) \csc\theta_{12} - \left(\varphi_1 + \varphi_2 \cos\theta_{12} \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \left(\varphi_1 \cos\theta_{12} + \varphi_2 \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \]
Now, consider the previously derived expressions for the changes in reference-surface curvatures and torsion, for a geometrically perfect shell, given by

\[
\begin{align*}
K_{11}^o &= \frac{1}{\tilde{r}_{11}} - \frac{1 + 3\varepsilon_{11}^o + \varepsilon_{22}^o}{r_{11}} + O(\varepsilon^4) \\
K_{22}^o &= \frac{1}{\tilde{r}_{22}} - \frac{1 + \varepsilon_{11}^o + 3\varepsilon_{22}^o}{r_{22}} + O(\varepsilon^4) \\
2K_{12}^o &= -\left[\frac{1}{\tilde{r}_{12}} - \frac{1}{\tilde{r}_{21}} - \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] + \frac{2}{r_{12}} \left(2\varepsilon_{11}^o + \varepsilon_{22}^o \right) - \frac{2}{r_{21}} \left(\varepsilon_{11}^o + 2\varepsilon_{22}^o \right) + O(\varepsilon^4)
\end{align*}
\]

where

\[
\frac{1}{\tilde{r}_{11}} = \left(1 + e_{11}^o \right) m_{11}^{(1)} + \left(\cos\theta_{12} + e_{12}^o + \varphi \sin\theta_{12} \right) m_{12}^{(2)} \left(\varepsilon_{11}^o + 2\varepsilon_{22}^o \right) + O(\varepsilon^4)
\]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[
\frac{1}{\tilde{r}_{22}} = (1 + \Delta_{22}) \left[m_{1}^{(1)} \begin{pmatrix} \cos \theta_{12} + m_{2}^{(2)} \end{pmatrix}^{(2)} \right] \\
+ \Delta_{21} \left[m_{1}^{(1)} \begin{pmatrix} \cos \theta_{12} \end{pmatrix}^{(2)} + m_{2}^{(2)} \right] + \Delta_{23} \left[m_{3}^{(3)} \begin{pmatrix} \cos \theta_{12} \end{pmatrix}^{(2)} \right]
\]

\[
\frac{1}{\tilde{r}_{12}} = \left[m_{2}\Delta_{13} - m_{3}\Delta_{12} \right] m_{1}^{(1)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(1)} + m_{3}^{(3)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(3)} \\
+ m_{1}\Delta_{12} - m_{2}\left(1 + \Delta_{11}\right) m_{1}^{(1)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(1)} \\
+ m_{3}\Delta_{23} - m_{2}\Delta_{21} m_{2}^{(3)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(3)}
\]

\[
\frac{1}{\tilde{r}_{21}} = \left[m_{3}\left(1 + \Delta_{22}\right) - m_{2}\Delta_{23} \right] m_{1}^{(1)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(2)} + m_{2}\Delta_{21} - m_{1}\left(1 + \Delta_{22}\right) m_{2}^{(3)} \begin{pmatrix} \sin \theta_{12} \end{pmatrix}^{(3)}
\]

with
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[m_1 = \varphi_1 - (e_{12}^o \csc \theta_{12} + \varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12}) \]
\[+ e_{22}^o \csc \theta_{12} (\varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12}) \]

\[m_2 = \varphi_2 - (e_{12}^o \csc \theta_{12} - \varphi_1 \csc \theta_{12} + \varphi_2 \cot \theta_{12}) \]
\[+ e_{11}^o \csc \theta_{12} (\varphi_1 \cot \theta_{12} + \varphi_2 \csc \theta_{12}) \]

\[m_3 = 1 + \varphi^2 + (e_{11}^o + e_{22}^o + e_{11}^o e_{22}^o - (e_{12}^o)^2) \csc^2 \theta_{12} \]
\[- 2e_{12}^o \cot \theta_{12} \csc \theta_{12} \]

\[m^{(1)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial m_1}{\partial \xi_1} - \frac{m_2 \csc \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} (m_1 \cos \theta_{12} + m_2) + m_3 \left(\frac{1}{r_{11}} + \frac{\cot \theta_{12}}{r_{12}} \right) \]

