NASA/CR-2013-217972

Vehicle Integrated Prognostic Reasoner (VIPR)
Final Report

Raj Bharadwaj, Dinkar Mylaraswamy, and Dennis Cornhill
Honeywell International, Inc., Golden Valley, Minnesota

Gautam Biswas, Xenofon Koutsoukos, and Daniel Mack
Vanderbilt University, Nashville, Tennessee

-
March 2013

NASA STI Program

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

... in Profile

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page

at http://’www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 443-757-5803

e Phone the NASA STI Information Desk at
443-757-5802

e \Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

NASA/CR-2013-217972

Vehicle Integrated Prognostic Reasoner (VIPR)
Final Report

Raj Bharadwaj, Dinkar Mylaraswamy, and Dennis Cornhill
Honeywell International, Inc., Golden Valley, Minnesota

Gautam Biswas, Xenofon, Koutsoukos, and Daniel Mack
Vanderbilt University, Nashville, Tennessee

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNLO9AD44T

March 2013

Acknowledgments

We would like to thank the Honeywell and Vanderbilt teams for conducting the work under this program.
In particular, we wish to acknowledge Craig Schimmel, Howie Weibold, Darryl Busch, Lee Graba,
Wayne Schultz, Gordy Nagel, Mick Young and George Hadden for their many contributions. We would
also like to thank Hal Voges for his technical feedback and support, Craig Goodrich for helping us with
contract related issues, and Savit Boyd for her patience and her lessons on program management.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Table of Contents

1.

2
3
4.
5

EXECULIVE SUMIMAIY ittt e e e e e e e e e s e e e e e s e s e s s s s s s s ssnnnnes 8
VIPR Accomplishments and SignifiCancCeccuviiiiiiiiiiiiee s aaaee s 8
Introduction and BackgroUNdocuuiiiiiiiii it aee e e e sare e e e e e e e s raee e enees 11
ObJECHIVES/APPIOGCK ...ttt et e et e et e e et e e e be e e beeebaeestaeesateeebeeenseeeasseestesenseeenns 13
o)=Y U2] o - T VN 14
5.1 VIPR Detail Design — Functional Decomposition.........cccuviiieiiiicciiiiees et e e 16
5.2 VIPR Detail Design — Software Implementationcccccovcieiiiiiiie i 18
53 Regional Airling Data MININGccuiiiiiiiiie ettt e s serte e e e sbae e e s sabae e s snaaeesssaeeenans 23
5.4 F AN To T b= AV D I=Y =T ot o] o PSP 26
5.4.1 Establishing a baseline: Pre-analysiS.........uiuiiiiiiciiie ettt e et 27
5.4.2 Anomaly Generation: POSt ANAIYSISueeiiiiieiiiiiiiee e 28
55 PerformanCe IMEEIICSccocuiieiiie ettt e bt e sab e s b e sbe e e reeesaneesanee s 30
5.6 Integrated DeMONSIIAtIONiiiiiiiiee e et e e et e e e s ebtee e e sbaeeessntaeessstaeeeanes 34
5.6.1 VIPR DEMONSTIatioN.....cciiiiiiiiiiiiiiiiiiiicitic it 34
5.7 T gToF= Yot dlo Yo BT =1 4V ARSIt 38
VIPR SOftWare CertifiCation..........oo ittt 41
Suggested FULUIE DIFECHION ...ttt e e e e e e et e e e e e e e s tnbeaeeeeeeesnsraseeeaeeennnnnns 41
REFEIENCES ...ttt ettt e s e st e s bt e e s ab e e s ab e e sa b e e s beeesabeesabeesabeesneeesabee eeesnreenns 43
8.1 Documents Referenced in this REPOIt......cccciiiiiiciiii it s e e 43
8.2 Published VIPR dOCUMENTSeeiiiiiiiiieiieitesite ettt sttt s sttt et n e e 43

Page 5

Table of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9.

Figure 10:
Figure 11:
Figure 12:
Figure 13.
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Functional modules WIthin VIPRcooiiiiiiiee ettt e e st e e ssatae e s ssrae e e ssreeeesans 12
Failure modes mapped to evidence for an engine subsystemccccccveeveciiieecciiee e, 16
Function modules WIthin VIPRuiiiiiii ettt sttt e s ste e st e e s sbee e e ssabaeeesans 19
VIPR demonstration classes and their interactionsoccveeiiiviieiiciiee e 20
Terminology defiNitioN e e e e e e e e e eaba e e e nreas 21
A continuous valued condition iINAICator.cocuiiiiiiiiii e 22
Generating prognostic monitors from condition indicators........cccccceeeeciiveeee e, 22
Boolean Condition Indicator (also called a health indicator)cccovveeeiiiiieiiiiieieeeceeeeee, 22
Data MINING QCHIVITIES .. uuuueieieiiiiiiieiiiie it re e e e e rerererererererereeeeeeeeaeateeasaaaeaeaaaeaaeaaeeaeaeeees 24

Operational steps in VIPR anomaly detectioncceecveiiiiiiiiiiciies et 26
Establishing a baseline—offline unsupervised analysis.........ccccccveeiiiiieeiciciee e 28
VIPR Anomaly Detection: FUNCLIONAl VIEWcciiiiiiiiiiiiiiie ettt e e eeerne e e e e e esinnnes 29
VIPR evaluation @pProachccouiiei ittt sttt et e e s eate e e s ebae e e ssata e e s sbeaeeeenes 31
Results of single fault SIMUIGLIONS.........oiiiiiiie e e e 32
Results of multiple fault SIMUIGLIONS ...eeeiiei i e 32
Integrated demonstration with multiple evidence streams........ccccceveiveeiiciiec e, 34
FINQl dEMO SCENAIIO cuviiiiiieeiee ettt ettt s e st e e sabe e sabeesbaesabeesabeesabeean 36

Figure 18: VIPR combined with A updates made to the reference would detect the fault prior to an in-
flight engine shutdown safety INCIAENToocuiiii i e e e e e e are e e e eanes 39
Figure 19: VIPR results for three safety inCidents.........c..uviiiii e 40

Page 6

Table of Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6:
Table 7:
Table 8:

Significance Of VIPR 0N SAfELY ..vviiiiiiiie ettt et e e st ae e e senraeeeeans 10
Accomplishment summary with respect to proposal conCepts.......cccveeevcieeeeciieeeciieee e 14
Evidence discovered using the TAN supervised learning algorithmcccccoviveeiiiiiiiiien e, 24
Summary of reference model A updates through data mining.........ccccccveiieciiiiiiiee e, 25
Summary of anomaly detection through data mining..........ccccoveeeeiiiiciiee e, 30
Phase 2 Metrics SUMMAIY [8]......uuuiiiiiiiiiiiiiiiee e e eeiiree e e e esetrre e e e e e eeetbareeeeeessbsbaeeeeeeeesassrasaaaaennn 33
Sampling rates for INPUL @VIENCEccocuiiee ettt e et e e et e e e e bae e e eeataeeeeans 35
Faults simulated in the HIL Integrated DEMO.cccooeeiiiiiiie et 37

Page 7

1. Executive Summary

A systems view is necessary to detect, diagnose, predict, and mitigate adverse events during the flight of
an aircraft. While most aircraft subsystems look for simple threshold exceedances and report them to a
central maintenance computer, the vehicle integrated prognostic reasoner (VIPR) pro-actively generates
evidence and takes an active role in aircraft-level health assessment. Establishing the technical feasibility
and a design trade-space for this next-generation vehicle-level reasoning system (VLRS) is the focus of
our work.

In the first year of this program, we laid the technical foundations for a next generation Vehicle
Integrated Prognostic Reasoner (VIPR) [1]. Specifically we: documented user requirements and
illustrated the advanced features using scripted scenarios; formulated a three-tiered reasoning
framework that could be implemented as extensions to existing aircraft VLRS; and identified historical
data sets from a regional airline operator that could be used to show the effectiveness of the advanced
reasoning system.

Year two focused on detailed design of VIPR, implementing and testing the necessary software code,
and development of necessary prognostic monitors from the historic regional airline data set. In the
second year we: implemented a prototype for vehicle integrated prognostic reasoning (VIPR) whose
operations were defined in Year 1; documented the impact of data mining combined with an onboard
VIPR to avoid four historically recorded safety incidents; and developed an approach to systematically
study VIPR metrics such as accuracy and cost using a simulation testbed. We recommend hardware
should be inserted into the demonstration system so that we can evaluate VIPR performance in more
realistic environments.

Following successful completion of Years one and two, the third year focused on: a hardware-in-the-
loop demonstration of the VIPR reasoner with Honeywell’s LaserRef VI Inertial Reference Unit;
integration of heterogeneous evidence such as on/off built-in-tests; and condition indicator trending
from three aircraft subsystems (engines, APU, avionics) to establish technical feasibility of a next
generation prognostic reasoner. We also defined the anomaly detection function as an extension of the
aircraft condition monitoring and, using select examples, demonstrated the utility of anomaly detection
for identifying precursors that may have evolve to a safety incident.

2. VIPR Accomplishments and Significance
Significant accomplishments for the VIPR program include:

1. Prognostic reasoning. We established the technical feasibility of a Bayesian prognostic reasoner for
onboard detection of adverse safety events. The demonstration included working prototype
software and design documentation for implementing the algorithms as expansion of the central
maintenance computer functions. The results show the proactive role of VIPR in detecting three
safety incident precursors from the regional airline historic data; and its ability in detecting a
potential cascading avionics fault based on hardware demonstration with an inertial reference
system.

Page 8

a. Standardized definition and interpretation of advanced monitors that enable member systems
to express complex evidence formats and hence enable prognostic reasoning.

b. A three-tiered architecture for deploying VIPR functions such as monitor generation, cascade
handling, fault hypothesis generation, temporal reasoning, messaging and suppression.

c. A Bayesian framework for generating fault hypotheses that represent the aircraft health state
by explaining all observed forms of evidence. It uses a noisy-or approximation along with
merging and splitting rules to provide an upper bound on computational complexity without
making a single-fault assumption.

2. Semi-supervised learning loop. The system reference model within VIPR encodes aircraft-specific
data such as failure mode definitions as well as evidence that can be generated and their
relationships. While this member-system, supplier-provided information drives onboard diagnostics
and prognostics of known problems, detection of emergent/unknown events that may impact safety
is enabled by a semi-supervised learning loop. We established the technical feasibility of such a
learning loop using:

a. Tree-augmented, network-based supervised learning. This supervised learning method
generates an evidence-failure mode map when trained with annotated fault cases. This map is
readily incorporated in the VIPR reference model as (1) new evidence nodes, (2) updating
selective arc information in the evidence-failure mode bipartite graph.

b. An anomaly detection function for generating outliers based on information entropy in time
series parametric sensor values. We demonstrated a Kolmogorov-complexity metric to detect
these outliers and download contextual bad actors data for expert analysis. Some of these
outliers presented interesting cases for offline expert analysis as pre-cursors of incipient faults.

