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Relative motion in the Cartesian or overset framework causes certain spatial nodes
to move in and out of the physical domain as they are dynamically blanked by moving
solid bodies. This poses a problem for the conventional Time-Spectral approach, which
expands the solution at every spatial node into a Fourier series spanning the period of
motion. The proposed extension to the Time-Spectral method treats unblanked nodes
in the conventional manner but expands the solution at dynamically blanked nodes in a
basis of barycentric rational polynomials spanning partitions of contiguously defined tem-
poral intervals. Rational polynomials avoid Runge’s phenomenon on the equidistant time
samples of these sub-periodic intervals. Fourier- and rational polynomial-based di↵erenti-
ation operators are used in tandem to provide a consistent hybrid Time-Spectral overset
scheme capable of handling relative motion. The hybrid scheme is tested with a linear
model problem and implemented within NASA’s OVERFLOW Reynolds-averaged Navier-
Stokes (RANS) solver. The hybrid Time-Spectral solver is then applied to inviscid and
turbulent RANS cases of plunging and pitching airfoils and compared to time-accurate and
experimental data. A limiter was applied in the turbulent case to avoid undershoots in
the undamped turbulent eddy viscosity while maintaining accuracy. The hybrid scheme
matches the performance of the conventional Time-Spectral method and converges to the
time-accurate results with increased temporal resolution.

I. Introduction

Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turboma-
chinery, and flapping wing configurations. Standard practice involves solving the unsteady flow equations

forward in time until the initial transient exits the domain and a statistically stationary flow is achieved.
It is often necessary to simulate through several periods of motion to remove the initial transient, making
unsteady design optimization prohibitively expensive for most realistic problems. An e↵ort to reduce the
computational cost of these calculations led to the development of the Harmonic Balance method [1,2] which
capitalizes on the periodic nature of the solution. This approach exploits the fact that forced temporally
periodic flow, while varying in the time domain, is invariant in the frequency domain. Expanding the tem-
poral variation at each spatial node into a Fourier series transforms the unsteady governing equations into
a coupled set of steady equations in integer harmonics that can be tackled with the acceleration techniques
a↵orded to steady-state flow solvers. Other similar approaches, such as the Nonlinear Frequency Domain
[3, 4, 5], Reduced Frequency [6], and Time-Spectral [7, 8, 9] methods, were developed shortly thereafter. Ad-
ditionally, adjoint-based optimization techniques [10, 11] can be applied to provide the ability to perform
design optimization without resorting to costly unsteady adjoint methods. Frequency-adaptive methods
[12, 13, 14] can o↵er even greater e�ciency by refining the the number of modes resolved at each grid point
to the frequency content in its solution.

⇤Department of Aeronautics & Astronautics, AIAA Student Member. jle↵ell@stanford.edu
†AIAA Member. Scott.M.Murman@nasa.gov
‡AIAA Associate Fellow. Thomas.H.Pulliam@nasa.gov

1 of 25

American Institute of Aeronautics and Astronautics



The Fourier temporal basis functions imply spectral convergence as the number of harmonic modes,
and correspondingly, the number of time samples, N , increases. Some approaches solve the equations in
the frequency domain directly. Others transform the equations back into the time domain, potentially
simplifying the process of augmenting this capability to existing solvers. However, each approach harnesses
the underlying steady solution in the frequency domain. These temporal projection methods will herein be
collectively referred to as Time-Spectral methods.

Time-Spectral methods have demonstrated marked success in reducing the computational costs associated
with simulating periodic forced flows, but have yet to be generally applied to overset or Cartesian solvers for
relative motion with dynamic hole-cutting. Overset and Cartesian grid methodologies are versatile techniques
capable of handling complex geometry configurations with relative motion between components, and are
commonly used for practical engineering applications. The combination of the Time-Spectral approach
with this general capability potentially provides an enabling new design and analysis tool. In an arbitrary
moving-body scenario for these approaches, a Lagrangian body-fixed mesh moves through a fixed Eulerian
mesh. Eulerian mesh points interior to the solid body are removed (cut or blanked), leaving a hole in the
Eulerian mesh. These grid points undergo dynamic blanking and do not have a complete set of time samples,
preventing direct application of the Time-Spectral approach. Murman [6] demonstrated the Time-Spectral
method for a Cartesian solver with rigid domain motion, wherein the hole cutting remained fixed. Similarly,
Custer et al. [15,16] used the NASA overset OVERFLOW solver with static hole-cutting and interpolation.
Both of these e↵orts focused on applying this method to Cartesian and overset meshes with constant blanking.
Recently, Mavriplis et al. [17] demonstrated a qualitative method for applying the Time-Spectral approach
to an unstructured overset solver with relative motion.

The goal of the current work is to develop a robust and consistent method for handling relative motion
with the Time-Spectral approach within an overset or Cartesian mesh framework, while still approaching
the spectral convergence rate of the non-overset scheme. The paper begins in Section II with a brief outline
of the Time-Spectral approach and the issues associated with extending it to overset solvers. Section III
details the proposed method that enables relative-body motion and provides convergence properties of the
new di↵erentiation operator. A linear model problem demonstrates the viability of the approach. Section IV
outlines the implementation of the approach within OVERFLOW. The paper concludes with application of
the Time-Spectral OVERFLOW solver to two-dimensional simulations of both plunging and pitching airfoils
to evaluate the accuracy and convergence properties of the proposed scheme.