\[m^{(2)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{\csc \theta_{12}}{\rho_{11}} (m_1 + m_2 \cos \theta_{12}) + \frac{m_2 \cot \theta_{12}}{A_1} \frac{\partial \theta_{12}}{\partial \xi_1} - m_3 \frac{\csc \theta_{12}}{r_{12}} \]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[
\begin{align*}
\mathbf{m}^{(3)} \bigg|^{(1)} &= \frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - m_1 \frac{r_{11}}{r_{12}} + m_2 \left(\frac{\sin \theta_{12}}{r_{12}} - \frac{\cos \theta_{12}}{r_{11}} \right) \\
\mathbf{m}^{(1)} \bigg|^{(2)} &= \frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1 \cot \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} - \csc \theta_{12} \left(m_1 \cos \theta_{12} + m_2 \right) + m_3 \frac{\csc \theta_{12}}{r_{21}} \\
\mathbf{m}^{(2)} \bigg|^{(2)} &= \frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} - \frac{m_1 \csc \theta_{12}}{A_2} \frac{\partial \theta_{12}}{\partial \xi_2} + \csc \theta_{12} \left(m_1 + m_2 \cos \theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{\cot \theta_{12}}{r_{21}} \right) \\
\mathbf{m}^{(3)} \bigg|^{(2)} &= \frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - m_1 \left(\frac{\sin \theta_{12}}{r_{21}} + \frac{\cos \theta_{12}}{r_{22}} \right) - \frac{m_2}{r_{22}}
\end{align*}
\]
Next, substituting \(\varphi_1 \rightarrow \varphi_1 + \varphi_i \), \(\varphi_2 \rightarrow \varphi_2 + \varphi_i \), \(e_{11}^o \rightarrow e_{11}^o + \frac{w_i}{r_{11}} \), \(e_{22}^o \rightarrow e_{22}^o + \frac{w_i}{r_{22}} \), and \(e_{12}^o \rightarrow e_{12}^o + \frac{w_i\sin\theta_{12}}{2} \left[\frac{1}{r_{11}} + \frac{1}{r_{22}} \right] \cot\theta_{12} + \left[\frac{1}{r_{21}} - \frac{1}{r_{12}} \right] \right] \) into the components of \(\vec{m} \) and eliminating terms that produce strains in the absence of applied loads yields \(m_1 \rightarrow m_1 + m_1^i \), \(m_2 \rightarrow m_2 + m_2^i \), and \(m_3 \rightarrow m_3 + m_3^i \); where

\[
\begin{align*}
m_1^i &= \varphi_1^i + \left(e_{12}^o \csc\theta_{12} + \varphi \right) \csc\theta_{12} \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - e_{22}^o \csc^2\theta_{12} \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \\
&\quad + \left(\frac{w_i}{r_{22}} - \frac{w_i\cot\theta_{12}}{r_{21}} \right) \varphi_1 - \frac{w_i\csc\theta_{12}}{r_{21}} \varphi_2
\end{align*}
\]
In addition, \(m^i \) is given by:

\[
\begin{align*}
 m^i_2 &= \varphi^i_2 + \left(e_{12}^o \csc \theta_{12} - \varphi \right) \csc \theta_{12} \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} - e_{11}^o \csc^2 \theta_{12} \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} \\
 & \quad + \frac{w_i \csc \theta_{12}}{r_{12}} \varphi_1 + \left(\frac{w_i}{r_{11}} + \frac{w_i \cot \theta_{12}}{r_{12}} \right) \varphi_2 \\
 m^i_3 &= \left(e_{22}^o \csc \theta_{12} - e_{12}^o \cot \theta_{12} \right) \frac{w_i}{r_{11}} \csc \theta_{12} + \left(e_{11}^o \csc \theta_{12} - e_{12}^o \cot \theta_{12} \right) \frac{w_i}{r_{22}} \csc \theta_{12} \\
 & \quad - \left(\frac{w_i}{r_{21}} - \frac{w_i}{r_{12}} \right) e_{12}^o \csc \theta_{12}
\end{align*}
\]

where \(\alpha \in \{1, 2\} \), and for \(k \in \{1, 2, 3\} \),

\[
\left. m^{(k)} \right|_\alpha \rightarrow m^{(k)} \left|_\alpha \right. + m^i_1 \left|_\alpha \right. + m^i_2 \left|_\alpha \right. \quad \text{for} \quad k \in \{1, 2, 3\}
\]