3. A design trade space. Establishing the design trade space is as important as demonstrating technical
feasibility. Our focus was to design the VIPR functions as an expansion of existing Aircraft
Diagnostics and Maintenance Systems (ADMS).

a. We recommended the way in which prognostic functions can be implemented as extensions to
the central maintenance computer function—an ARINC 624 based messaging protocol for
implementing a distributed VLRS within existing aircraft computation and communication
constraints, anomaly detection function as an expansion of the aircraft condition monitoring
function.

b. Using a combination of historic regional airline data, simulation and limited aircraft hardware,
we demonstrated a base set of failure modes that VIPR can detect with relatively high degree
of accuracy and confidence. While the confidence is a strict function of the number of fault
cases, a handful of scenarios have a significant impact on safety and condition-based
maintenance. Table 1 lists these impacts and a first step towards developing favorable cost-
benefit trade studies.

4. Performance metrics. Advanced functions within VIPR such as generation of advanced monitors and
more complex inference rules require increased communication and computation bandwidth. We
developed a systematic approach for making these trades. Using designed experiments, we
demonstrated that the extended ARINC 624 messaging protocol with VIPR reasoner can achieve
lossless performance when the inferencing is distributed across available computation nodes within
an aircraft. Using a standard communication model, we concluded that a 10kB/second bandwidth is
sufficient to achieve the 10-second latency goal. Our simulation studies also showed a detection
accuracy of 98% with one initiating fault and 76% accuracy when we had two or more initiating

Page 9

faults. While this is a significant improvement over the state of the art (which assumes only one
fault at any given time), there is definitely room for VIPR performance improvement.

5. Onboard inferencing. Simple on/off threshold-crossing evidence is insufficient for prognostic
reasoning. VIPR standardized three formats to express more complex and heterogeneous forms of
evidence such as: noisy evidence, prognostic vectors, and condition indicators. We extended the
naive Bayesian framework to handle uncertainty in evidence, causal cascades, and trend
information. Standardization of the evidence enabled us to make these inference rules aircraft
agnostic.

6. Prototype implementation of VIPR to establish the technical feasibility of these features as
extensions to the central maintenance computer function (CMCF) on legacy Boeing, Bombardier,
and Dassault aircraft. This prototype provides a cost-effective pathway for realizing VIPR as an
extension to existing aircraft hardware and software.

7. Hardware integrated demonstration. The high quality of the LaserRef VI self-diagnostics allowed us
to use the device’s existing output for input to the VIPR software; consequently, integrating the
LaserRef VI with VIPR added no overhead to the its operation. We integrated a test version of the
Honeywell LaserRef VI Inertial Reference Unit and other aircraft fault evidence streams with the
VIPR reasoner. We injected four faults into the LaserRef VI, and these faults were detected by the
reasoner, three at the LRU level and one at the Area level.

Our program shows that VIPR has a favorable impact on safety and condition-based maintenance. This
conclusion is summarized in Table 1. We envision VIPR primarily as a software enhancement, although
the role of new sensors greatly assists fault detection and isolation.

Table 1. Significance of VIPR on safety

A/C Systems VIPR Accomplishments Safety Impact CBM Impact

e Active query during
engine start to
generate a richer
evidence set.

Engines, APU,
Bleed, Fuel

Delivery

* Prognostic reasoning
on richer evidence set
discovered via data
mining.

e Active query during
APU start of the main
engine.

¢ Detect incipient faults in fuel
control and turbine blade
erosion that progress as
uncommanded engine
shutdown.

e Using available data

demonstrated a 20-30 flights
prognostic window for fuel
control fault (overspeed
shutdown) and 10—15 flight
prognostic window for blade
tip break (vibration shutdown)
Detect fuel manifold problems
that may manifest as false
engine-on-fire alerts.

e For the fuel controller fault,
avoid an unscheduled engine
removal.

e For the turbine blade break,

avoid secondary damage and
plan a scheduled borescope
inspection.

Reduce diagnostic trouble
shooting by focusing on the
manifold and avoid false
engine removals.

Schedule condition-based
borescope inspection and
usage based APU removals.

Page 10

A/C Systems VIPR Accomplishments Safety Impact CBM Impact

Avionics (Lref6
IRU)

Actuators
(EMA)

Avionics

(power supply
and GPS)

Anomaly
detection

using aircraft

data

¢ Reasoning across
engine, APU, bleed,
and fuel delivery
subsystems.

Utilized condition
indicator-based on
system knowledge to
detect ADS fault.

Utilized condition
indicator-based
evidence developed
under AFRL program
FA8650-08-D-7803
0001 in the reasoning
process.

Utilized condition
indicator-based
evidence developed
under NASA program
NNAO8BA45C in the
reasoning process.

Developed an
approach to
hierarchical anomaly
detection for the
aircraft fleet.

Demonstrated the
feasibility of extending
the above approach to
on-board anomaly
detection.

Provide better situation
awareness by identifying root
cause and preventing nuisance
messages.

Fault detection of in-range air
data faults and prevention of
fault cascade.

In addition to fault detection,
VIPR can provide parametric
values to enable control
reconfiguration which can
prevent loss of control.

Some of these problems if
undetected caused stall and
overspeed warnings which in
turn lead to undesirable pitch
up and pitch down autopilot
commands.

Provide the mechanism to
capture the bad actor data
related to anomalous events
with unknown/unspecified
safety significance.

Anomalous flap settings could
indicate multiple types of
safety problems.

The incorrect fuel level sensor
could cause an incorrect alert
and nuisance alarm to the flight
crew.

Foundation for a smart ACMF
function. Could help to capture
data for unknown-unknown
conditions.

3. Introduction and Background
An important challenge for aviation safety is safeguarding against system and component failures and

e Differentiate among faults

that manifest within the bleed
duct, APU and engine bleed.

 Fault isolation between power

supply and GPS.

Provide mechanism for
capturing data corresponding
to the anomalous events that
can be matured to add
missing fault conditions to the
reference model.

Foundation for a smart ACMF
function. Could help to
capture data for unknown-
unknown conditions.

malfunctions. Faults in one aircraft subsystem can propagate to other subsystems, and multiple faults

could interact. The overall objective of VIPR is to detect adverse events that may be occurring in the
vehicle that will lead to a safety incident in the near future [2].

Page 11

The four functional modules of VIPR are: onboard inference engine, system reference model, learning
loop and communication interfaces. The modules are numbered 1 through 4 in Figure 1 and described

below.
_/"—‘\‘
. . (1) -
VLRS Inferencing Engine | (2)
@ e
-D e
o]
|Evidencehandling ‘ ‘Cascadeanalysis HActivequery | E
1_l_ u
|vauthesisgenerat|‘on ‘ ’Mode-basedinhibition ‘ R E
D
|Temp0ra|ﬁitering ‘ ‘Functionalcapabiﬁtv | &-‘
GEJ Systematic
+— _—
e | [Data Mining
(a)e vy
External Systems .
- 1. Inference engine
A/C FMS, Ground Station Others ... 2. System Reference Model
3. Offline learning loop
4. Comm. Interface protocols

Figure 1. Functional modules within VIPR

Inferencing engine. This module uses health evidence generated from all components and
subsystems within a vehicle (such as an aircraft) to produce the current diagnostic state or
predict the future evolution of a fault. It produces the most plausible explanation for all the
symptoms exhibited by various components; creates new hypotheses for tracking multiple
faults; and deletes hypotheses that may have weak or no supporting evidence.

System reference model. The relationship necessary for inferencing is separated as a static
system reference model. This partitioning allows the same inference engine software code to be
reused on multiple vehicles and minimizes certification and qualification costs for deploying
VIPR onboard an aircraft. The system reference model is an aircraft-loadable software module
that describes the relationship between evidence generated at the component or subsystem
level and failure modes that can be mapped to specific maintenance or corrective actions.

Data mining and learning loop. Fleet modeling, data mining, and knowledge discovery methods
working on historical data can detect anomalies and precursors to critical failure modes.

Page 12

Discovering new patterns and updating old relationships in the system reference model can
continually improve aircraft safety to a higher level. Information from this learning loop, which
results in a A-change in the reference model, enables VLRS to provide an accurate health
assessment of a component, subsystem, or system and support condition-based equipment
maintenance and replacement.

4. Communication interfaces. VIPR is designed to take a system-wide view of the adverse event
detection problem. While the input interfaces define how VLRS receives health information
from various member components, the output interface defines how it communicates its
outputs to the flight crew (displays), ground maintainer (ground station), or a flight
management system for automatic fault accommodation.

4. Approach

VIPR incorporates new concepts and technologies that reason about data captured from multiple
subsystems to detect a potential adverse event, diagnose its cause, and predict the effect of that event
on aircraft safety. Validating these concepts early is important not only to increase the likelihood of
technical success, but also for early adoption within the community. Broadly speaking, our activities
were organized in three phases that correspond roughly to Year 1, Year 2, and Year 3 of the program.

In Year 1, we gathered user requirements and then used an animated concept of operations (ConOps)
model to visualize the VIPR operation. This work helped us gather customer expectations and systems
requirements and make course corrections. In Year 2, we implemented a prototype VLRS that can be
deployed as an extension to existing aircraft hardware and software; demonstrated how VIPR helped to
avoid aviation safety incidents; and outlined a systematic approach for cost-benefit tradeoff studies. In
Year 3, we integrated the LaserRef VI IRU as a hardware member system in a VIPR-demostrated system
to evaluate VIPR performance in more realistic environments. We also explored the use of anomaly
detection to augument the event data gathering of the auircraft condition maintenance function.

We realized the VIPR objectives by performing these major tasks:

1. VIPR detailed design. VIPR defines three new formats to express more complex and heterogeneous
forms of evidence (besides the three that exist today). These formats are: noisy diagnostic
monitors, prognostic monitors, and condition indicators. In this task, we described specifications
associated with each type of evidence. We documented the extension of the naive Bayesian
framework to reason with this evidence in a detailed design report and presented the theory of VIPR
during a technical interchange meeting.