II. Application of the Time-Spectral Method within an Overset Framework

The fundamental challenge of providing Time-Spectral capabilities to an overset solver concerns the nodes
that dynamically move in and out of the physical domain due to the relative motion between the surface
geometry and the background Eulerian grid(s). Projection into the frequency domain has infinite support
in time, requiring special treatment for these nodes whose solution is undefined for a subset of the temporal
period. Figure 1 illustrates this issue for a one-dimensional oscillating piston. Fictional solutions in Fig.
1b corresponding to nodes a, b and c in Fig. 1a demonstrate dynamic hole cutting by the motion of the
piston relative to the background Eulerian grid. Node a is never blanked by the piston and therefore its
solution is defined over the entire time history of the period, T . The piston blanks node b briefly and node
c twice. Thus, node b has one sub-periodic time interval associated with it while node c has two - one each
represented by the solid and hashed lines. The shaded regions serve to highlight the time over which each
node lies outside the physical domain with an undefined solution. Special treatment is required for nodes b

and c, while the standard Time-Spectral approach can be applied to node a, resulting in a hybrid scheme.
For a brief synopsis of the standard Time-Spectral approach, consider a time-dependent scalar ODE

@u

@t

+ R(u) = 0. (1)

The continuous solution is expanded in the harmonic basis

u (t) =
N�1X

k=0

û

k

�

k

(t) (2)

from data at equispaced time samples, u

j

= u (t
j

) = u (j�t), where �t = 2⇡

!N

, such that

û = ��1
u (3)
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Figure 1: Figurative piston trajectory and solution histories. (a) The piston “cuts” nodes b and c as
it oscillates over the background grid. (b) Shaded regions represent blanked intervals through which the
solution is undefined for nodes of the corresponding color.

with
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serving as the transformation operator. The di↵erentiation operator is applied in the frequency domain, i.e.
d

dt

û

k

= i!kû

k

, and the result is projected back into the time domain leading to

�D��1
u + R(u) = 0 (5)

where D is the diagonal Fourier di↵erentiation operator, d

jk

= i!k�

jk

. Direct assembly of the transformed
di↵erentiation operator, D = �D��1, is derived in [7, 8]. Iterating Eq. 5 in pseudotime, ⌧ , provides a
steady-state solution procedure to an underlying unsteady, yet periodic, problem.a

d

d⌧

u + Du + R(u) = 0 (6)

The majority of spatial nodes in an overset or Cartesian simulation possess complete time histories and are
thus treated with this standard procedure, but an accurate and robust treatment is still required for the
complement of nodes that undergo dynamic blanking.

One approach is to fill the blanked nodes with solution data via spatial averaging and proceed with the
standard Time-Spectral method (cf. [17]). While attractive for its simplicity, this approach is inconsistent.
Non-physical information provided by an alternative governing equation (spatial smoothing is governed by
Laplace’s equation) is propagated into the physical domain via the infinite support of the Fourier basis. To
demonstrate this inconsistency, see Fig. 2 which shows the solution of the one-dimensional linear advection
equation

@u

@t

+ a

@u

@x

= 0 (7)

given u(0, t) = � sin(!at) for x 2 [0, 1]. The analytic solution is u(x, t) = sin(!(x � at)). A gap is defined
in x to simulate blanking and the solution is linearly interpolated through the gap at every step. The
interpolation error across the spatial gap (Fig. 2a) at one time-sample corrupts the solution throughout the

aAlternatively, the residual operator can also be projected into the frequency domain, and the resulting equations solved
iteratively in the frequency domain [3,6]. This approach takes advantage of the Fast Fourier Transform which is an O (N logN)

operation as opposed to the O
�
N2

�
matrix operation in Eq. 5. However, for the small N typically encountered in practical 3D

Time-Spectral applications (O(10� 100)) the di↵erence is minimal and the time domain formulation allows for straightforward
implementation within a steady-state solver with the addition of the temporal di↵erentiation source term.
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period (Fig. 2b) via the infinite support of the Fourier basis. While the resulting solution may be smooth,
it is inaccurate and dependent upon the arbitrary averaging of the solution through the gap. Consequently,
spatial interpolation inhibits the desired temporal convergence (Fig. 2c). If instead the node located at
x = 0.5 were blanked, the error in the solution would be much lower because the solution at this location
can be more accurately approximated by linear interpolation between its neighbors.
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Figure 2: Spatial smoothing Time-Spectral approach with a blanked node at x = 0.7 (a) The solution at
the blanked node is interpolated from its neighbors. (b) The solution resulting from spatial averaging may
be smooth but is inconsistent, as the arbitrarily filled value at the blanked node corrupts its complete time
history and, by extension, the entire space-time domain. Severity of the corruption may be masked by
fortuitous interpolation but it is highly dependent on the underlying solution and the gap through which it
is filled. (c) Spatial averaging of the blanked point introduces an error that inhibits temporal convergence
as the number of temporal modes, N , is increased.
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III. Hybrid Fourier-Rational Time-Spectral Approach

To develop a consistent scheme without the issues associated with spatial averaging presented in the
previous section, the current approach partitions the time histories for spatial nodes exhibiting dynamic
blanking into intervals of consecutively unblanked time samples. Global temporal support is thus abandoned,
however, this approach is consistent with the physics of disjoint domains separated by an impermeable
boundary. It is important to note that these temporal partitions must still be evaluated on a uniform lattice
to avoid manipulating the spatial operator. Thus the problem is now reduced to finding a robust and e�cient
method for evaluating the temporal derivatives of non-periodic functions on a uniform lattice.