\[
\left. m^i \right|_1^{(1)} = \frac{1}{A_1} \frac{\partial m^i_1}{\partial \xi_1} - \frac{m^i_2 \csc \theta_{12} \partial \theta_{12}}{A_1} \frac{\partial \xi_1}{\partial \xi_1} - \frac{\csc \theta_{12}}{\rho_{11}} \left(m^i_1 \cos \theta_{12} + m^i_2 \right) + m^i_3 \left(\frac{1}{r_{11} + \frac{\cot \theta_{12}}{r_{12}} \right)
\]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[m_i^{(2)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial m_2}{\partial \xi_1} + \frac{csc\theta_{12}}{\rho_{11}} \left(m_1 + m_2 csc\theta_{12} \right) + \frac{m_2 cot\theta_{12} \partial \theta_{12}}{A_1} - m_3 \frac{csc\theta_{12}}{r_{12}} \]

\[m_i^{(3)} \bigg|_{(1)} = \frac{1}{A_1} \frac{\partial m_3}{\partial \xi_1} - m_1 \frac{\sin\theta_{12}}{r_{12}} + m_2 \left(\frac{\sin\theta_{12}}{r_{12}} - \frac{\cos\theta_{12}}{r_{11}} \right) \]

\[m_i^{(1)} \bigg|_{(2)} = \frac{1}{A_2} \frac{\partial m_1}{\partial \xi_2} + \frac{m_1 cot\theta_{12} \partial \theta_{12}}{A_2} - \frac{csc\theta_{12}}{\rho_{22}} \left(m_1 cos\theta_{12} + m_2 \right) + m_3 \frac{csc\theta_{12}}{r_{21}} \]

\[m_i^{(2)} \bigg|_{(2)} = \frac{1}{A_2} \frac{\partial m_2}{\partial \xi_2} - \frac{m_1 csc\theta_{12} \partial \theta_{12}}{A_2} + \frac{csc\theta_{12}}{\rho_{22}} \left(m_1 + m_2 cos\theta_{12} \right) + m_3 \left(\frac{1}{r_{22}} - \frac{cot\theta_{12}}{r_{21}} \right) \]

\[m_i^{(3)} \bigg|_{(2)} = \frac{1}{A_2} \frac{\partial m_3}{\partial \xi_2} - m_1 \left(\frac{\sin\theta_{12}}{r_{21}} + \frac{\cos\theta_{12}}{r_{22}} \right) - \frac{m_2}{r_{22}} \]
Substituting these results, and the corresponding previously obtained results, into the expression for $\bar{\varepsilon}_{\alpha\beta}^{-1}$ and eliminating terms that produce strains in the absence of applied loads, yields

$$
\frac{1}{\bar{\varepsilon}_{\alpha\beta}} \rightarrow \frac{1}{\bar{\varepsilon}_{\alpha\beta}} + \frac{1}{\bar{\varepsilon}_{\alpha\beta}}
$$

The expressions for $\frac{1}{\bar{\varepsilon}_{\alpha\beta}}$ are very complicated nonlinear functions; for example,

$$
\frac{1}{\bar{\varepsilon}_{11}} = e_{11}^{(1)} m_{i}^{(1)} + \left(e_{12}^{o} + \varphi \sin\theta_{12} \right) m_{i}^{(2)} - \left(\varphi_{1} + \varphi_{2} \cos\theta_{12} \right) m_{i}^{(3)} + \left(\frac{w_{i}}{r_{11}} \right) m_{i}^{(4)}
$$

$$
+ \frac{w_{i} \sin\theta_{12}}{2} \left[\left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cot\theta_{12} + \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \right] m_{i}^{(2)} + \frac{1}{A_{1}} \frac{\partial w_{i}}{\partial \xi_{1}} m_{i}^{(3)}
$$
The changes in reference-surface curvatures and torsions are expressed as

\[\kappa^\circ_{\alpha\beta} = \overline{\kappa}^\circ_{\alpha\beta} + \overline{\kappa}^\circ_{\alpha\beta}, \]

where the single and double overbars denote the quantity for the geometrically perfect and imperfect shells, respectively.