2. VIPR implementation. In this task, we encoded advanced VIPR functions to illustrate its ability to
handle heterogeneous evidence, hypothesize and disambiguate competing fault conditions, and
fuse multiple prognostic and trend evidence. Our secondary objective was to simulate VIPR in a
more relevant aircraft environment by using a common library to support ARINC 624-based
messages. Prognostics implementation in the VIPR demo showed the proactive detection of three
safety incident precursors from the regional airline historic data.

3. Data mining:

Page 13

a. Safety case study analysis. Using publically available safety reports, we identified ten cases
that could be analyzed with available historical data. In each case, a combination of
supervised and unsupervised learning, we discovered precusors that manifested across
subsystems such as engines, navigation, actuators, bleed, APU, and fuel delivery. Our
objective was to incorporate this discovered knowledge within VIPR and compare the
outputs. The before and after results illustrate the net safety impact.

b. Anomaly detection. Using the regional airline data, we developed anomaly detection
approach for both off-line and on-line anomaly detection.

4. Performance metrics and cost benefit analysis. While historical, recorded events can illustrate
effectiveness, they are insufficient for verficaition and validation. In this task, we developed an
approach to systematically study VIPR performance using a simulation testbed. Using a Monte Carlo
analysis, we documented summary statistics such as communication and computation cost to
support the advanced functions within VIPR.

5. Integrated demo. We demonstrated VIPR with LaserRef VI hardware as a member system. We
simulated LaserRef VI faults including software and sensor faults. The sensor faults included both
internal sensors such as accelerometers and gyros, and external sensors such as air data sensors.
We demonstrated the VIPR prototype with a sample aircraft reference model. This model included
representative failure modes and evidence generated from key subsystems such as propulsion,
navigation, 24V power supply, GPS receiver, APU, fuel manifold, and an electro-mechanical actuator.
The objective of this activity was to provide a simple graphical tool with which the user could
introduce one or more failures and visualize VIPR’s internal working.

5. Progress Summary
Table 2 summarizes the key VIPR proposal concepts, Year 1-3 status, and progress.

Table 2. Accomplishment summary with respect to proposal concepts

Proposal Year 1 Status Year 2 Status Year 3 Status

Elements

Fault condition | Concept of Operations | Naive Bayesian framework
construct and | document described in | extended to handle
operations CDRL 4.1.04. heterogeneous evidence.
Internal peer review of theory,
available to NASA on request.
Software implemented and
tested.

Page 14

Proposal

Elements

Year 1 Status

Year 2 Status

Year 3 Status

System Definitions and Created a reference model to Created a reference model to
Reference requirements include representative failure include representative failure
Model described in User modes and evidence generated modes and evidence generated
Requirements, CDRL from subsystems such as from subsystems such as LaserRef
4.1.05. propulsion, navigation, 24V VI IRU, propulsion, navigation, 24V
power supply, GPS receiver, APU, | power supply, GPS receiver, APU,
fuel manifold, and an electro- fuel manifold, and an electro-
mechanical actuator. mechanical actuator.
Monitor and Recommendations Completed specification and Implemented monitors, including
evidence captured in CDRL implementation for three new LaserRef VI hardware. Imple-

abstraction

4.1.02.

forms of monitors (noisy
diagnostic monitor, prognostic
monitor, and condition
indicators).

mented the trend monitor for the
propulsion engine. Completed
exercising all forms of monitors
(noisy diagnostic monitor,
prognostic monitor, and condition
indicators).

Tiered and
distributed
architecture

ARINC 624-based
messaging protocol to
support distributed
reasoning defined in
CDRL 4.1.03.

Implemented the message
encoding and decoding
protocols. Demonstrated the
protocol over a TCP/IP transport
layer.

Demonstrated the tiered VIPR
architecture using data from
multiple systems: LaserRef VI
hardware, propulsion (regional
airline data), APU, actuator and
power supply (simulated).

SMART Process | Steps 1, 2 & 3: User Steps 4 & 5: detailed design and | Step 6 & 7: Validation of concepts
requirements, implementation. through demonstration and
animated ConOps & simulation.
architecture flow.

Data mining Identified ten incidents | Applied tree-augmented network | Applied anomaly detection to

and learning recorded in the for discovering precursors. regional airline data. Discovered

loop Aviation Safety Analyzed four case studies to evidence, such as high energy take-
Information Analysis tune existing monitor thresholds | off and abnormal engine
and Sharing (ASIAS) and discovered new monitors. temperatures, of future failures.
database and matching | Demonstrated that newly Anomaly detection can be
operational data. discovered knowledge can be incorporated in the ACMF. Results

used to selectively update are documented in CDRL 4.2.08 and
probability values in an existing CDRL 4.3.03.

system reference model.

Delivered as CDRL 4.2.01.

Metrics: Defined a set of Implemented a simulator to Updated the results with metrics

performance performance and cost | inject failure modes and from HIL. Results are documented

and cost CDRL 4.1.07. generate noisy heterogeneous in CDRL 4.3.05.

evidence. Developed Monte
Carlo analysis software to run
this simulator with VIPR and
collect performance accuracy
and cost metrics. Results
documented in CDRL 4.2.05

Page 15

Proposal Year 1 Status Year 2 Status Year 3 Status

Elements

Metrics: impact | Scripted scenarios to Demonstrated how an onboard Demonstrated how a VIPR systems

on safety illustrate how VIPR VIPR can detect an incipient approach can detect and avoid
would address select problem before it manifests as a | fault cascade. Results for an air
safety incidents. safety incident (such as in-flight | data fault are documented in CDRL

engine shutdown, engine on fire |4.3.01-4.3.05.
and hydraulic fluid leaks adverse
events). Results documented in
CDRL 4.2.05.

5.1 VIPR Detail Design - Functional Decomposition

The concepts of failure modes and evidence are central to the VIPR design. Failure mode is an abstract
entity that can be mapped to specific corrective or mitigation actions; for example, a failure mode could
map one-to-one with physical failures like those defined by the component manufacturer or a condition
that has a well-defined corrective action (such as remove and replace) defined in the aircraft
maintenance procedures. Evidence, or symptom, is also an abstract entity and represents observations
regarding the aircraft. Figure 2 is an example of a bipartite graph that lists the failure modes and
evidence for an engine subsystem.

The i'th evidence within VIPR
denoted as e; has three states:
indict, exonerate, and unknown.
In the indict state, evidence
signifies the presence of one or
il g ORES more failure modes. The
-+ Hot Start exonerate state signifies the
» OverSpeed Shutdown absence of one or more failure
modes. The unknown state
indicates that we have not yet
made this observation. Evidence
is generated by analyzing sensor
measurements. A monitor is an

Failure Modes Evidence
_» No Lightoff

- Slow Start

Fuel metering fault Low stall margin for HPC

Fuel drain fault

D)
0
b

)
%

f
:é
('i
\
y

Igniter assy fault

L
\

Inlet Fan fouling
=+ Low Temp Margin at TKO

r

HP Compressor fault <<
= High inlet pressure loss

W
0
y
‘\Q“
\
:

:%\
N
)

HP turbine fault
= Low Temp Margin at CRU

\
)?; \
)

Nozzle clogging

Failed powerup test
Controller fault

Lo stallmsrglator-fan expression of evidence. In the

Controller Ch A open current state of the art, member

OverTemp Shutdown systems within an aircraft provide
Figure 2. Failure modes mapped to evidence for an engine subsystem on/off or pass/fail indications.

Typically, the on/fail indicator implies an indict state, and off/pass implies an exonerate state for the i'th
evidence. This information is insufficient to support prognostic reasoning, so we expanded the monitor
set. While the inference engine should not depend on how the monitor was generated, it must have a
uniform interpretation of monitors generated from various aircraft subsystems; hence standardization
of the monitor definition was a critical step in our design. Our design needed to provide enough
flexibility for member systems to express heterogeneous forms of evidence besides the simple on/off
format. To support prognostic reasoning, VIPR defines the new forms of monitors: (1) diagnostic

Page 16

monitor, which is a probabilistic indication for the state of the i'th evidence; (2) prognostic monitor,
which allows the member system to express a probabilistic state for the i'th evidence in future; and
(3) condition indicators-based monitor, which provides a time series signal together with an
indict/exonerate region.

The i'th evidence can have multiple monitors—some of which can be diagnostic, some prognostic, and
some condition indicators. Further, monitors can be issued at different timestamps. Each of these
monitors assigns a probability distribution to the three states of the evidence. The Evidence handling or
monitor function within VIPR combines the information provided by heterogeneous monitors and
assigns a combined probability for the i‘th evidence state. Reference [1] provides details of this fusion
approach.

A failure mode manifests as one or more pieces of evidence; a given piece of evidence can be triggered
by more than one failure mode. The fault isolation function analyzes all the monitor observations to
generate fault condition (FC), which explains all observed monitors. More specifically, this function takes
three actions:

e First, it generates a fault condition that can explain some of these observed monitors. More
than one fault condition may be needed to explain all observed monitors. New failure modes
may be added or deleted to an existing fault condition to modify the assertions about the
current state of the subsystem. Eventually, it deletes fault conditions whose monitors are no
longer in the system.

e Second, it calculates the normalized strength of various fault hypotheses asserted by a given
fault condition. This value must be derived using the current and future values of the evidence
state as reported by various monitors, which provides a forward-looking assertion that a failure
mode may be occurring in the system—this is VIPR’s prognostic feature.

e Third, it applies several tests such that weak fault hypotheses can be rejected and strong ones
can be reported as the prevailing or future state of the subsystem. Details of a fault condition
and its operations are described in [1]. The fault isolation function is also called the hypothesis
handling function since the fault condition encodes VIPR’s prevailing hypothesis about the
aircraft health state.

“Cascade” refers to interactions between subsystems. From VIPR’s point of view, it describes failure
modes in one subsystem that can trigger a monitor in another subsystem, as well as failure modes in
one subsystem that can cause a failure mode to occur in another subsystem. The cascade function
within VIPR uses these subsystem interactions to modify existing FCs generated by individual
subsystems. VIPR supports two forms of cascade analysis: fault and symptom cascade. The difference
between them is best explained using simple examples.

A failure mode in the 24V power supply could trigger monitors in the radio subsystem
(symptom cascade). A broken blade failure mode in the APU can cause an erosion failure
mode in the propulsion engine (fault cascade).