Several approaches to achieve this goal were evaluated. One option is to compute derivatives with
finite di↵erences or a localized di↵erentiable basis such as wavelets. However, compact bases o↵er limited
accuracy [18] and wavelet di↵erentiation requires special treatment at non-periodic interval boundaries [19].
Another option is temporal extrapolation that populates the undefined portion of the period using data
from the physical portion of the time signal. Examples of this approach, such as Fourier continuation, which
extrapolates a non-periodic function into a periodic function on a larger domain [20,21,22], and compressed
sampling, which requires L1 minimization to solve an underdetermined system [23], are both too costly and
lack the requisite robustness for this application.

The current approach projects the solution of the unblanked nodes within a single partition onto a
global basis spanning the same interval. The constraint of evenly-spaced temporal collocation points elimi-
nates traditional optimally-accurate orthogonal polynomials (e.g. Chebyshev) due to Runge’s phenomenon
at the endpoints. A least-squares projection of orthogonal polynomials is more stable, but results in an
overdetermined system whose projection does not interpolate the solution data. Barycentric rational poly-
nomials provide a viable alternative [24] and Bos et al. [26] showed that they o↵er superior interpolation
and di↵erentiation properties on equidistant nodes over conventional orthogonal polynomials. A rational
polynomial-based di↵erentiation operator will therefore be used in this hybrid Time-Spectral approach. An
alternate basis may prove more successful in the future so the current approach will be kept general enough
to use any projection operator, contingent on the availability of its analytic di↵erentiation operator. In the
proposed scheme, solutions across each non-periodic interval are projected onto a basis of rational polynomi-
als and di↵erentiated accordingly. Fully periodic intervals are still projected and di↵erentiated in the Fourier
basis, resulting in a hybrid approach that employs the optimal basis available.

Floater and Hormann [25] introduced a set of barycentric rational polynomials with high rates of ap-
proximation convergence and no poles. Additional e↵orts to explore rational polynomials and their utility
as a pseudospectral basis for spectral collocation methods include but are not limited to [27, 28, 29, 30].
Baltensperger et al. [31] define the rational interpolant, r(x), in barycentric form

r(x) =

NP
k=0

w

k

x�x

k

f

k

NP
k=0

w

k

x�x

k

(8)

and its corresponding di↵erentiation operator, D, such that d

dx
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D
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=
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). The interpolation can be reformulated as a weighted sum of nodal basis functions, �(x),
with coe�cients, f̂ , equal to the function value at each node, f̂

k
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NX
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j

(9)

Barycentric rational polynomials nodally interpolate the solution data resulting in an identity transformation
operator, �

jk

= �

k

(x
j

) = �

jk

, implying discrete orthogonality. It follows that the transformed di↵erentiation
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operator is identical to D: D = �D��1 = D. While similar in form to the Lagrange interpolant, a
key distinction of the barycentric rational polynomials is in how the weights, w

k

, are defined. Lagrange
polynomials are constrained to pass through N + 1 points as a polynomial of order N . In contrast, while
the rational polynomials interpolate the data, they are not constrained to do so as a polynomial of order
N . This relaxation aids in preventing spurious oscillations at the endpoints of equispaced nodes associated
with the traditional Lagrange or Chebyshev polynomial bases while retaining powerful interpolation and
di↵erentiation properties. The weights, w

k

, control the accuracy and stability characteristics of the rational
interpolant. Floater and Hormann [25] derived weights that provide an approximation order of d while
avoiding poles. Weights guaranteeing an absence of poles

w

k

= (�1)k�d

X

i2J

k

i+dY

j=i,j 6=k

1

|x
k

� x

j

| (10)

are defined for N + 1 samples where

I

T

:= {0, 1, ..., N � d} and J

↵

:= {i 2 I

T

: ↵ � d  i  ↵} (11)

for the desired approximation order d. Readers are directed to the derivation in [25] for additional details.
Figure 3 illustrates three basis functions corresponding to the first, second and fourth nodes with approxi-
mation order, d = 3, over 8 sample points (N = 7) with the values highlighted at the nodal points. Note the
interpolation property of the basis, �

k

(x
j

) = �

jk

.
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Figure 3: Barycentric rational polynomial basis functions �0(x), �1(x) and �3(x) corresponding to nodes 0,
1 and 3, respectively, for approximation order, d = 3, and 8 equispaced sample points.

Di↵erentiation performance of the rational polynomial basis is compared to that of third-order finite-
di↵erences, the Fourier di↵erential operator (generally optimal for periodic functions), di↵erentiation using
least-squares orthogonal polynomials on evenly-spaced nodes (modes M  2

p
N) and the Chebyshev di↵er-

ential operator (generally optimal for non-periodic functions) on Chebyshev nodes. An even-odd harmonic
function and Runge’s function (designed to expose numerical instabilities) are di↵erentiated by each of the
aforementioned methods. Convergence of di↵erentiation error, e = k df

dx

� Dfk2, with N is plotted in Fig.
4 for the harmonic function and Fig. 5 for Runge’s function. The approximation order for the rationals is
selected as d = min

�
bN

2 c, d
max

�
with d

max

= 10 for this case, but optimal selection is problem dependent
and an area of continuing research [29,32]. The rational polynomials approach spectral convergence for both
the periodic and non-periodic problems. Fourier di↵erentiation exhibits roundo↵ error for the harmonic
function with increased N and o↵ers poor convergence for Runge’s function.
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Figure 4: Convergence of di↵erentiated harmonic function, f(x) = cos(!x) + sin(!x)
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Figure 5: Convergence of di↵erentiated Runge’s function, f(x) = 1
1+25x