In particular,

\[\overline{\kappa}^\circ_{11} = \frac{1}{\tilde{r}_{11}} - \frac{1 + 3\tilde{\varepsilon}_{11}^\circ + \tilde{\varepsilon}_{22}^\circ}{r_{11}} + \mathcal{O}(\varepsilon^4) \]

\[\overline{\kappa}^\circ_{22} = \frac{1}{\tilde{r}_{22}} - \frac{1 + \tilde{\varepsilon}_{11}^\circ + 3\tilde{\varepsilon}_{22}^\circ}{r_{22}} + \mathcal{O}(\varepsilon^4) \]

\[2\overline{\kappa}^\circ_{12} = -\left[\frac{1}{\tilde{r}_{12}} - \frac{1}{\tilde{r}_{21}} - \left(\frac{1}{r_{12}} - \frac{1}{r_{21}} \right) \right] + \frac{2}{r_{12}} \left(2\tilde{\varepsilon}_{11}^\circ + \tilde{\varepsilon}_{22}^\circ \right) - \frac{2}{r_{21}} \left(\tilde{\varepsilon}_{11}^\circ + 2\tilde{\varepsilon}_{22}^\circ \right) + \mathcal{O}(\varepsilon^4) \]

for the geometrically perfect shell.
Moreover, the contributions of the initial geometric imperfection to the changes in curvatures and torsions are given by

\[
\bar{K}_1 = \frac{1}{\bar{\bar{\varepsilon}}_{11}} - \frac{w_i}{r_{11}} \left(\frac{3}{r_{11}} + \frac{1}{r_{22}} \right)
\]

\[
\bar{K}_2 = \frac{1}{\bar{\bar{\varepsilon}}_{22}} - \frac{w_i}{r_{22}} \left(\frac{1}{r_{11}} + \frac{3}{r_{22}} \right)
\]

\[
2\bar{K}_3 = -\frac{1}{\bar{\bar{\varepsilon}}_{12}} + \frac{1}{\bar{\bar{\varepsilon}}_{21}} + \frac{2w_i}{r_{12}} \left(\frac{2}{r_{11}} + \frac{1}{r_{22}} \right) - \frac{2w_i}{r_{21}} \left(\frac{1}{r_{11}} + \frac{2}{r_{22}} \right)
\]

Inspection of these equations for the general case of "small strains" and "finite rotations" reveals that modelling the effects of initial geometric imperfections is a difficult process.
The displacement fields for points of the shell are given by

\[\tilde{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3 \]

with

\[U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]

\[U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}} \]

and

\[U_3 = U_3^0 \] ; and where

\[\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \]

\[\mu_{12} = -\frac{\xi_3 \csc \theta_{12}}{r_{12}} \frac{1}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}} \]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[
\mu_{21} = \frac{\xi_3 \csc \theta_{12}}{r_{21}} \sqrt{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2
\]

\[
\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}} + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2
\]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONTINUED

\[U_1^0 = u_1 + \xi_3 \left(m_1 + m_1^i \right) \left(1 + 2\varepsilon_1^{\circ}\cot\theta_{12}\csc\theta_{12} - \left(\varepsilon_{11}^{\circ} + \varepsilon_{22}^{\circ} \right)\csc^2\theta_{12} + O\left(\varepsilon^4 \right) \right) \]

\[+ \left(1 + \Delta_{11} + \frac{w_i}{r_{11}} + \frac{w_i\cot\theta_{12}}{r_{12}} \right) \left(F_1(\xi_3)\gamma_1^{\circ} + O\left(\varepsilon^4 \right) \right) \]

\[+ \left[\Delta_{21} + \frac{w_i\csc\theta_{12}}{r_{21}} \right] \left(F_2(\xi_3)\gamma_2^{\circ} + O\left(\varepsilon^4 \right) \right) \]

\[U_2^0 = u_2 + \xi_3 \left(m_2 + m_2^i \right) \left(1 + 2\varepsilon_1^{\circ}\cot\theta_{12}\csc\theta_{12} - \left(\varepsilon_{11}^{\circ} + \varepsilon_{22}^{\circ} \right)\csc^2\theta_{12} + O\left(\varepsilon^4 \right) \right) \]

\[+ \left[\Delta_{12} - \frac{w_i\csc\theta_{12}}{r_{12}} \right] \left(F_1(\xi_3)\gamma_1^{\circ} + O\left(\varepsilon^4 \right) \right) \]

\[+ \left(1 + \Delta_{22} + \frac{w_i}{r_{22}} - \frac{w_i\cot\theta_{12}}{r_{21}} \right) \left(F_2(\xi_3)\gamma_2^{\circ} + O\left(\varepsilon^4 \right) \right) \]
STRAINS FOR SHELLS WITH INITIAL GEOMETRIC IMPERFECTIONS - CONCLUDED

\[
U_3^0 = w + w_i + \xi_3 \left[\left(m_3 + m^i_3 \right) \left(1 + 2 \varepsilon_{12}^o \cot \theta_{12} \csc \theta_{12} - \left(\varepsilon_{11}^o + \varepsilon_{22}^o \right) \csc^2 \theta_{12} + O(\varepsilon^4) \right) - 1 \right] \\
+ \left(\Delta_{13} + \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \right) \left(F_1(\xi_3) \gamma_1^o + O(\varepsilon^4) \right) \\
+ \left(\Delta_{23} + \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} \right) \left(F_2(\xi_3) \gamma_2^o + O(\varepsilon^4) \right)
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS

