An integrated biomechanical model for microgravity-induced visual impairment

Emily Nelson1, Lauren Best 1, Jerry G. Myers1, and Lealem Mulugeta2

1. NASA – Glenn Research Center, Cleveland, OH
2. USRA - Division of Space Life Sciences, Houston, TX

\textit{XXIInd International Workshop on Computational Mechanics of Materials}

Sept 26, 2012
Astronauts in both short- and long-duration spaceflight have reported Visual Impairment (VI) in microgravity (29%† / 42.7%‡)

But relatively recently, severe cases of post-flight ocular pathology have emerged

- There is no definitive explanation as to why VI occurs – yet
- The Digital Astronaut Project is seeking answers through an integrated modeling approach

†Mader et al. (2011) ‡Tarver and Otto (2012). Examinations are still in process
The optic nerve and its sheath

In clinical applications on earth, ONSD has become a surrogate for Intracranial Pressure (ICP) in the diagnosis of Idiopathic Intracranial Hypertension (IIH).

Measurements are made 3mm behind globe

- Geeraerts et al. (2008)

Zoomed to 300X

OND = Optic Nerve Diameter
ONSD = Optic Nerve Sheath Diameter

ICP (mm Hg)

Optic nerve sheath diameter (mm)

45 measures

$r=0.71$

$p<0.0001$
Ophthalmic pathophysiology after μg exposure

The VI pathophysiology somewhat resembles IIH seen on earth, which is characterized by high ICP.

Astronauts exhibit:
- Optic disk edema
- ONS distension
- Globe flattening
- Choroidal folds
- Increased CSF pressure
- Wool spots
- Decreased IOP post-flight
- ON kinking
Cephalad fluid shift

- The equilibrium shape for a blob of water in μg is spherical (surface tension dominates in reduced gravity)
- When contained in a uniformly elastic sac, like a balloon, it is also spherical.

Now consider a human being...
Microgravity causes bodily fluids to rush headwards (~2L out of a total 5L)

pumpkin head, chicken legs

After a period of adjustment, the legs are still scrawny, the spine is elongated, and there is still increased fluid content near the head.
Potential culprits

The causal chain linking microgravity and the VIIP syndrome is at present unknown, but key factors are:

- Cephalad fluid shift;
- Disruption of mass transport: blood, cerebrospinal fluid (CSF), and lymph;
- Biomechanical responses of the corneoscleral shell, the optic nerve head (ONH), the choroid, the retrobulbar space (rSAS); and
- Tissue properties and remodeling

Blue region represents subarachnoid space (SAS)
Integrated Systems Analysis

- 3D eye model
- Ophthalmic changes
- "Simple" 0D+ whole-body model
 - vascular pressure/flux to rSAS
- 2D/3D model of intracranial and spinal system
 - vascular pressure/flux to rSAS
 - material properties
- 3D eye model
- tissue model (includes remodeling)
 - material properties

parametric studies and simulation of chronic conditions

Ophthalmic changes
Whole-body lumped-parameter model

Purpose: Provide initial/boundary conditions to a detailed CFD model of the eye

Challenges: Must include cardiovascular (CVS), central nervous (CNS) and lymphatic (LS) systems, which are all linked through mass transport (both direct and through tissues)
Lumped (0D+) model of the CVS

Successive levels of abstraction allow us to model the CVS as a complex electrical circuit:
- fluid flow ~ current flow;
- pressure ~ voltage;
- capacitance ~ compliance;
- resistance to (current flow ~ fluid flow);

Spatial resolution is obtained by increasing the number of compartments.

Although there are currently no fully integrated models of the CVS/CNS/LS, there are individual models (0D/1D/2D/3D) of each system/component that are at varying degrees of maturity.

http://www.cilmionline.com/

-Rupnik et al. (2002)
CFD modeling of the spinal and intracranial compartments

- 2D/3D CFD for high fidelity prediction of the CSF flow within the spinal and intracranial SAS

- Linninger et al. (2007)

- Vaičaitis et al. (2011)
Low fidelity model of the lymphatic system

Our understanding of the LS is still evolving
• Returns fluid from CNS to circulation in CVS
• Key player in immune function
• (Very) new discoveries of lymphatic (lymph-like?) systems in the brain and in the vicinity of the ON

Modeling of the LS is still in its infancy

At minimum, we will include a 1-compartment placeholder for the LS which returns fluid from CNS-> CVS, interacts with extracellular matrix, and sends fluid to kidneys for excretion, thus permitting an open-circuit model
Detailed model of the eye and rSAS

- Idealized geometry includes corneoscleral shell, choroid layer, retina, ONH, rSAS
- Coupled with whole-body model through pressure/fluid flux of CVS, CNS behind the eye

- Killer et al. (2003)
- Standring et al. (2005)
Eye modeling (cont’d)

Prior work has shown that the biomechanical response of the ONH is highly sensitive to posterior scleral stiffness and geometry.

- Norman et al. (2011)
- Sigal et al. (2009)
• Eye tissue stiffness increases at high strain rates, e.g. during valsalva maneuver (Elsheikh et al., 2007)
• Tissue stiffness increases with age (Albon et al., 2000; Elsheikh et al., 2007)
 – The affected crew’s mean age of 50.2 ± 4.2 years (Mader et al., 2011)
• Hypothesized remodeling of the ocular and vascular structures due to chronic elevated pressure in the cranial space (Mader et al., 2011; Wu et al., 2005)
• High-fidelity tissue model, such as Grytz and Meschke (2008 & 2009), will be necessary to accurately capture the modeling and remodeling process of ocular and intracranial tissues
Conclusions

• Numerical modeling of μg-induced visual impairment requires well-coordinated integration of many submodels:
 – Lumped parameter model of CVS, LS
 – 2D/3D model of CNS intracranial/spinal space
 – Well-resolved model of globe, choroid and rSAS
 – Tissue models that can adapt to chronic modification of biomechanical stress state

• Models will be applied to a problem that is well outside of normal physiological response
 – Verification and validation of each submodel and integrated model will be crucial