“Suppression” refers to filtering out inconsequential information that may distract the flight crew or a
maintainer. If filtering does not occur, the crew may address a secondary problem rather than the

Page 17

primary one. The suppression function within VIPR uses this information to inhibit these monitors. The
need for suppression arises when two or more subsystems share the same resource, such as fuel or a
power supply. In these cases, once the fault isolation function establishes an FC that contains a failure
mode for the shared resource, then we need to suppress the monitors that may have triggered in the
other subsystems that are sharing this common resource. This example explains the suppression
function:

In the previous example, a leaking capacitor in the power supply was sending a high-
frequency ripple current and causing a crackling noise in the radio. Once we establish a
“leaking capacitor” fault hypothesis within the 24V power supply subsystem, we would like
to suppress the "crackling noise' monitor so that the maintainer/crew can focus on the root
problem.

The term “active query” refers to an intelligent data collection function. As we saw earlier, monitors
allow us to express the current and future state of evidence elements. Linking this evidence to failure
modes enables us to isolate, perform cascade analysis, and suppress them. What if we are yet to
discover this relationship? One way to do this is to collect sensor measurements that may help us build
an appropriate monitor, then through a supervised learning process, create a new element in the
evidence set and establish the relationship between the newly discovered evidence and existing
elements in the failure mode set. We call this the active query function.

Within VIPR, an active query can be triggered when a monitor is issued or an FC containing a specific
fault hypothesis is established. These are called monitor and FM queries respectively, and are explained
with the following example.

Consider a two-engine aircraft. Suppose we observe a “slow start” monitor from engine one.
Once this monitor fires, we would like to collect an engine speed sensor measurement 30-
seconds before this monitor fires at the 10Hz sampling rate. We would like this data from
both engines. We define this as a monitor query.

The reasoning process within VIPR is initiated by the arrival of a new monitor that changes the
probability distribution for the evidence state space, which then changes the probability distribution of
the fault hypothesis state space. The temporal analysis function controls the rate at which these
changes are made to these probabilities. Two forms of temporal analysis are supported within VIPR:
intermittent monitors and FC timeout.

A monitor is intermittent if it changes the evidence state assignment faster than a pre-defined time
interval. Since each firing of the monitor will update the evidence state space, and the fault isolation
function will update the fault hypothesis probabilities, we want to perform these calculations only when
the monitor state is persistent. Intermittent monitors are handled through a simple latching mechanism.
The FC timeout mechanism within VIPR provides a means by which an FC can be put on the back burner
for lack of sufficient monitor evidence; the timeout is specified as a simple number.

While the overall objective of VLRS is to detect and diagnose ongoing failure modes accurately, the net
impact of this prevailing fault on mission completion or safety is the function capability function.

5.2 VIPR Detail Design - Software Implementation

Figure 3 illustrates VIPR’s functions, which are described above. All these functions are needed for VIPR
to achieve its overall objective of detecting events before they escalate as safety issues.

Page 18

VIPR functions are data driven—where “data” refers to

“« >

aircraft-specific information. For example, in an abstract

_ . sense, the fault isolation function operates on a bipartite

. Adive QUEG/RG graph: failure mode set, evidence set E, and the links between

o them. The exact mechanism by which the elements in the

- Temporal analysis evidence set states were assigned is irrelevant to the fault

-::’ isolation function. It starts with a state space distribution for

% «— Inhibitions and suppression the elements in the E set and generates the state space

o distribution for the elements in the F set. Clearly, the monitor

e) function assigns the state values for elements in the E set. To
= > Cascade analysis

g make this assignment, it needs to know the relationship

(o]

between the E set and another set called the monitor set M.
«—> Hypothesis generation The cascade function, on the other hand, operates on two F
sets and links between them. The suppression function
operates on the F and E sets using two bipartite graphs to
achieve its objective.

«— Monitors — Evidence handling

Figure 3. Function modules within VIPR

Clearly, the functions operate on abstract sets, such as F, M, and E. Since VIPR is solving real aircraft
problems, we need to “instantiate” these sets with aircraft subsystems. This instantiation is captured in
the system reference model. A given aircraft can be composed of several reference models, each
provided by a member subsystem.

For specific instantiation of the abstract sets such as F, M, and E, the data is specified as an externally
loadable data image (LDI). This specification allows the member subsystems to continually update these
sets as new knowledge is discovered. The underlying calculations do not change, the isolation function
merely “receives” an instance of a reference model as an input argument along with other items.

The VIPR functions are loosely connected and can thus be distributed across multiple computation
hardware. However, they are interlinked. For example the suppression function receives its inputs from
the monitor function. Similarly, the cascade function operates on the outputs generated by the monitor
and the fault isolation functions. A messaging protocol describes how the information is encoded so that
the sender can send the data and the receiver can receive the data. VIPR defines an ARINC 624-based
message protocol. Reference [3] describes messages that encode various entities such as fault condition,
fault hypothesis, prognostic vector, and condition indicators.

VIPR is coded in MATLAB® using an object-oriented paradigm. For convenience, we defined a container
class called viprSystem in the demonstration. Key classes and their interactions are illustrated in
Figure 4. The implementation is summarized below.

Page 19

<< class >

viprConstant
defirgz global constants
y . -
% ilaseSn provides zpecific data e class T
class o
virsFunction virsrefmodel
creates, delafes or modifies
creates, delats modifizz
<< clags = <« class ==
viprEvidence faultcondition

/ comtain: ob% theze clazze: contant obje%of theze clazzes

<< class = <« class B <« class =
conditionTndicator prognosticWector flthypothesis

Figure 4. VIPR demonstration classes and their interactions

1.

There is only one instance of the viprSystem. This object is a container that consists of
several nodes. A node is a physical computation medium within an aircraft that has certain non-
volatile memory, CPU time, and RAM.

VIPR can execute on a dedicated onboard computer, in which case, we have only one node. VIPR
can also be distributed, in which case there are several nodes. If we choose a distributed
architecture consisting of several nodes, the communication links between them must be
defined. Currently, only a three-level (LRU, Area and Vehicle) tree configuration is allowed. In
this case, the root (Vehicle) node communicates with the aircraft display system and provides
the maintainer portal.

The nodes communicate among each other using an expanded ARINC 624 messaging protocol.
Each node executes one or more VIPR functions (those described in Section 5.1 and Figure 3).
These functions are implemented as specialized objects of an abstract class called
virsFunction.

Each function is data-driven. Aircraft-specific data for each function is given by a static reference
model. Exactly one static reference model is associated with each vlrsFunction. This static
reference model is implemented as specialized objects of an abstract class called
virsrefmodel.

As various functions execute, several data objects are created, deleted, or modified. Two such
entities are viprEvidence and faultcondition. These objects may contain objects of
supporting classes such as FltHypothesis, prognosticVector, and
conditionlndicator

The implementation also uses enumerated constants to support its operations. These
enumerated constants are defined by a static class viprConstant.

Page 20

8. The reasoning process is triggered by the arrival of a new monitor. This evidence generation is
outside the reasoning process. A helper class, evidenceStream, simulates the arrival of new
monitor to initiate the reasoning process.

9. Aircraft-specific information contained in various static reference models is saved in a TXT file. A
single file contains all the necessary information to populate all the reference models. It is a
mandatory input to the creation of the viprSystem instance.

10. A utility class, viprUtils, defines several utility functions that are used by various VIPR
functions. This class can be interpreted as a utility library that is part of the code at each node.
This class is not shown in Figure 4.

Discussion about new evidence

Prognostic monitor definition enables member systems to encode futuristic evidence. It standardizes a
probabilistic expression (in the form of a prognostic vector) that can directly participate in the Bayesian
reasoning process. However, not all member systems can produce a prognostic monitor. In this case,
VIPR design allows the member system to periodically report a condition indicator (Cl). The member
system can then configure options for generating an equivalent prognostic monitor from the CI.

Basic terms are defined in Figure 5. Generating a prognostic monitor includes of a trend window
containing B number of historic sample points, a prediction window containing Wsamples. The
condition indicator is a time-series signal x(t, — k), k = 0,1,2, ... B — 1. Here the current time is
denoted as tj.

Trend window. User specifies the

A number of samples B in this window.
Prediction window. User specifies the
Condition number of samples Win this window.
Indicator. / This determines the size of the prognostic
cco = 1 vector VIPR generates.
_______________ 3 Useralso specifies the model to be usedto

, Time > - - -
(current) ty perform the interpolation and extrapolation

Note: Complexity of VIPR prognostic monitor
generation: O(B2 + W?)

Figure 5: Terminology definition

Consistent with the data-driven VIPR design, the mechanism for generating a prognostic monitor from a
given member system Cl is configurable using an externally loadable data image (LDI). In this LDI, the
member system specifies (a) the trend window size, (b) the prediction window size, (c) the failure mode
set associated with this Cl, and (d) the interpolation and extrapolation method. This method depends on
the Cl. VIPR handles both continuous and Boolean Cl’s. Corresponding methods are described next.

Note that prognostic monitor generation is a computationally expensive step. Specifically, the
complexity scales as 0(B% + W?). Hence, the number of calculations is proportional to the square of

trend window and prediction window size.

Page 21

the threshold @

6 |

Condition
Indicator,
Cl

Future trend of crossing

I
(current) o

Figure 6: A continuous valued condition indicator.

Time =2

the
In addition to N historic

Continuous. Mathematically, samples
take real values.

values, we are also provided a threshold 6

such that x(t) > 6 provides indicting
evidence towards a pre-defined set of failure
modes. Conversely, x(t) <6 provides

exonerating evidence towards the same pre-
defined set of failure modes.

In this case, a prognostic monitor is generated by a

suitable extrapolation method that predicts

threshold crossing x(t) > 6,t > t in the future as show in Figure 6.

VIPR provides two extrapolation mechanisms, linear and hidden state, which are shown in

Figure 7. Both mechanisms assume that the observed Cl is a noisy realization of a hidden trend line; the

noise follows a zero-mean, constant-variance, normal distribution. The confidence of the extrapolated

line crossing the given threshold 8 is a straightforward means for generating the corresponding

prognostic monitor.

@ Extrapolate the slope

@ Hidden

damage state

W

Threshold | 8 i=at+e~N(0,0%) Threshold | © P=arte
Condition e - Condition -
Indicator /_J_J_,V,J"' . indicator /_\/_J_N_’_/.-

ﬁ L

To

Often works when Clis a performance

{efficiency, etc) measure

To

Often works when Cl is stress or fatigue

related measure
Figure 7: Generating prognostic monitors from condition indicators
Boolean. Mathematically, the samples
take a 0/1 value. In this case, the Future durations/periods
of exceedance
_

member system may not provide the
threshold 8, but only information about
exceedance. Also in this case, x(t) = 1
provides indicting evidence towards a
set of failure modes.

x(t) =0
exonerating evidence towards the same

pre-defined

Conversely, provides

pre-defined set of failure modes.