- The previous section of the present study shows that including the effects of “small” initial geometric imperfections in the equations for shell undergoing “small” strains and “finite” rotations is a rather difficult process.

- Fortunately, many engineering problems of practical importance undergo “small” strain and “moderate” rotations.

- For this class of deformations, including the effects of “small” initial geometric imperfections is much simpler.

- Subsequently, the strains for imperfect shells are derived by using a “small” strain and “moderate” rotation theory, like that of Pietraszkiewicz, that includes nonlinear bending action.
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

- For a “small” strain and “moderate” rotation theory like that of Pietraszkiewicz (1980), that includes nonlinear bending action, the magnitudes of the linear deformation parameters are restricted by

\[
| \varphi_{\alpha} | \leq O(\theta) \text{, } | \varphi | \leq O(\theta) \text{, and } | \varepsilon_{p_{\gamma}}^{o} | \leq O(\theta^2) \; ; \text{ where } 0 < \theta < 1
\]

- For this case, the reference-surface Green-Lagrange strains are given in terms of the linear deformation parameters by

\[
\varepsilon_{11}^{o} = \varepsilon_{11}^{o} + \frac{1}{2} \left(\varphi_{1} + \varphi_{2} \cos \theta_{12} \right)^2 + \frac{1}{2} \varphi^2 + \varphi \left(e_{12}^{o} \csc \theta_{12} - e_{11}^{o} \cot \theta_{12} \right) + O \left(\theta^4, \varepsilon^4 \right)
\]

\[
\varepsilon_{22}^{o} = \varepsilon_{22}^{o} + \frac{1}{2} \left(\varphi_{2} + \varphi_{1} \cos \theta_{12} \right)^2 + \frac{1}{2} \varphi^2 + \varphi \left(e_{22}^{o} \cot \theta_{12} - e_{12}^{o} \csc \theta_{12} \right) + O \left(\theta^4, \varepsilon^4 \right)
\]

\[
2\varepsilon_{12}^{o} = 2\varepsilon_{12}^{o} + \left(\varphi_{1} + \varphi_{2} \cos \theta_{12} \right) \left(\varphi_{2} + \varphi_{1} \cos \theta_{12} \right)
- \varphi^2 \cos \theta_{12} + \varphi \left(e_{22}^{o} - e_{11}^{o} \right) \csc \theta_{12} + O \left(\theta^4, \varepsilon^4 \right)
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

- In these strain expressions, $O(\theta^4, \varepsilon^4)$ indicates that terms fourth order in the rotations and fourth order in the strains are neglected.

- The changes in reference-surface curvatures, $\kappa_{11}(\xi_1, \xi_2, \tau)$ and $\kappa_{22}(\xi_1, \xi_2, \tau)$, and the change in reference-surface torsion, $\kappa_{12}(\xi_1, \xi_2, \tau)$, for a geometrically perfect shell that are caused by deformation are given by

$$
\kappa_{11}^o = \chi_{11}^o + \frac{1}{r_{12}} \left[e_{11}^o \cot\theta_{12} - e_{12}^o \csc\theta_{12} - \left(\varphi_1 \varphi_2 + \varphi_2^2 \cos\theta_{12} \right) \sin\theta_{12} \right] \\
- \frac{1}{2r_{11}} \left(2e_{11}^o + \varphi_1^2 + \varphi_2^2 + 2\varphi_1^2 + 2\varphi_1 \varphi_2 \cos\theta_{12} \right) - \frac{\varphi_2 \sin\theta_{12}}{A_1} \frac{\partial\varphi}{\partial\xi_1} + O(\theta^3, \varepsilon^4)
$$
"SMALL" STRAINS, "MODERATE" ROTATIONS, AND "SMALL" INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