2

To demonstrate the viability of the proposed approach, the same one-dimensional linear advection case
(Eq. 7) shown in Sec. II is used to test the hybrid Time-Spectral strategy. Instead of the spatial interpolation
used previously, the barycentric rational polynomial temporal di↵erentiation operator, D

r

, is used on the
spatial nodes blanked over some duration of the period and the Fourier di↵erentiation operator, D

f

, is used
on nodes with a periodic interval. Information propagates from left to right with wave speed a = 1 and thus
analytic boundary conditions are supplied both at x = 0 and along the right edge of the blanked region. The
domain is discretized with N

x

= 101 points in space and N = 21 time samples. The solution is initialized
uniformly to zero outside the boundary nodes, and third-order finite-di↵erences are used to approximate
spatial derivatives to minimize errors associated with the spatial discretization. The equations are solved
implicitly and converged to machine precision. The space-time solution, visualized in Fig. 6, is compared to
the analytic solution and the solution of the unblanked case.
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Figure 6: Solution for linear advection test problem using the hybrid Fourier-rational polynomial Time-
Spectral approach. The rational polynomial di↵erentiation operator, D

r

, is applied to nodes in the central
region of the domain that undergo blanking and the Fourier di↵erentiation operator, D

f

, is applied elsewhere.

The maximum error between the solution computed with the hybrid scheme and the analytic solution is
7.757 ⇥ 10�3. This value is just slightly larger than the maximum error between the unblanked case using
only the Fourier di↵erentiation operator and the analytic solution, 7.717 ⇥ 10�3. The largest di↵erence
between the two solutions is 5.485 ⇥ 10�3 suggesting that the Fourier-rational hybrid approach essentially
produces the same result as the conventional Time-Spectral method in the active region.
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IV. Implementation of the Hybrid Time-Spectral Approach in OVERFLOW

The Time-Spectral approach requires no modification to the spatial operator, making the scheme straight-
forward to implement and maintain within an existing code. The current work leverages the OVERFLOW
overset flow solver [33], which provides a mature code base for solving the three-dimensional compressible
Reynolds-averaged Navier-Stokes (RANS) equations using a structured finite-di↵erence scheme. OVER-
FLOW employs an approximate-factorization algorithm for the implicit solution of the spatial derivatives,
and the Time-Spectral operator is easily integrated within this framework by the addition of a similar factored
operator for the time derivative. This approximate factorization avoids forming and solving a N

3
x

⇥ N

Q

⇥ N

system of equations coupled across time and space. Writing the full Time-Spectral approximate-factorization
di↵erence equation in “delta” form gives

[I + �⌧A

x

] [I + �⌧A

y

] [I + �⌧A

z

] [I + �⌧D] � ~

Q = ��⌧

h
R

⇣
~

Q

n

⌘
+ S

⇣
~

Q

n

⌘i
(12)

where R( ~

Q

n) is the standard nonlinear spatial residual operator, and S( ~

Q

n) is the Time-Spectral di↵erential
operator applied to the state vector at time level n. A

x

, A

y

and A

z

are the linearized spatial operators
corresponding to the x-, y- and z-directions. The Time-Spectral approach as applied to OVERFLOW avoids
modifying the existing spatial residual and implicit operators because they are applied to each time sample
sequentially within each iteration. The required modifications are limited to an additional linear solve of
dimension N for the Time-Spectral factored operator, and computation of the source term at every spatial
grid point. In other words, time is treated as an additional spatial dimension when solving for the steady-state
solution in the combined space-time domain.

The computational memory requirements for a Time-Spectral solution are greater than its time-accurate
analog because the solution and source term must be stored for each time sample. However, careful im-
plementation limits the storage requirements and allows for a significant number of temporal modes even
in complex three-dimensional problems. Ignoring the trivial storage and processing associated with hole
cutting, the current implementation in OVERFLOW stores a copy of the state vector Q

n and Time-Spectral
source term S(Qn) at each time level, along with an additional working copy of the grid and metrics. Thus,
the total additional storage is 2N

3
x

N

Q

N + 15N

3
x

, where N

3
x

and N represent the number of spatial and
temporal nodes, respectively, and N

Q

is the number of conserved solution variables. An additional cost
of the approximate-factored matrix for the temporal derivative is also accounted for, depending upon the
relative size of N

x

and N . Using a target problem size of N

3
x

= 125M grid points, which is representative
of a three-dimensional rotorcraft or turbomachinery simulation, and 128 8-core Intel Nehalem nodes of the
NASA Advanced Supercomputing Pleiades supercomputer, Fig. 7 shows the variation in total memory with
number of temporal modes for our target problem. As seen, even limiting to 128 compute nodes, with 24
GB of memory per node, there is still su�cient memory for up to 200 temporal modes, and larger problems
similarly benefit from the low memory requirements.
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Figure 7: Memory usage estimate (GB) versus N for 128 Intel Nehalem Nodes on the NASA Advanced
Supercomputing (NAS) Pleiades supercomputer for a sample problem of 125 million grid points.
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V. Numerical Results

Two-dimensional computational studies were performed to demonstrate the ability of the hybrid Time-
Spectral scheme to handle dynamic hole-cutting associated with overset relative motion. First, a large-
amplitude inviscid plunging airfoil example verifies its performance in simulations involving large regions of
dynamically blanked points. Next, an inviscid oscillating airfoil case corresponding to the AGARD 702 test
is simulated. Finally, the turbulent case of the AGARD 702 oscillating airfoil is considered to examine how
the added complexity of turbulence a↵ects the hybrid scheme and the Time-Spectral approach in general.