1

Health
Indicator,
Hi

0

[
(current) E

Figure 8: Boolean Condition Indicator
indicator)

Time =

(also called a health

In this case, a prognostic monitor is generated by a suitable extrapolation method that predicts the

duration of obtaining a sequence of x(t) = 1,t > t, in the future as shown in Figure 8.

Page 22

VIPR models the count of Boolean indicators (called health indicator) as a displacement of the random
walk process. The displacement L, increments by 1 when x(t) =1 and decrements by 1 when
x(t) = 0. Let L, (t) denote the net displacement at current time t. During this time, assume that we
have observed X,, number of indicting evidence. To generate a corresponding prognostic vector, we are
interested in calculating the probability P(X,|L,(t)) — that is the probability of observing X, successes
when the displacement is L,, at time t. To calculate this probability, we must assume the underlying
distribution for observing a success or a failure. VIPR provides two forms of correlation: (a) binomial
distribution wherein the probability of getting an indicting evidence is p, (b) correlated binomial

distribution where p = oL is the correlation factor. Here gL is the gap length and denotes the maximum

number of samples for which an exonerating evidence can be ignored while observing a sequence of
indicting evidence.

The transition matrix for this random walk model is given as follows:

HI(n) 0 1
0 (q+p p p(l—p)j
1 qd-p) p+mM

where, p+qg=1 and 0 < p < 1 for correlated binomial distribution and p = 0 for non-correlated
binomial distribution.

Given a sequence of Boolean Cl, the user can configure either a binomial or correlated binomial model
to estimate the corresponding p,p values. Generating a prognostic monitor is to calculate the
probability of observing indicting evidence over the prediction window.

5.3 Regional Airline Data Mining

In Section 5.1 we described the fundamental elements for prognostic reasoning—evidence, failure
modes, and the relationship between them and monitors that express the current state of evidence.
Broadly speaking, the onboard inference rules operate on this bipartite graph (example shown in Figure
2) and calculate the probabilities for various failure modes using a Noisy-OR classifier, which is a
simplified form of a standard Bayesian network. However, rather than addressing the problem as a
traditional data mining problem, we approached it as an extension to the existing reference models. In
other words, the data mining algorithms should be designed to provide information that supplements
existing, expert-generated reference models, as opposed to providing different formulations and
different reasoner structures. Verifying the model enhancements by experts is then relatively

|ll

straightforward. Specifically, the data mining resulted in the following “surgical” updates to the existing

reference model:

1. [DM_Up1]: Updating the relations between evidence and failure modes. Specifically updating the
conditional probability that the i evidence e; will be assigned an indicting state when the j™ failure
mode fm; is present. In other words: P(e=1[fm;=1).

2. [DM_Up2]: Updating indict/exonerate region specification for a condition indicators-based monitor.
For example, the original reference model may specify that an indicting monitor for evidence g;

Page 23

should be issued when the aircraft climb rate is less than 200 ft/s. Following the learning step, we

may change the threshold to 180 ft/s.

3. [DM_Up3]: Creating new monitors that combine m; and m, such that when both monitors are
issued, their combined occurrence either asserts a stronger evidence for a specific failure mode fm;.

That is, the learning step can replace two conditional probabilities P(m;[fm=1) and P(m,/fm;=1)

with a new probability P(m;, m,[fm;=1).

4. [DM_UpA4]: The learning process discovers a new monitor, hence, new evidence for an existing

failure mode. For example, the learning step can discover a monitor when the aircraft climb rate is
greater than 270 ft/s, which creates a new evidence e,., in the reference model. In this case, the
reference model update occurs in three-steps: creating new monitors, creating new evidence, and

linking the model with existing failure modes.

Data mining activities and their role in the
project are illustrated in Figure 9.
Demonstrating and validating the proposed
upgrades to the system reference model
needs data. An important requirement for the
success of data-driven techniques is the need
for relevant and well-organized data. We call
this the data curation step. To evaluate the
ability of our data mining techniques to
improve the reference models, we have
conducted a set of experiments using the
simulated data from CMAPS-S, which is a
simulator developed at NASA's Glenn Space
Center [4].

Safety Event Extract historical
Report data

l. Supervised learning

Reference model A update
1) Updated probabilities, 2)

Data Curation
Preparation

&

Improved monitor threshold, 3)
New monitors, 4) New evidence-
failure mode relationships

Il. Unsupervised learning

Data Mining Algorithms

1) TAN classifiers
2) Clustering
3) Anomaly detection

Extract historical
data

Data Curation &

Preparation

Figure 9. Data mining activities

The simulator parameters can be set to run in nominal and faulty modes of operation. We chose the

following condition indicator (Cl) monitors for improvement. The Cls were: (1) stall margin of the high

pressure compressor: HPC Cl, (2) stall margin of the low pressure compressor: LPC Cl, and (3) stall

margin of fan: Fan Cl.

The CMAPS-S data was generated in a way that the fault(s) and their time of introduction were known,

so it was easy to assign the nominal and faulty labels for each data stream. The CMAP-S data models

three faults: (1) a fan fault (Fan), (2) a high pressure compressor fault (HPC), and (3) a high pressure

turbine fault (HPT). We were hoping to generate three new pieces of evidence (e;, e,, and e3) for the
three failure modes listed above. The data mining results are listed in Table 3.

Table 3. Evidence discovered using the TAN supervised learning algorithm

‘ Evidence e;*

‘ Acc FP

Fan fault 94.4% | 0.4%

Evidence e,*
FN Acc FP FN

0.7%

Evidence e;*

Acc

FP

FN

Page 24

High pressure compressor fault 80.8% | 36.7% | 0%

High pressure turbine fault 94.7% | 89% | 2.9%

* All evidence used the three Cls listed earlier. Acc = accuracy, FP = false positive, FN = false negative

This knowledge was incorporated in the reference model as follows:

P(e;=1|fm;=1) = 0.944, P(e;=1|noise) = 0.004
P(e,=1|fm,=1) =0.808, P(e;=1|noise) = 0.36
P(E3=1|fm3=1) = 0947, P(E3=1 |fm1=1) = P(e3=1 |fm1=1) = 0.015, P(E3=1 | noise) =0.09

With this confidence, we applied the same procedure to data recorded from a fleet of aircraft. This data
set contained the statistical richness arising from aircraft-to-aircraft variation as well as heterogeneity of
flight patterns. The fleet consisted of 30+ identical aircraft, each aircraft operating 2—3 flights each day.
Data spanning three years was made available to support this work. Within this time period, the airline
experienced several safety incidents that formed specific labels for the “supervised data mining” step. In
addition, we also explored unsupervised learning to discover anomalous operations. Table 4 summarizes
the A-updates we made to a supplier provided reference model via supervised data mining. Additional
details on performance of the Tree Augmented Network (TAN) algorithm used are described in [7 and8].

Table 4. Summary of reference model A updates through data mining

Condition indicator

Before data mining

Post data mining

StartTime An upper threshold to generate evidence Discovered a lower threshold to generate a

called no-start new evidence to indict a failing fuel
metering unit.

IdleSpeed A lower threshold to generate evidence Updated the probability of this evidence to
called hung-start. indict a failing fuel metering unit.

peakEGTC An upper threshold to generate evidence Updated the probability of this evidence to
called over-temperature. indict a failing fuel metering unit.

N2atPeak An upper threshold to generate evidence —
called over-speed.

timeAtPeak An upper threshold to generate evidence --

called over-temperature.

Liteoff, prelitEGTC,

An upper threshold to generate evidence
called no-lightoff, hot-start respectively.

Updated the upper threshold and this
evidence to indict a failing fuel metering
unit and turbine blade loss.

phaseTWO No links were links defined for these Cls in | Defined upper threshold and linked this
the reference model. evidence to indict a failing fuel metering
unit and turbine blade loss.
tkoN1, tkoN2, tkoEGT, | No links were links defined for these Clsin | --
tkoT1, tkoPALT the reference model.

Stall margin, HPC
margin, HPT margin

No links were defined for these Cls in the
reference model.

Discovered a pattern among these Cls to
generate three new items of evidence that
indicted the fan, compressor, and turbine
respectively.

Page 25

Rolltime, resdTemp, No links were defined for these Cls in the Defined upper threshold and linked this
N2atDip, dipEGTC reference model. evidence to indict a failing fuel metering
unit and turbine blade loss.

The updated reference models were incorporated as an external loadable data image for onboard VIPR
reasoning. The net impact on avoiding safety incidents are listed in Section 5.6.

5.4 Anomaly Detection
VIPR anomaly detection monitors individual aircraft in a fleet by collecting and processing onboard data
and continuously seeking emerging patterns. These steps are depicted in Figure 10 and described below.

::> Post -analysis
Pre-analysis <——]

Q
: . I Cnline Anomaly . MNew VIPR
Estab\ls?\Base\lne | generation Expert Analysis -

Figure 10: Operational steps in VIPR anomaly detection

e Pre-analysis: This step sets up the anomaly detection function within VIPR.

1. Establish a baseline from historical fleet data.

e Post Analysis: These steps continually generate anomalies and translate significant ones

as VIPR monitors to enhance prognostic reasoning.

2. If a pattern is an outlier when compared to a pre-established baseline, it is downloaded
from the airplane as an anomaly report for further analysis at a central location.

3. An expert analyzes a series of anomaly reports and determines their significance with
respect to operational practices, safety hazards, and/or equipment-related malfunctions.

4. A subset of these cases deemed important to aircraft safety or operational efficiency are
programmed and deployed across the entire aircraft fleet as new VIPR monitors.

From a functional point of view, within the VIPR context [10], a diagnostic/prognostic monitor provides
evidence about the presence of specific failure modes—called its ambiguity set. Ambiguity set indicates
that the evidence provided by a D/P monitor may not map to exactly one failure mode. Nevertheless, all
failure modes associated with a D/P monitor are actionable through appropriate maintenance or
mitigation actions.

Anomaly monitors, on the other hand, do not have a pre-defined ambiguity group. In fact, the overall
objective of the anomaly detection function within VIPR is to define this ambiguity group.

The functional element of Step 1 (establish baseline) is an offline analysis, described in Section 5.4.1.
From a data mining perspective this is an unsupervised learning step. Steps 2—4 are online, semi-
supervised learning steps; they are described in Section 5.4.2.

Page 26

5.4.1 Establishing a baseline: Pre-analysis
The offline approach to deriving the nominal model that is the basis for anomaly detection is based on

an unsupervised learning approach. The overall approach involves the following steps, which are marked
1-5in Figure 11.