\[\kappa_{22}^o = \chi_{22}^o + \frac{1}{r_{21}} \left[e_{12}^o \csc \theta_{12} - e_{22}^o \cot \theta_{12} + \left(\varphi_1 \varphi_2 + \varphi_1^2 \cos \theta_{12} \right) \sin \theta_{12} \right] \]

\[- \frac{1}{2r_{22}} \left[2e_{22}^o + \varphi_1^2 + \varphi_2^2 + 2\varphi_1^2 + 2\varphi_1 \varphi_2 \cos \theta_{12} \right] + \frac{\varphi_1 \sin \theta_{12}}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]

\[2\kappa_{12}^o = 2\chi_{12}^o \csc \theta_{12} - \left(\chi_{11}^o + \chi_{22}^o \right) \cot \theta_{12} + \frac{e_{11}^o}{r_{12}} - \frac{e_{22}^o}{r_{21}} \]

\[- \frac{e_{12}^o \csc \theta_{12} - e_{11}^o \cot \theta_{12}}{r_{11}} + \frac{e_{22}^o \cot \theta_{12} - e_{12}^o \csc \theta_{12}}{r_{22}} \]

\[+ \frac{1}{r_{12}} \left[\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right)^2 + \varphi^2 \right] - \frac{1}{r_{21}} \left[\left(\varphi_2 + \varphi_1 \cos \theta_{12} \right)^2 + \varphi^2 \right] \]

\[+ \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} - \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} + \mathcal{O} \left(\theta^3, \varepsilon^4 \right) \]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

where the additional linear deformation parameters associated with bending and twisting of the reference surface are given by

\[
\chi_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}}
\]

\[
\chi_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} \left(\varphi_2 + \varphi_1 \cos \theta_{12} \right) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}}
\]

\[
2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12}
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
CONTINUED

Making the substitutions \(\varphi_1 \rightarrow \varphi_1 + \varphi_1^l\), \(\varphi_2 \rightarrow \varphi_2 + \varphi_2^l\), \(e_{11}^o \rightarrow e_{11}^o + \frac{w_i}{r_{11}}\),

\[
e_{22}^o \rightarrow e_{22}^o + \frac{w_i}{r_{22}}, \quad \text{and} \quad e_{12}^o \rightarrow e_{12}^o + \frac{w_i \sin \theta_{12}}{2} \left[\left(\frac{1}{r_{11}} + \frac{1}{r_{22}} \right) \cot \theta_{12} + \left(\frac{1}{r_{21}} - \frac{1}{r_{12}} \right) \right]
\]

and then enforcing the requirement that the strains vanish in the unloaded state yields \(\varepsilon_{\alpha\beta}^o = \varepsilon_{\alpha\beta}^o + \overline{\varepsilon}_{\alpha\beta}^o\) and \(\kappa_{\alpha\beta}^o = \kappa_{\alpha\beta}^o + \overline{\kappa}_{\alpha\beta}^o\), where the single and double overbars denote the quantity for the geometrically perfect and imperfect shells, respectively.

Specifically, the contributions of the initial geometric imperfection to the reference-surface strain measures are given by

\[
\overline{\varepsilon}_{11}^o = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} - \varphi \frac{w_i}{r_{11}}
\]
\[
\overline{\varepsilon}_{22}^o = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \varphi \frac{w_i}{r_{21}}
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

\[2 \bar{\varepsilon}^{\circ}_{12} = \varphi \csc \theta_{12} \left(\frac{w_i}{r_{22}} - \frac{w_i}{r_{11}} \right) - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \]

\[\bar{\varepsilon}^{\circ}_{11} = - \left[\frac{\varphi_1 + \varphi_2 \cos \theta_{12}}{r_{12}} + \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} \right] \left(\frac{\cot \theta_{12}}{A_1} \frac{\partial w_i}{\partial \xi_1} - \frac{\csc \theta_{12}}{A_2} \frac{\partial w_i}{\partial \xi_2} \right) + \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \frac{\varphi_2 \sin \theta_{12}}{r_{12}} + \frac{1}{r_{11}} \left(\frac{\varphi_1 \partial w_i}{A_1 \partial \xi_1} + \frac{\varphi_2 \partial w_i}{A_2 \partial \xi_2} \right) \]