Results for both rigid and relative motion were computed by the OVERFLOW Time-Spectral solver
providing a direct comparison between the time-accurate approach, the conventional Time-Spectral approach,
and the proposed method. These problems serve as computationally tractable demonstrations of capability
and are representative of more complex three-dimensional applications.

Standard OVERFLOW inputs of second-order central di↵erencing for the convective flux terms, first- and
third-order artificial dissipation and the ARC3D Beam-Warming tridiagonal implicit spatial operator were
employed. The second-order backwards di↵erence operator (BDF2) is used to advance the time-accurate
simulations. The rational polynomial order, d, is defined for all OVERFLOW Time-Spectral simulations as
d = min

�
bN�1

2 c, d
max

�
, with d

max

= 6 and N collocation points (not N + 1).

Inviscid Plunging NACA 0012 Airfoil

A large-amplitude inviscid plunging airfoil test case provides a meaningful demonstration of the hybrid Time-
Spectral scheme as it results in a large number of dynamically blanked nodes. Plunging amplitude is chosen
as half the chord length resulting in the following definition of plunging motion, h (t),

h (t) =
c

2
sin (kt) (13)

with reduced frequency, k = 0.1627 radians per non-dimensional time unit. The free stream Mach number
is chosen as M1 = 0.5 to maintain subsonic flow throughout the domain.

a

b

(a) Di↵erentiation Operator Locations (b) Length of Temporal Interval at t = 0

Figure 8: Plunging NACA 0012 airfoil. (a) The Fourier di↵erentiation operator is applied in the yellow region
where spatial nodes have complete time histories. The barycentric rational polynomial-based di↵erentiation
operator is applied to dynamically blanked spatial points shown in pink. Labels a and b locate nodes whose
solutions are plotted in Figs. 9 and 10, respectively. (b) Length of time interval associated with each spatial
node at the t = 0 temporal collocation point for the N = 9 case. The white region contains nodes blanked
by the airfoil grid at the current time level.

Figure 8a shows the portion of the domain that undergoes dynamic blanking for the plunging airfoil for
the case of N = 9 time samples. The airfoil sweeps through the pink-colored region resulting in blanked
spatial nodes for some subset of the period of motion. The temporal collocation points of these spatial nodes
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are therefore partitioned into intervals spanning fewer than N = 9 time samples and di↵erentiated with the
rational polynomial operator of the appropriate rank. Nodes in the yellow-colored region remain unblanked
for the duration of the period and are therefore di↵erentiated by the Fourier operator. The length of the time
interval associated with each dynamically blanked point varies and is plotted in Fig. 8b for the temporal
collocation point at t = 0. The white region shows the nodes blanked by the airfoil grid in its neutral position
at t = 0. Nodes colored red have complete time histories and correspond to the yellow-colored nodes in Fig.
8a. The solution at these nodes can be expanded in a Fourier series and are di↵erentiated by the Fourier
operator. Nodes colored yellow, green and blue are blanked for a portion of the period and only have defined
solutions at a subset of the time samples. For example, nodes colored green are included in temporal intervals
spanning 7 temporal collocation points including the t = 0 time sample. The distribution of interval length
changes as the number of modes is increased but this example is representative of the general case.

Figures 9 and 10 track the time history of the conserved solution variables at nodes a and b, respectively,
highlighted in Figs. 8a. Node a is located near the boundary between the blanked and unblanked regions
and is therefore strongly influenced by the Fourier basis. Node a is blanked briefly as the airfoil sweeps
upwards and again as it moves downwards resulting in two contiguous time intervals in the time-accurate
case. Figure 9 plots the time-accurate and Time-Spectral solutions at node a. In the case of N = 5 Time-
Spectral modes, node a maintains a complete time history and is therefore di↵erentiated by the Fourier-based
operator. All but one temporal collocation point is active in the N = 9 case resulting in a single partition
that is di↵erentiated by the rational polynomial-based operator spanning eight nodes. Two independent
temporal partitions are generated for the N = 17 case resulting in one interval spanning just two temporal
collocation points and another spanning an additional twelve collocation points. Excellent agreement for all
the modal cases is observed with only small deviations from the time-accurate solution. Node b located in
the center of the blanked region is farther from Fourier-based nodes. The continuous solution at node b is
partitioned into two intervals of similar length. Only the first temporal collocation point is blanked for the
N = 5 and N = 9 Time-Spectral cases whereas the time history of the N = 17 case is partitioned into two
intervals, each spanning seven time samples. The time-accurate and Time-Spectral solutions at node b are
plotted in Fig. 10. Larger discrepancies between the time-accurate and Time-Spectral solution of streamwise
momentum, ⇢u, are manifested for the N = 5 and N = 9 cases (Fig. 10b) but the solution does converge
with increased temporal resolution evidenced by the N = 17 case.
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Figure 9: Time-accurate and Time-Spectral solutions of ⇢, ⇢u and ⇢w for the plunging NACA 0012 airfoil
at node a in Fig. 8a. Values from the Time-Spectral solutions using N 2 {5, 9, 17} time samples are plotted
at their respective collocation points against the time-accurate solutions.
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Figure 10: Time-accurate and Time-Spectral solutions of ⇢, ⇢u and ⇢w for the plunging NACA 0012 airfoil
at node b in Fig. 8a. Values from the Time-Spectral solutions using N 2 {5, 9, 17} time samples are plotted
at their respective collocation points against the time-accurate solutions.
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Figure 11: Subsonic plunging NACA 0012 airfoil. Normalized error in pressure, err
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Time-Spectral versus time-accurate solutions at t = 0 for N 2 {5, 9, 17}. Error is plotted on a log scale
ranging from -2 to -7 suggesting that even the N = 5 case has less than 1% error in pressure over then entire
flow-field at the t = 0 instance.
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Figure 12: Subsonic plunging NACA 0012 airfoil. Convergence of relative-motion Time-Spectral projection
of drag coe�cients towards time-accurate solution for N 2 {3, 5, 9, 17}. The Time-Spectral drag signals
for the N = 9 and N = 17 cases are observed to nearly match the time-accurate solution demonstrating
temporal convergence.