1.

Data frames surrounding key flight phases such as taxiing, take-off, cruise, descent, and touch down
are collected from individual aircraft in an operating fleet. Each data frame is a two-dimensional
vector, and each flight defines a unique data point. Therefore, a set of flights, definea P x N x M
data cube, where P is the number of flight segments, N is the number of features associated with
each flight segment, and M is the number of samples that define the time-varying characteristic of a
feature. Here, the term “feature” is synonymous with an aircraft sensor parametric value. Pairwise
feature distances between every pair of data points is computed using the Kolmogorov complexity
measure [Kolmogorov, 1965]. This computation requires O(P?N) calculations, which can be
computationally intensive, because P is typically of the order of 10* to 10° and N is typically of the
order of 10° (see Table 1).

The pairwise feature dissimilarities between flight segments are converted to a two-dimensional
matrix of pairwise distances among flight segments.

The Euclidean metric is employed for building the two-dimensional dissimilarity matrix among flight
segments.

A hierarchical clustering approach (in our case, we used the complete link clustering algorithm)
generates the dendrogram used to define the nominal clusters of flight segments as well as the
outliers and anomalous clusters.

Offline analysis bifurcates to: (a) extract a nominal model to be employed for on-aircraft anomaly
detection (Steps 2—4 in Figure 11), and (b) an anomalous clusters that can be used directly to
generate VIPR monitors as described in Section 3.2.2).

Page 27

K-complexity
measure

Euclidean
Metric
d dy do ‘_\
Feature M
d d‘. da
Feature 3
Flight Data Frames 4% Feare2 & Fl _ - dl -
g r 4 d & B Dy Din
PxNxM Feature |
7 ®
: Dl,i+_ E; DIN
:F Complete-Link
Pairwise Feature @ N Clustering
Dissimilarity Matrix Dissimilarity Matrix
P(P-1)
P(P-1
. -
5 2
For on-board - Nominal Model — @
anomaly
detection
Bad Actor Detection -
Characterize Anomahes Hierarchical Clustering
Dendrogram

Figure 11: Establishing a baseline—offline unsupervised analysis

5.4.2 Anomaly Generation: Post Analysis

The on-aircraft element consists of an anomaly monitor generation element. Sensor data streams are
continuously monitored by an on-board computing device for any new emerging patterns. If necessary,
these patterns are sent over a low-bandwidth wireless or wired network to a central location for

possible further analysis.

Off-aircraft analysis includes a human expert analyzing the data using numerous tools. These tools
search for patterns in data for multiple flights; report key descriptive statistics grouped by phase of
flight, airports, and weather data; and document the distribution of these patterns as they relate to
standard operating procedures. Figure 12 illustrates the steps for online anomaly generation within
VIPR.

Page 28

M+ 1 update {
Anomaly Monitors
generation [[]::>

Stati Static

: Context addition G Reference

I Reference

} model
____________________________ model ____] N

VIPR Reference Model
Report download On Aircraft frincrement

\[L oftaircrat |

CBM/isafety significant

e Diagnostic OR Prognostic Reference Model
- : T monitor definition Authoring

Wait for more evidence

Figure 12: VIPR Anomaly Detection: Functional View

The result from the offline expert analysis helps determine the significance of the anomaly. From an
operational point of view, significance implies that the anomaly affects operational, safety, or
equipment maintenance, and most importantly, an appropriate mitigation or maintenance action can be
defined for the next time this pattern occurs.

Functionally, within VIPR the failure modes provide this logical abstraction, which when asserted by a
fault condition, enables the flight crew to avoid a safety incident or helps the maintainer execute a
condition-based maintenance action. This failure mode set {F} is defined within the VIPR static reference
model, which is an externally loadable data image (LDI). If an appropriate failure mode already exists in
the VIPR static reference model, the newly-defined anomaly pattern can provide additional evidence as
additional diagnostic or prognostic monitors. If an appropriate failure mode does not exist, then we may
need to create a new failure mode node in the static reference model.

Procedurally, anomaly detection reduces to adding more nodes to the evidence set {E} or adding more
nodes to the failure modes set {F}, adding more arcs to the bipartite graph, and assigning a detection
probability. This step is called reference model authoring. Functionally (as shown in Figure 12), it creates
a delta-increment to the existing static reference model. This delta-increment appends additional
information to the VIPR LDI and can be uploaded to every aircraft in the fleet during a regular software
update cycle.

These functional steps can repeat several times in response to the detection of novel anomalies. The
process begins with the generation of anomaly monitors that are eventually translated to on-aircraft
diagnostic and prognostic (D/P) monitors. These D/P monitors, viewed as increments to the on-aircraft
VIPR reference model, are used by the reasoner algorithm to generate plausible hypotheses of fault
conditions that may cause adverse safety incidents or trigger condition-based maintenance.

Page 29

Table 5. Summary of anomaly detection through data mining

Anomaly

Broken fuel quantity

sensor

Method of Discovery

PCA-DBSCAN identified the initial
sequence. K-complexity clustering
isolated relevant features that
included the fuel quantity sensor.
Analysis of sensor indicated an empty
tank. Further analysis confirmed that
tank was indeed not empty.

Post data mining

Introduced the use of contextualization

after detection to understand the
nature of a collective anomaly. In this
case, going from location based context
in PCA-DBSCAN to Tail Number based
context in K-complexity clustering.

High energy take
offs

Online K-complexity identified several
flights where the bad actors included
altitude, altitude rate, and engine
temperatures, which showed more
energy than normal was used on take-
off.

Can isolate from these features
potential condition indicators for use in
diagnosis.

Wind altered take
offs

PCA-DBSCAN Identified the initial
sequence. K-complexity clustering
isolated relevant features that
included glide slope and wind speed,
which spiked on take-off.

Can isolate from these features to mark
this as a warning for other aircraft at
that location. In this case, the initial
context of location was suitable for
both methods.

Power lever angle
inconsistencies

Online K-complexity identified a flight
where the bad actors included glide
slope, and a single power lever angle
for the third engine. The PLA sensors
for the three other engines were not
ranked. Offline analysis confirmed that
only this lever had anomalous
behavior.

Online method found a potentially
interesting anomaly that is fairly rare.

5.5 Performance Metrics

The VIPR evaluation approach is shown in Figure 13. We used a regional airline data base to enhance
the reference model and to generate monitors for testing VIPR. The reference model is also an input to
the Failure Mode Simulator, which generates an evidence stream corresponding to a selected failure
mode defined for the reference model. The evidence stream is then fed to the VIPR reasoner which
produces outputs including the faults isolated, potential faults (faults detected with high probability but
not isolated), time of isolation, isolating reasoner, etc. These outputs are logged and processed by
metrics analysis scripts which compute the true detect rates, false alarm rates, average time to isolate,
volume of reasoner messages, processing and communications latency, etc. The metrics analysis results

can be used for improving the reference model and the reasoner.

Page 30

Data Reference

> ..

; Mining Model

; _________ - :_,‘_:::_:_> .

Failure Mode Evidence VIPR

! . —> Stream —> —> GUI

: Simulator Reasoner

E L Ry

Metrics
Analysis

Figure 13. VIPR evaluation approach

The reasoner accuracy and communication metrics are calculated for two equivalent reference
models—flat and hierarchical. VIPR utilizes the hierarchical reasoner where the reasoning is distributed
between the LRU and the area- and vehicle- health managers. The flat reasoner model is utilized in the
central reasoner framework, where all the reasoning is performed at the central location.

We measured the reasoner accuracy to the following outcomes:
e Inserted fault conditions isolated
e Incorrect fault isolations
e Inserted fault conditions detected with high probability (but not isolated)
e Incorrect fault conditions detected with high probability
e Missed fault conditions: inserted fault conditions that were not even detected

We developed the following notation for marking these conditions:

| Fault detected and isolated

w)

Fault detected with high likelihood but not isolated

* Denotes an inserted fault; for example *| indicates that the inserted fault was isolated

Denotes a fault that was not inserted; for example I+ indicates a fault that was isolated but not inserted

+
M Missed fault condition

The “** and ‘+’ annotations can be combined with the ‘I’ and ‘D’ annotations. For example, a test
outcome with the annotation ‘“*|+’ indicates that the inserted fault was isolated, but so were other fault

conditions.

To enhance the rigor of our testing, we simulated just the “complex faults” which are those faults
implicated by more than one monitor that also each implicated more than one fault. Ten APU fault
conditions and 12 engine fault conditions met this condition. Results of simulating the 22 complex faults,
including all combinations of pairs of faults, are documented in the VIPR Metrics Report [7].

We ran the hierarchical and flat reference models for the same set of evidence streams for the set of
complex faults and got very similar accuracy results for the two models. In summary, for the single fault
case (see Figure 14), the reasoner provided an unambiguous and correct result (*I and *D results) in 75%
of the test cases and a correct but somewhat ambiguous result (*I+ and *D+ results) in an additional
23% of the test cases, and isolated to an incorrect fault the remaining 2% of the test cases (I+ result).

Page 31

90
80
70
60
50
40
30
20
10

M hierarchical

u flat

*I' *I+ 1+ *D *D+ D+ M
220 Outcomes

|
m*D
| ¥+
H*D+
Wi+
m D+

mM

Figure 14: Results of single fault simulations

Outcomes for multiple complex fault cases are shown in Figure 15, below. The outcome was correct and

unambiguous in 45% of the test cases (*I and *D results) and correct but ambiguous in 31% of the test

cases (*I+ and *D+ results). In 14% of the test cases the reasoner detected the wrong fault (I+ and D+
results), and it failed to detect 5% of the fault insertions (M result).

180
160
140
120
100
80
60
40
20

M hierarchical

u flat

= + + o + +
——DDE

462 Outcomes

N

|
m*D
W ¥+
m*D+
u |+
u D+

M

Figure 15: Results of multiple fault simulations

During VIPR Phase 2, we computed metrics that measure the reasoner accuracy, latency,

communications bandwidth, computational cost, and the rate of false alarms. The summary and

conclusions table from the metrics report [7] is included here for completeness in Table 6.

Page 32

Table 6: Phase 2 metrics summary [7]

Topic VIPR Metrics Summary

Accuracy The reasoner’s ability to correctly isolate a failure from a given evidence stream
depends on the quality of the evidence stream and the correctness of the
reference model. When simulated with evidence streams that contained 0.1%
erroneous data, the reasoner correctly and exactly identified the inserted faults
75% of the single fault cases and 45% of the multiple fault case. In addition, it
correctly identified the inserted faults, but not uniquely, for an additional 23%
of the single fault insertions and 31% of the multiple fault cases. Therefore, the
reasoner correctly identified 98% of the single fault insertions and 76% of the
multiple fault insertions.