\[\bar{\varepsilon}^{\circ}_{22} = - \left[\frac{\varphi_2 + \varphi_1 \cos \theta_{12}}{r_{21}} + \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} \right] \left(\frac{\csc \theta_{12}}{A_1} \frac{\partial w_i}{\partial \xi_1} - \frac{\cot \theta_{12}}{A_2} \frac{\partial w_i}{\partial \xi_2} \right) - \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} \frac{\varphi_1 \sin \theta_{12}}{r_{21}} + \frac{1}{r_{22}} \left(\frac{\varphi_1 \partial w_i}{A_1 \partial \xi_1} + \frac{\varphi_2 \partial w_i}{A_2 \partial \xi_2} \right) \]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
CONTINUED

\[2\kappa^0_{12} = - \left[2 \frac{\varphi_1 + \varphi_2 \cos \theta_{12}}{r_{12}} + \frac{1}{A_1} \frac{\partial \varphi}{\partial \xi_1} \right] \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} + \left[2 \frac{\varphi_2 + \varphi_1 \cos \theta_{12}}{r_{21}} + \frac{1}{A_2} \frac{\partial \varphi}{\partial \xi_2} \right] \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2}\]

- The displacement fields for points of the shell are given by

\[\vec{U} = U_1 \hat{g}_1 + U_2 \hat{g}_2 + U_3 \hat{g}_3\]

with

\[U_1 = \frac{\mu_{22} U_1^0 - \mu_{21} U_2^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}}, \quad U_2 = \frac{\mu_{11} U_2^0 - \mu_{12} U_1^0}{\mu_{11} \mu_{22} - \mu_{12} \mu_{21}},\]

and \[U_3 = U_3^0;\] and where
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
CONTINUED

\[
\mu_{11} = \frac{1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}}
\]

\[
\mu_{12} = -\frac{\xi_3 \csc \theta_{12}}{r_{12}} \sqrt{\left(1 + \frac{\xi_3}{r_{11}} + \frac{\xi_3 \cot \theta_{12}}{r_{12}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{12}}\right)^2}
\]

\[
\mu_{21} = \frac{\xi_3 \csc \theta_{12}}{r_{21}} \sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

\[\mu_{22} = \frac{1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}}{\sqrt{\left(1 + \frac{\xi_3}{r_{22}} - \frac{\xi_3 \cot \theta_{12}}{r_{21}}\right)^2 + \left(\frac{\xi_3 \csc \theta_{12}}{r_{21}}\right)^2}}. \]

\[U_1^0 = u_1 + \xi_3 \left[\varphi_1 + \varphi_1^i - \varphi \left(\varphi_2 + \varphi_1 \cos \theta_{12} - \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} \right) \csc \theta_{12} \right] + F_1(\xi_3)\gamma_1^0 + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]

\[U_2^0 = u_2 + \xi_3 \left[\varphi_2 + \varphi_2^i + \varphi \left(\varphi_1 + \varphi_2 \cos \theta_{12} - \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} \right) \csc \theta_{12} \right] + F_2(\xi_3)\gamma_2^0 + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]

\[U_3^0 = w + w_i \]

\[- \xi_3 \left[\frac{1}{2} (\varphi_1 + \varphi_1^i)^2 + \frac{1}{2} (\varphi_2 + \varphi_2^i)^2 + (\varphi_1 + \varphi_1^i)(\varphi_2 + \varphi_2^i) \cos \theta_{12} \right] + O(\theta \varepsilon^2, \theta^3, \varepsilon^4) \]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS
CONTINUED

- Limitation estimates on the magnitude of the initial geometric imperfections are obtained by recalling that “small” strains are characterized by $|\mathbf{\varepsilon}_{\beta r}^o| \leq O(\varepsilon^2)$.

- As a result, it follows that $|\overline{\mathbf{\varepsilon}}_{\beta r}^o| \leq O(\varepsilon^2)$.

- Enforcing $|\varphi_\alpha| \leq O(\theta)$, $|\varphi| \leq O(\theta)$, and $|\overline{\mathbf{\varepsilon}}_{\beta r}^o| \leq O(\theta^2)$ in the previous equations for $\overline{\mathbf{\varepsilon}}_{\beta r}^o$ yields the conditions

$$\frac{1}{A_{(\alpha)}} \frac{\partial w_i}{\partial \xi_\alpha} \leq O(\theta) \quad \text{and} \quad \frac{w_i}{r_{\alpha\beta}} \leq O(\theta)$$

