Visible Contrast Energy Metrics for Detection and Discrimination

Al Ahumada
al.ahumada@nasa.gov

Beau Watson
andrew.b.watson@nasa.gov

NASA Ames Research Center
Moffett Field, CA
Energy Metric for Detection

- Inputs: Luminance image = \(L(x,y) \)

 Pixel area = \(dx \ dy \) in deg \(^2\),

 Duration = \(dt \) in sec

- Compute visible contrast image = \(C_v(x,y) \)

- Visible Energy Metric :

 \[Ev = dx \ dy \ dt \sum_{x,y} C_v(x,y)^2 \text{ deg}^2 \text{ sec} \]

 \[dBV = 10 \log_{10}(\frac{Ev}{10^{-6}}) \]

- Modelfest average threshold = 7 \(\pm \) 2 dBV
Visible Contrast Image

- Optic Blur: \(L_o(x,y) = L(x,y) \times O(x,y) \)
- Background Luminance:
 \(L_b(x,y) = a(dt) \times (L_o(x,y) \times B(x,y)) + (1 - a(dt)) \times B_0 \)

- Contrast: \(C(x,y) = \frac{L_o(x,y) - L_b(x,y)}{L_b(x,y)} \)
- Eccentricity Sensitivity:
 \(C_v(x,y) = C(x,y) \times S(x,y) \)
Parameters

- **Optic Blur**: \(F(O(x,y)) = \exp(- f / f_0) \),
 \[f = \sqrt{(f_x^2 + f_y^2)}, \quad f_0 = 12 \text{ cpd} \]

- **Background Luminance**: \(F(B(x,y)) = \exp(- (f / f_1)^2), \quad f_1 = 2 \text{ cpd} \)
 \[a(dt) = \exp(- dt / t_0), \quad t_0 = 0.4 \text{ sec} \]

- **Eccentricity Sensitivity**: \(S(x,y) = 1/(1 + g (1 - \exp(- r / r_0))) \),
 \[r = \sqrt{x^2 + y^2}, \quad r_0 = 5.7 \text{ deg}, \quad g = 4.1, \quad 1 / (1 + g) = 0.2 \]
Metric-Validating Model

- Visibility Image: \(C_v(x,y) \)
- Additive White Noise with 2-sided power spectral density

\[
N = \sigma^2 \, dx \, dy \, dt ,
\]

Each pixel is independently distributed as

Normal with mean 0 and standard deviation \(\sigma \)

- Ideal Observer detects presence or absence of signal in a two interval forced choice (2IFC) experiment.
2IFC Model Performance

- Visibility Image: \(\text{Cv}(x,y) \) with visible contrast energy \(\text{Ev} \) and noise spectral density \(\text{N} \)
- Distance between observer output distributions divided by their common standard deviation is
 \[
 d' = \sqrt{\frac{2 \ \text{Ev}}{\text{N}}}
 \]
- \(\text{Prob(Correct)} = \text{Pc} = Fz(d') - 0.5 \)
- Estimated \(\text{N} = \frac{2 \ \text{Ev}}{d'^2} \)
- If \(\text{Pc} = 0.84, \ d' = 1, \ \text{N} = 2 \ \text{Ev} \)
- Modelfest: \(10 \ \log_{10}(\text{N}) + 60 = 10 \pm 2 \ \text{dB} \)
Discrimination Model

- Visibility Images: $C_v(x,y,j)$, $j = 1,M$
- Additive White Noise with power spectral density
 \[N = \sigma^2 \, dx \, dy \, dt \]
- Ideal Observer responds k if image j is presented and image k has the smallest squared distance $d(k)$ to the noisy image
 \[d(k) = \| C_v(j) + N - C_v(k) \|^2 \]
 \[d(k) = \| C_v(j) + N \|^2 + \| C_v(k) \|^2 - 2 \left(C_v(j) \cdot C_v(k) + N \cdot C_v(k) \right) \]
Discrimination Model Metric

- Orthogonal Images: \(Cv(j) \cdot Cv(k) = 0, \ j \neq k \)
- Same energy: \(Ev(j) = Ev \)
- Let \(d' = \sqrt{\frac{Ev}{N}} \)

\[
Pc = \int F(x)^{k-1} f(x-d') \, dx ,
\]
where \(F \) and \(f \) are the cumulative and density distribution functions of the standard normal.

- Also \(Ev = \int dx \int dy \int dt \sum_j ||Cv(j) - C||^2 / (M-1) \)

where \(C = \sum_j Cv(j) / M \)
Discrimination Model Performance

$$d = \left(\frac{E_v}{N} \right)^{0.5}$$

$P_{\text{Prob Correct}}$ is plotted against d for different values of M: $M = 2$, $M = 4$, $M = 10$, and $M = 26$. The graph shows the probability of correct discrimination as a function of d. The higher the value of M, the higher the probability of correct discrimination for a given d. The horizontal axis represents d, and the vertical axis represents the probability of correct discrimination.
Example: Landolt C

Pedestal invariance of ideal observer allows the orthogonal stimulus model.
Example: Tumbling E's

- Model simulation for $n = 10000$ trials, $d' = 1$.
 - 95% confidence interval for $P_c = 0.538 \pm 0.010$
- Metric prediction $P_c = 0.552$
Method Considerations

- When pattern energies are similar, varying the contrast adds little or no uncertainty; varying size or blur contributes significant uncertainty.

- Practice of computing thresholds by averaging reversal endpoints has problems
 1) P_c at threshold is not actually known
 2) No estimate of the slope at threshold is provided
 3) Valuable data is effectively discarded
Summary

- Detection metric: Visible contrast energy
- Approximate Discrimination metric:
 Average (M-1) squared distance from each visible contrast pattern to the mean visible contrast pattern
- Model simulation is fast
Tumbling E Model Matlab Code

c = s'*s ; \% 4x25 times 25x4
[u , x, v] = svd(c) ;
f = u*(x.^0.5) ;

sn =
ones(n,4)*c(1,1:4)+randn(n,4)*f';
Pc=mean(
 sn(1:n,1)>max(sn(1:n,2:4)')'
);
Figure 4. Elements of the component model.