Accuracy for the hierarchical and flat reference models were the same.

The prognostics have been shown to be accurate on three cases discovered
from the airline database. The case studies on prognostics precursors have
shown that the VIPR approach detects precursors to safety incidents multiple
flights in advance of the actual event (in-flight shutdown).

Isolation time For the single fault test cases, isolation typically occurred immediately after
fault insertion (zero computation steps). The worst case time to isolate was 15
reasoner computation steps and the average time was 0.6 steps.

The time to isolate for the multiple fault scenarios was an order of magnitude
longer than for the single fault insertions; the worst case time to isolate was 153
steps and the average case was 13.6 steps.

Communications For sending the ARINC 624 messages generated by the reasoner over a periodic
bandwidth safety critical communications system, we computed that 1 KB/second
bandwidth would yield, on average, message latency of 1-3 seconds, depending
on reference model and number of faults inserted. However, to reduce the
worst case latency below the 10 seconds for all the simulated test cases would
require a 10 KB/second communications bandwidth.

Isolating node For the flat model, the isolating reasoner entity is always in the vehicle node.
However, for a hierarchical model, reasoning can occur at any node. For our
aircraft hierarchical model, isolation occurred at the LRU level 519 times, once
at the area level, and never at the vehicle level.

Communications The flat model required 22% fewer messages and 28% fewer bytes in total than
volume did the hierarchical model.
Computation cost When computation cost is the same at all aircraft levels (LRU, area, and vehicle),

the computation cost for the flat model was lower than for the hierarchical
model because the flat model requires fewer transactions to achieve the same
results as the hierarchical mode. However, when computing at higher nodes is
more expensive than at the lower levels, the distributed hierarchical model is
less costly because so much of the computation is performed on the lower cost
computing resources.

False alarms The 0.1% rate of false evidence generated false alarms in only three of the 902
simulations run.

Page 33

We monitored the ATV communications cost for executing the HIL demonstration and found the cost to
correspond approximately to the communications cost for a production LaserRef VI. For the
demonstration, transmitting 14 IR output parameters at 25 Hz using a TCP protocol consumed about 4%
of the device’s CPU time. A LaserRef VI uses ARINC 429 (instead of TCP) to transmit about twice as many
IR outputs and at double the rate (approximately four times more data than transmitted during the
demo). The output process in the LaserRef VI is allocated 17% of the device CPU time.

Since the data used by the reasoner is already being transmitted by the device for consumption by other
aircraft systems (principally the flight management system), we can assert that the reasoner did not
place any additional processing requirement on the device.

5.6 Integrated Demonstration

5.6.1 VIPR Demonstration

The main objective of the integrated demonstration is to showcase the VIPR reasoner’s ability to use
heterogeneous data from different sources within the VLRS framework. It effectively demonstrates the
integration of data from multiple aircraft subsystems, namely engines, APUs, avionics, flaps, and IRUs.
Further, it integrates the input data collected from multiple systems at different sampling rates, which is
representative of the diversity of data types and rates within the aircraft. Figure 16 shows the block
diagram for the integrated demonstration in which the multiple evidence steams simulate two IRUs,
engine data from the DAR files, and a fault simulator that can simulate evidence and false alarms for the
other subsystems.

ATV
ATV = 2 IRU1
Playback —>* e———n
R
i) IRU 2 ~_IRU Monitor VIPR g —
Eaybacke) I: | Generator GUI
= "l‘ w\da”'.nlli-d
Engine . =
. Monitors ,_;\\ i _ Sl el
I o o —
DAR I:f/ Anomaly '\;l: 24 VIPR =) B |
_Files J Detection [
Engine Fault
Avionics Simulator
APU Monitor
Flaps Generator

Figure 16: Integrated demonstration with multiple evidence streams.

The DAR files contain records of 181 parameters from the regional airline data in ARINC 717 format. It
includes both continuous and discrete data. Different parameters within the DAR are recorded at 1, 4, 8
or 16 samples per second. The VIPR monitors are event driven (Table 7). The monitor generation

Page 34

function uses the high frequency input from the DAR/IRU to generate the monitors (evidence streams)
for the VIPR reasoner. The fault simulator directly generates the monitors for the simulated systems by
using the system reference model. The false alarms for the simulated system monitors are generated
using the false alarm rates specified in the fault simulator. The false alarms for the hardware (IRUs) and
the DAR monitors are purely a function of the input data and the monitor quality.

Table 7: Sampling rates for input evidence

System/Function Sampling rate
(samples/sec)
ATV-IRU 25
DAR 1/4/8/16
Fault Simulator (can be set to any other value) 0.1
All Monitors Event Driven

We built the software components shown in Figure 16 to graphically demonstrate VIPR’s detection,
isolation, and disambiguation of failure modes.

The reasoner, implemented in MATLAB with a Java library for ARINC 624 message formatting and TCP/IP
communications, appears in the upper right portion of the figure. The reasoner communicates with a
GUI implemented in Python that displays the step-by-step operation of the reasoner. The evidence
simulator, also implemented in MATLAB, generates an evidence stream for a given fault set, which can
be supplemented with erroneous evidence to simulate the generation of false alarms.

The demonstration is controlled from the GUI menu bar and the buttons at the bottom-right corner of
the window. The demonstration operator begins by selecting a reference model, which the GUI
forwards to both the reasoner and the evidence simulator. Next, the operator selects one or more faults
to simulate, along with the fault insertion times. Finally, the operator starts the simulation. The “swim
lanes” in the upper-left pane of the GUI list the individual messages sent among the reasoner elements;
overall demo status is displayed at the top of the right-hand pane; and progress towards isolating the
inserted faults also appears at the right and below the overall status. A hierarchical display of the
indicting monitors and fault conditions is displayed in the window’s bottom pane. In the bottom-right
corner of the window are buttons for starting, stopping, pausing, resuming, and stepping the demo. A
second GUI window (not shown in Figure 16) displays messages that could be displayed in an aircraft
EICAS window to help the pilot manage failure conditions.

We used a version of the LaserRef VI, known as Acceptance Test Vehicle (ATV), for the demo because it
allows accelerometer and gyro sensors to be simulated. Otherwise, the ATV hardware and software is
the same as for a LaserRef VI.

The ATV in Figure 16 provides the evidence from the hardware IRU. The IRU has two sets of sensors—
internal and external. The internal sensors include a set of three accelerometers and three gyros to
measure the accelerations and rotations along the three orthogonal axes in the aircraft frame of
reference. The external sensors include the inputs from GPS receivers and air data systems (ADR). The
IRU uses the internal and external inputs to generate a pure inertial solution and a hybrid-inertial
solution that is the inertial solution enhanced with the GPS data. The IRU also employs the BIT,

Page 35

reasonableness and freshness tests to the inputs (both internal and external) to validate and qualify the
output solution. Note that in the current system architecture, the IRU depends on the ADR and the GPS
to detect their faults and provide a validity flag.

Figure 17 shows the timeline for the scenario shown at the VIPR hardware-in-the-loop final
demonstration.

ADS1 and then U'::ggﬁ*fﬁ‘ F'al;;"':ﬁ""
Take-off ADS?2 failures fault u\ Touch-down
E T i P9 p_ 8 a p 4 x? \

NP

cleared

Figure 17: Final demo scenario

The demonstration illustrated a complete flight from take-off to touch-down with multiple subsystem
injected faults. The ‘x’es on the timeline mark the injection (orange and red ‘x’es) and removal of faults
(black ‘x’es). The orange arrows show flight leg sections where the ADR inputs are not usable. Note that
“ADS 1 undetected measurement fault” on Figure 17 represents an ADR fault that is not detected by the
IRU (i.e. the ADR data flag is not set as invalid) but is instead detected by a VIPR Area level monitor. The
monitor detects this ADS fault by comparing the air data values produced by the two air data receivers,
but cannot isolate the fault to a specific ADR; hence both ADRs are marked as failed (the second red ‘X’
in Figure 17).

We simulated two ADR fault scenarios. In the first case (yellow ‘x’ shown in Figure 17), ADR 1 faulted;
the IRU detected the fault and automatically switched to ADR 2. Subsequently, ADR 2 also failed (first
red ‘x’ in Figure 17); the IRU detected the second air data failure and began producing a subset of the
pure inertial solution feasible in the absence of air data.

In the second scenario, the ADR passed invalid data to the IRU that was marked as valid. An area level
VIPR reasoner detected the fault and marked both ADRs as invalid, which tells the pilot that the
airspeed, altitude, and vertical speed for the IRU cannot be trusted. Since the air speed is no longer
accurate, any stall and overspeed warnings are meaningless. Even without the isolation, this knowledge
will help the pilot by providing better situation awareness. If we enabled the hybrid IRU solution, we
could use the GPS output to help isolate to the bad ADR [8].

The fault cases used to test the integrated demo are listed in Table 8, and also includes a flap excessive
friction fault that occurred at time 500.

Page 36

Table 8: Faults simulated in the HIL Integrated Demo.

ADS 1 fault Monitors for the two IRUs The reasoner reports ADS 1 failure to
report ADS receiver 1 faults EICAS at Time 150.48

ADS 2 fault Monitors for the two IRUs The reasoner reports ADS 2 failure
report ADS receiver 1 faults and No ADS Data condition to EICAS

(ADS 1 and ADS 2
faults cleared at time
250)

at Time 250.16

ADS 1 and ADS 2 Monitors for the avionics area The reasoner reports avionics —
values are not manager report ADR altitude invalid air data condition to EICAS at
consistent with each ~ and ADR airspeed mismatch time 400.80

other conditions

(inconsistent data
fault cleared at time

430)

Flap friction fault Monitors for the flap area The reasoner reports a flap area —
manager report surf free and excessive friction condition to the
position limited conditions EICAS at time 500.48

We exercised two other ATV fault scenarios using the integrated demonstration configuration, but
without evidence streams from the second IRU, the DAR files, or the fault simulator.

For the first scenario, we added a small bias to one of the gyro values. This error accumulated over time,
and at 670 seconds into the scenario, the ATV reported three conditions, which triggered the Attitude
Invalid, IR Fault, and Critical ATV Fault diagnostic monitors. The reasoner used these inputs to generate
an IR Fault failure condition at time 670.2.