- In addition, it follows that $|\overline{\mathbf{K}}_{\beta r}^o| \leq O(\theta^2)$.
For the “small” strain and “moderate” rotation theory of Pietraszkiewicz, that neglects nonlinear bending action,

\[
\bar{\varepsilon}_{11}^o = - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1} - \varphi \frac{w_i}{r_{12}}
\]

\[
\bar{\varepsilon}_{22}^o = - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \varphi \frac{w_i}{r_{21}}
\]

\[
2\bar{\varepsilon}_{12}^o = \varphi \csc \theta_{12} \left(\frac{w_i}{r_{22}} - \frac{w_i}{r_{11}} \right) - \left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1}
\]

However, because the changes in reference-surface curvatures and torsion are linear, it follows that

\[
\bar{K}_{11}^o = \bar{K}_{22}^o = 2\bar{K}_{12}^o = 0
\]
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS CONTINUED

- For the “small” strain and “moderately small” rotation theory of Sanders, the reference-surface strains for a geometrically perfect shell are given by

\[
\varepsilon_{11}^o = e_{11}^o + \frac{1}{2}(\varphi_1 + \varphi_2 \cos \theta_{12})^2 + \frac{1}{2}\varphi^2 \\
\varepsilon_{22}^o = e_{22}^o + \frac{1}{2}(\varphi_2 + \varphi_1 \cos \theta_{12})^2 + \frac{1}{2}\varphi^2 \\
2\varepsilon_{12}^o = 2e_{12}^o + (\varphi_1 + \varphi_2 \cos \theta_{12})(\varphi_2 + \varphi_1 \cos \theta_{12}) + \varphi^2 \cos \theta_{12}
\]

- In addition,

\[
\kappa_{11}^o = \chi_{11}^o = \frac{1}{A_1} \frac{\partial}{\partial \xi_1} (\varphi_1 + \varphi_2 \cos \theta_{12}) - \frac{\varphi_2 \sin \theta_{12}}{\rho_{11}} - \frac{\varphi}{r_{12}}
\]

\[
\kappa_{22}^o = \chi_{22}^o = \frac{1}{A_2} \frac{\partial}{\partial \xi_2} (\varphi_2 + \varphi_1 \cos \theta_{12}) + \frac{\varphi_1 \sin \theta_{12}}{\rho_{22}} - \frac{\varphi}{r_{21}}
\]

and
“SMALL” STRAINS, “MODERATE” ROTATIONS, AND “SMALL” INITIAL GEOMETRIC IMPERFECTIONS

\[2K_{12}^o = 2\chi_{12}^o = \frac{1}{A_2} \frac{\partial \varphi_1}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_2} \frac{\partial \varphi_2}{\partial \xi_2} + \frac{\cos \theta_{12}}{A_1} \frac{\partial \varphi_1}{\partial \xi_1} + \frac{1}{A_1} \frac{\partial \varphi_2}{\partial \xi_1} + \left(\frac{\varphi_1}{\rho_{11}} - \frac{\varphi_2}{\rho_{22}} \right) \sin \theta_{12} - \varphi \left(\frac{1}{r_{11}} - \frac{1}{r_{22}} \right) \csc \theta_{12}\]

- For these equations,

\[\overline{\varepsilon}_{11}^o = -\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1}\]

\[\overline{\varepsilon}_{22}^o = -\left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2}\]

\[2\overline{\varepsilon}_{12}^o = -\left(\varphi_1 + \varphi_2 \cos \theta_{12} \right) \frac{1}{A_2} \frac{\partial w_i}{\partial \xi_2} - \left(\varphi_1 \cos \theta_{12} + \varphi_2 \right) \frac{1}{A_1} \frac{\partial w_i}{\partial \xi_1}\]

- Because the changes in reference-surface curvatures and torsion are linear, it follows that \(\overline{\kappa}_{11}^o = \overline{\kappa}_{22}^o = 2\overline{\kappa}_{12}^o = 0\)
BIBLIOGRAPHY

BIBLIOGRAPHY - CONTINUED

BIBLIOGRAPHY - CONTINUED

BIBLIOGRAPHY - CONCLUDED

An Exposition On The Nonlinear Kinematics Of Shells, Including Transverse Shearing Deformations

Nemeth, Michael P.

NASA Langley Research Center
Hampton, VA 23681-2199

Unclassified - Unlimited
Subject Category 39
Availability: NASA CASI (443) 757-5802

An in-depth exposition on the nonlinear deformations of shells with “small” initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of “small” strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the “small” Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the “small” three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

Buckling; Nonlinear analysis; Shell mechanics; Stability analysis