To examine solution quality on a larger scale the global error in pressure is computed taking the relative-
motion time-accurate pressure, p

TA

, as exact. Normalized error in pressure, err

p

, is visualized in Fig. 11 for
N 2 {5, 9, 17} at time t = 0 which is the only common temporal collocation point among the three examples.
The maximum normalized error in pressure occurs in the N = 5 flow field but is limited to roughly one part
in 1000. The error is reduced monotonically by increasing the number of modes. This is evident in the
drag coe�cient in Fig. 12. The N = 3 and N = 5 Time-Spectral cases demonstrate di↵erences from the
time-accurate result, but the N = 9 case shows improvement and the N = 17 case matches the time-accurate
solution nearly identically.

Transonic AGARD 702 Pitching Airfoil

The Time-Spectral formulation is next compared to time-accurate simulations and experimental data corre-
sponding to the AGARD 702 3E3 oscillatory pitch test case CT5 [34]. Both inviscid and viscous turbulent
simulations are performed on this transonic, M1 = 0.755, case. A pitching airfoil allows for simulations
with both rigid- and relative-body motion so that the temporal discretization can be isolated and compared
directly. The airfoil pitches about its quarter chord with incidence, ↵ (t), defined as

↵ (t) = 0.016� + 2.51� sin (kt) (14)
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with reduced frequency k = 0.1627 radians per non-dimensional time unit and free stream Mach number
M1 = 0.755. A hierarchy of Time-Spectral simulations are computed using an increasing number of modes
(N 2 {3, 5, 9, 17, 33}) to investigate the performance of the scheme with increased temporal resolution and
ensure that spurious higher-frequency modes are not generated and propagated into the solution. The near-
body grid and its overlap region are chosen such that the transient shock spans the grid interface. Figure
13 shows the supersonic region and the overset-grid system at two of the temporal collocation points for the
N = 5 case.

(a) tN

T

= 0 (b) tN

T

= 1

Figure 13: AGARD 702 inviscid pitching airfoil at M1 = 0.755. The supersonic region is plotted on the
grid-system in the vicinity of the airfoil for two time samples of the N = 5 case demonstrating the shock
spanning the near-body to o↵-body grid interface. Subsonic regions shown in black. Every second grid point
has been removed in the figure for clarity.

Inviscid Case

A 241 ⇥ 30 O-mesh near-body grid is embedded in a 341 ⇥ 261 rectilinear background grid that stretches
approximately 100 chord lengths to the far field in both directions. In the case of rigid-body motion both
the near-body and background grids rotate together. This provides constant hole-cutting permitting the
use of the conventional Time-Spectral approach using the Fourier-based di↵erentiation operator. In the
relative-motion case, the near-body grid rotates independently of the background grid introducing dynamic
hole-cutting. The unsteady residual was converged to machine precision at each physical time step in the
time-accurate case. The complete space-time residual for the Time-Spectral cases also converges to machine
precision (Fig. 14). The convergence rate is independent of the number of Time-Spectral modes in this
case.
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Figure 14: AGARD 702 inviscid pitching airfoil. Iterative convergence of space-time residual for relative-
body motion for N 2 {3, 5, 9, 17, 33}. The sum of both the near- and o↵-body grid residuals normalized by
the total number of points in the domain is plotted versus iteration number.
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Pitching moment and drag coe�cient polars are plotted in Figs. 15 and 16, respectively. The rigid- and
relative-motion Time-Spectral solutions and the time-accurate case, all converge to the identical solution.
Reasonable agreement with the experimental data is achieved but most importantly, significant temporal
resolution convergence of the hybrid Time-Spectral solutions is achieved as the number of sample points
is increased from 3 to 33 allowing the solution to resolve increasingly higher-frequency content inherent in
the unsteady solution and its output functionals. Note that 33 modes are required to resolve the kink in
the pitching moment and drag signals at ↵ ± 2�. Root-mean-square error between the unsteady force and
pitching moment coe�cients of the rigid- and relative-motion case isolates the quantitative e↵ect of the
hybrid di↵erentiation operator on the Time-Spectral solution and confirms the convergence (Table 1).

N C

l

C

d

C

m

3 1.96e-03 3.64e-04 6.24e-04

5 3.50e-04 3.83e-05 2.01e-04

9 7.83e-04 1.24e-05 4.22e-05

17 6.98e-05 1.03e-05 1.68e-05

33 4.50e-05 4.08e-06 1.39e-05

Table 1: Root-mean-square error in force and pitching moment coe�cients between projections of rigid- and
relative-motion Time-Spectral solutions.

The frequency components, amplitude and phase, of the time-accurate pitching moment coe�cient are
plotted in Fig. 17 against those computed by the hybrid Time-Spectral scheme. Figure 17a reveals that
the N = 3 case fails to resolve even the mean amplitude and the N = 5 case poorly resolves the either the
amplitude or phase corresponding to the second harmonic. Increasing the number of solution modes permits
resolution of higher frequency content, and improves resolution of the lower frequencies. Importantly, no
artificial high-frequency amplitude or phase content corrupts the solution as a result of the hybrid Time-
Spectral scheme so that increasing the number of solution modes results in solutions that mirror the frequency
content of the time-accurate simulation.

16 of 25

American Institute of Aeronautics and Astronautics



�3 �2 �1 0 1 2 3
�2

�1

0

1

2

↵

C

m

⇥
10

2

Time Accurate
Relative Motion
Rigid Motion

(a) N = 3

�3 �2 �1 0 1 2 3
�2

�1

0

1

2

↵

C

m

⇥
10

2

(b) N = 9

�3 �2 �1 0 1 2 3
�2

�1

0

1

2

↵

C

m

⇥
10

2

(c) N = 33

Figure 15: AGARD 702 inviscid pitching airfoil. Time Spectral versus Time Accurate pitching moment
coe�cients for N 2 {3, 9, 33}. Ten periods of the time-accurate solution are plotted in red from steady-state
startup. Blue squares locate the pitching moment coe�cient values at the Time-Spectral collocation points
for relative-body motion. Relative-body pitching moment coe�cients computed from an interpolation of the
Time-Spectral solution to 201 points shown with the blue-hashed line. Green diamonds locate the pitching
moment coe�cient values at the Time-Spectral collocation points for rigid-body motion. Rigid-body pitching
moment coe�cients computed from an interpolation of the Time-Spectral solution to 201 points shown with
the green-hashed line. Experimental data from the AGARD 702 Report is plotted with black dots.
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Figure 16: AGARD 702 inviscid pitching airfoil. Time Spectral versus Time Accurate drag coe�cients for
N 2 {3, 9, 33}. Ten periods of the time-accurate solution are plotted in red from steady-state startup. Blue
squares locate the drag coe�cient values at the Time-Spectral collocation points for relative-body motion.
Relative-body drag coe�cients computed from an interpolation of the Time-Spectral solution to 201 points
shown with the blue-hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral
collocation points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the
Time-Spectral solution to 201 points shown with the green-hashed line. Corrected experimental drag data
from the AGARD 702 Report is not available.
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|Ĉ

m

|

(b) Phase, =|Ĉ
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m

= �

�1
C

m

, for first 20 harmonics of the relative motion case. Increasing modal
resolution results in better agreement between output functional amplitude and phase without introducing
spurious high-frequency content.

Turbulent RANS Case

Practical applications of the Time-Spectral method including rotorcraft and turbomachinery involve turbu-
lent flows, and therefore the previous oscillatory airfoil is extended to use the Spalart-Allmaras one-equation
turbulence model. OVERFLOW employs a loosely coupled turbulence scheme whereby the turbulent vari-
ables are updated initially and held constant for the flow equation iteration. The code structure prevents a
direct Time-Spectral implicit treatment for the turbulent variable without a significant overhaul. Instead, a
semi-implicit treatment retroactively applies the implicit operator to the explicit turbulent update, �⌫̃

n+ 1
2 .

[I + �⌧A

x

] [I + �⌧A

y

] [I + �⌧A

z

] �⌫̃

n+ 1
2 = ��⌧ [R (⌫̃n) + S (⌫̃n)] (15)

(16)
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⌫̃

n+ 1
2 is then held fixed while iterating the flow solution, ~

Q.

~

Q

n+1 = ~

Q

n + � ~

Q

⇣
⌫̃

n+ 1
2

⌘
(17)

The implicit update �⌫̃

n+1 is computed and retroactively applied to ⌫̃

n to advance the solution prior to the
subsequent time step.

[I + �⌧D] �⌫̃

n+1 = �⌫̃

n+ 1
2 (18)

(19)

Figure 18 shows contours of the (undamped) turbulent eddy viscosity, ⌫̃, in the wake region for the five
temporal collocation points of the pitching airfoil. This illustrates the potentially large changes in ⌫̃ as a
function of time in the wake region.

Figure 18: Visualization of undamped turbulent eddy viscosity on the near-body grid and in the wake region
of the AGARD 702 pitching airfoil at the temporal collocation points for a representative case of N = 5.
⌫̃ can vary several orders of magnitude in a short time-frame and must be limited in certain circumstances
to avoid spurious undershoots resulting from Gibbs’ phenomenon. The figure shows every second grid point
removed in the normal direction for clarity.

Figure 19 plots the time history of turbulent eddy viscosity and its temporal derivative at a point
downstream of the airfoil through which the turbulent wake passes during a portion of the oscillation. Note
in Fig. 19a, the turbulent eddy viscosity transitions from a constant value of order zero to a value of order
1000 over a small fraction of the period. While the function varies smoothly in the context of the small
physical time steps associated with time-accurate iterations, it resembles a discontinuous step function in
the frame of the much coarser resolution of Time-Spectral sample points. This leads to spurious oscillations
in the Fourier expansion (Gibbs’ phenomenon). Oscillations in the gradient are manifested at the discrete
sample points which can be observed in Fig. 19b resulting in large overshoots. This issue is compounded
by the fact that undamped eddy viscosity remains close to zero outside the wake, so that modest overshoots
in the derivative violate the positivity constraint on ⌫̃. The current example uses eddy viscosity in the
Spalart-Allmaras model, however, similar issues are encountered for turbulent kinetic energy or dissipation
in other models. The same phenomenon could also occur in the fluid equations for high-speed cases. Note
that this issue applies to Time-Spectral treatment of turbulence in general as it occurs downstream from the
body on nodes with complete time histories.

Applying a limiter to the temporal di↵erentiation operator maintains positivity on ⌫̃ without sacrificing
accuracy. The current limiter sets the Time-Spectral source term to zero if it would drive ⌫̃ negative.
Figure 19a demonstrates good agreement between the Time-Spectral and time-accurate solutions for ⌫̃ at
the collocation points. Slight ringing does occur in the constant region but ⌫̃ remains positive.

20 of 25

American Institute of Aeronautics and Astronautics



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
�200

0

200

400

600

t

⇤
/T

⌫̃

Time Accurate
Fourier Expansion
Time Spectral

(a) Turbulent variable, ⌫̃ (t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
�200

�100

0

100

Gradient Limited Gradient Limited

t

⇤
/T

@
⌫̃

@
t

(b) Time derivative, @⌫̃

@t

(t)

Figure 19: AGARD 702 turbulent pitching airfoil. (a) Turbulent solution variable, ⌫̃ (t), and (b) its derivative,
@⌫̃

@t

, are plotted for a point in the wake over the period of oscillation. BDF2 and Fourier operators di↵erenti-
ated the continuous and discrete data, respectively. Note, Gibbs’ phenomenon in the Fourier representation
of the signal are present in the derivative where large oscillations lead to an inaccurate representation of @⌫̃

@t

(t⇤ = t � T/4).

Only the relative-motion Time-Spectral scheme is applied to the viscous case as the hybrid scheme
already demonstrated its ability to match the results computed with the conventional Time-Spectral scheme
in inviscid rigid-body case. The drag and pitching moment coe�cients computed from the Time-Spectral
simulations converge to those computed in unsteady mode with increasing numbers of temporal collocation
points (Figs. 20 and 21). Note that N = 33 modes are required to resolve the kink in the drag and pitching
moment coe�cient signals at ↵ ⇡ ±2� (Figs. 20c and 21c), as with the inviscid case. Less agreement is
observed with the experimental data in the pitching moment coe�cient polars (Fig. 20) when compared
to the inviscid case from the previous section but this discrepancy also occurs in the time-accurate case
indicating suggesting a modeling issue. While experimental data is included for reference, the crucial point
remains that the Time-Spectral results matched those computed with the time-accurate solver.
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Figure 20: AGARD 702 turbulent pitching airfoil. Time Spectral versus Time Accurate pitching moment
coe�cients for N 2 {3, 9, 33}. Ten periods of the time-accurate solution are plotted in red from steady-state
startup. Blue squares locate the pitching moment coe�cient values at the Time-Spectral collocation points
for relative-body motion. Relative-body pitching moment coe�cients computed from an interpolation of the
Time-Spectral solution to 201 points shown with the blue-hashed line. Experimental data from the AGARD
702 Report is plotted with black dots.
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Figure 21: AGARD 702 turbulent pitching airfoil. Time Spectral versus Time Accurate drag coe�cients for
N 2 {3, 9, 33}. Ten periods of the time-accurate solution are plotted in red from steady-state startup. Blue
squares locate the drag coe�cient values at the Time-Spectral collocation points for relative-body motion.
Relative-body drag coe�cients computed from an interpolation of the Time-Spectral solution to 201 points
shown with the blue-hashed line. Corrected experimental drag data from the AGARD 702 Report is not
available.
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VI. Summary

A new hybrid Time-Spectral method has been introduced for dynamic overset and Cartesian applica-
tions. The time samples of spatial nodes that undergo dynamic blanking are segmented into intervals of
consecutively unblanked temporal collocation points and di↵erentiated by an operator derived from barycen-
tric rational polynomials. Barycentric rational polynomials o↵er superior interpolation and di↵erentiation
properties on an equispaced aperiodic mesh in contrast to traditional orthogonal polynomials. The majority
of nodes are unblanked and treated by the standard Time-Spectral formulation.

The hybrid scheme was outlined and evaluated with a linear model problem and the implementation of the
hybrid Time-Spectral scheme in the NASA OVERFLOW solver was described. Inviscid and turbulent test
cases of plunging and pitching airfoils solved using both rigid and relative motion agreed with time-accurate
solutions. The hybrid Time-Spectral scheme performed well in the inviscid subsonic plunging airfoil case
where its conserved solution variables and drag coe�cient values converged to the time-accurate data. The
AGARD 702 inviscid pitching airfoil case demonstrated temporal convergence in its pitching moment and
drag signals requiring N = 33 modes to resolve the finest details of the solution. Spectrum analysis confirmed
that no artificial high-frequency content was generated. A limiter was employed in the turbulent case to
avoid large oscillations in the gradient of the turbulent eddy viscosity in the wake. Temporal convergence
was similarly observed for the viscous case. The hybrid Time-Spectral scheme matched the results computed
with both the conventional Time-Spectral approach and the time-accurate solver, establishing it as a viable
tool for the simulation of periodically forced flows.

Future work includes acceleration of the code through multigrid and other techniques to enable application
to more realistic problems in rotorcraft and turbomachinery. Dynamic near-body to near-body hole-cutting
occurs in these problems and will therefore be investigated. Optimal selection of the rational polynomial
approximation order, d, and its maximum value, d

max

, remains part of future work in addition to the stability
analysis for the barycentric rational polynomial-based di↵erentiation operator.
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