In a similar scenario, we added a small bias to the values for one of the accelerometers. After 1500
seconds, the ATV had not reported any faults, but the IR solution had diverged from the actual path.
This fault would have been detected had we configured a second IRU and built area-level monitors that
compared the two IR solutions, as we did for checking the values from the two air data receivers. This
fault can also be detected at the IRU level with GPS inputs using the hybrid solution as illustrated in
Bharadwaj et al. [8].

The final ATV-related fault we simulated was a clock mismatch between ATV processing and the sensors.
In this scenario, the sensor values are correct but the clock mismatch causes them to be used in the IR
solution at the wrong time. The fault was inserted at the beginning of the flight. After 180 seconds of
simulated flight time, the ATV reported conditions that caused the Attitude Invalid, IR Fault, and Critical
ATV Fault monitors to fire. It then took the reasoner 0.52 seconds to report an IR Fault condition.

Page 37

Using data mining techniques, we were able to predict the occurrence of three faults:

e Fuel metering fault with 95% accuracy and less than 1% false positives from 30 flights before the
occurrence of the actual fault

e Blade break/nozzle damage fault with better than 90% accuracy and less than 3% false positives
from 20 flights before the fault’s occurrence

e Fuel manifold rupture with better than 90% accuracy and false positives at 22% from four flights
before the fault’s occurrence

5.7 Impact on Safety

We provide a detailed case study to illustrate the potential impact of VIPR on a safety issue. The
example surrounds an in-flight engine shutdown (IFSED) incident recorded by the ASIAS database. An in-
flight engine shutdown is a highly undesirable, adverse event that significantly impacts aviation safety.
The flight crew immediately responded and, per the operating procedures, turned back and safely
landed the aircraft. Investigation by the maintenance crew indicated a faulty fuel metering unit,
although no exceedances had been reported for that engine in the recent past. If detected earlier,
correcting such a problem would have been a routine line maintenance activity that would have
prevented the IFSD and potential safety impact.

In Section 5.3, we described the reference model provided by the engine supplier together with the
condition indicators. Message traces from the reference model indicated a fuel metering failure and a
hypothesis was formulated by the onboard VIPR. However, the assigned probability was too low and
competed with another failure hypothesis that indicated an engine turbine nozzle failure.

We used the condition indicators from the last 50 flights leading up to an engine shutdown event to
improve the reference model as described in Section 5.3. The A-updates to the reference model and the
results are summarized in Figure 18. On the left hand side of Figure 18, Item #1 summarizes the causal
sequence of events discovered by the data mining step—starting from the fuel metering actuator fault
that initially manifested as sluggish engine start. The controller compensated by aggressive schedules.
At some point, the controller saturated, which resulted in lower idling speeds. Eventually, the speed
dropped below its allowed threshold, while the engine exhaust gas temperature (EGT) remained high,
triggering the adverse IFSED event.

Page 38

Discovery via data mining |
| Sys Ref Model A updates ‘

/1\[Actuator fault]

|
\

VLRS Inferencing Engine

I
.\/ 2 :I

(o

[Lightoffevidence] Evidence Handling

Active query

Cascade analysis
Hypothesis generation
Functional impact

[S\uggi;h start]

: Peak EGT evidence "
[Aggressive controller]

| l

pontrollersaturatioﬂ » {Idlespeed evidence}

VVVVYY |

v
] | T
[Idling speed drop | {Over‘temp evidence} ~—
l FC \‘.
Dver-temp conditior [IFESD event] | O<mm)
l Ill‘lk \@,_ !f.f
[Auto shutdown]

Fuel metering fault (root cause)
established by VLRS 20-30 flights
before the adverse IFSED event

Figure 18: VIPR combined with A updates made to the reference would detect the fault prior to an in-flight
engine shutdown safety incident

Second, we encoded this newly discovered knowledge as a A-update in the system reference model.
These updates are marked #2 in Figure 18. This knowledge implied the addition of three new pieces of
evidence to the system reference model: (1) time when the engine started, called the lightoff evidence,
which looks for abnormally long engine start times, (2) peak exhaust gas temperature evidence that
looks for abnormally high exhaust gas temperature during engine startup, (3) the idling engine speed
evidence that looks for abnormally high and abnormally low speeds when the engine is idling before
aircraft takeoff. The two existing pieces of evidence—namely over-temperature exceedance and INFSED
are shown in Figure 18.

Third, we built the VLRS such that the inference engine exercises all seven functions we described in
Section 5.1. The actual functions exercised by the VLRS are marked #3 in Figure 18. Finally, we re-ran
VIPR with the updated reference model using the data from the last 50 flights before the IFSED event
occurred and monitored its outputs—the fault conditions as described in Section 5.1 and marked #4 in
Figure 18. The most plausible fault state of the aircraft was isolated to a fault condition that contained
exactly one element in its ambiguity group—the fuel metering unit. Repeated experiments with varying
notification threshold on the fault condition hypothesis we concluded that the VLRS would have
established the fuel metering root cause anywhere from 20-30 flights before the IFSED event. This
discovery would (in theory) allow the maintainer to fix the faulty component, eliminate the source of
the fault, and completely avoid this safety event.

Page 39

While this single event may be statistically insufficient for machine-learning validation metrics, the clear
explanation discovered by the data mining method and the A-change to the reference model, together
with a VIPR, seemed sufficient for the engine domain expert to give his approval.

We analyzed two more safety incidents and the impact VIPR would have in avoiding them. The second
incident also involved an inflight engine shutdown caused by a high vibration event. In this case, VIPR
correctly identified a broken blade that eventually led to high vibration and a safety engine shutdown.
The third case was an engine-on fire safety incident. In this case, the data mining discovered a rather
“noisy monitor.” However, VIPR was able to handle this noisy monitor and, through active query and
cascade analysis, conclude that the problem was a leaking fuel manifold, which led to an engine-fire
incident. A leaking manifold affects engines #2 and #3 simultaneously, while failing fuel metering (HMA)
affects only one engine. These three cases not only showed the prognostic accuracy of VIPR but also its
impact on avoiding safety incidents. The prediction window produced by the VIPR approach is
[YRiaalealaly P | R Cimiiva 19

Fuelmetering Blade break/nozzle Fuelmanifold
fault damage rupture

-
= P

Data mining discovery of prognostic monitors

(Y
W

L

[Lightoff evidence J *argin temp eviden c}z { Lightoff evidence]
[Peak EGT evidence [Peak EGT evidence] [StartTime evidence]
[|dle speed evidence {Slo pe margin eviden ce] Peak evidence]

Accuracy: > 95%, FP < 1% Accuracy: > 90%, FP <3% Accuracy: > 90%, FP ~22%

Upportunity | - . 30 fignts -~ 20 flights ~4.5
window I
i \: r'--"""""" Trmnmmmmmeee A I‘
© Overempevidence i HighViBevidence | Fire evidence
*} ~30 seconds *! ~10 seconds *, ~10 minutes
T 1 Safety gro=sm==t — : A :
IInflight engine shutdown; . iInflightengine shutdown:! i engineshutdown |
'~ ! Incident ; : !

Figure 19: VIPR results for three safety incidents

Page 40

6. VIPR Software Certification

To be resident with operational software in the aircraft, the VIPR reasoner software would need to be
certified to DO-178B requirements up to the level of safety implied by the intended use of the reasoner.
The table below discusses the expected level of safety certification needed for three potential uses of
the reasoner.

DO-178B Safety Reasoner Usage

Certification Level

Level D Level D certification enables the reasoner to operate as part of the current CMC
and be present in the aircraft for compiling information that could be used by an
airplane mechanic to diagnose and repair failures. At this level, the information
produced by the reasoner cannot be depended upon for making decisions that
could impact safety. The pilots and maintenance personnel retain complete
responsibility for safety.

Level Bor C Level B or C certification (depending on how responsibilities are assigned in the
overall aircraft safety plan) is required to use reasoner conclusions to guide pilots
or maintenance personnel on matters that could affect safety. Examples could be
to suggest a course of action to a pilot following the detection of a failure, or to
recommend deviations, based on operational parameters monitored by the
reasoner, from the regular maintenance schedule.

Level A Level A certification would be required to use reasoner results for automatically
reconfiguring redundant systems after detecting a failure.

There are two parts to the reasoner’s safety certification. The first is to certify the reasoner software.
From a certification perspective, there is nothing exceptional about the reasoner software.
Consequently, existing processes for developing software that meets DO-178B requirements should be
sufficient for the VIPR reasoner.

At Levels A, B and C (but not D), the second part is to certify both the reference model and the overall
technical approach (reasoner algorithms, etc.) to ensure that a correctly functioning reasoner will, with
suitably high probability, generate conclusions that are safe. Because the reference model is not an
ordinary piece of software, the certification procedure will likely require a period of education and
negotiation with the designated engineering representative (DER) community to define an acceptable
process for certifying reference models.

7. Suggested Future Direction

VIPR embodies three core concepts, all of which support pro-active detection of conditions that may
eventually manifest as safety incidents and/or enable condition-based maintenance. These three
concepts—expression of complex evidence generation such as prognostic monitors and condition
indicators, platform-agnostic Bayesian inferencing rules that take an active role in the diagnostic
process, and offline data mining for continual improvement of the onboard reasoner reference model—
form the core of the VIPR technical solution.

Page 41

At the end of the three-year program, we have established the technical feasibility of these concepts

and defined a design trade-space for practical implementation of prognostics within a vehicle level

reasoner. Although this is an important step for business decision making, we believe the future of VIPR

can further benefit by continuing activities in the following three areas:

1.

Continually building safety and CBM case-studies for practical acceptance. We demonstrated a
Bayesian inferencing process and generation of enriched evidence as an expanded central
maintenance computer and aircraft condition monitoring function. All such expansions must have a
cost-benefit analysis for practical acceptance. We clearly demonstrated VIPR’s ability to detect
failures related to fuel metering unit, turbine distress, and manifold leak all of which led to inflight
engine shutdown. While these examples clearly demonstrate the effectiveness of VLRS, our
examples were limited by availability of historical data and FAA recorded safety incidents. Validating
the VIPR system on other airline data will start building the necessary examples for a favorable cost-
benefit analysis. Since VIPR uses data that is commonly available on most modern aircraft, we
believe applying VIPR to a larger fleet of aircraft is relatively straightforward and can be a
programmed as a back-off server application that does not interfere with airline operations.
Fleet-wide anomaly detection. Specifically, we evaluated a Kolmogorov-complexity based measure
to detect outliers against a nominal baseline data set. Within VIPR, this baseline data set is encoded
as the static reference model that captures the relationship between failure modes and evidence.
While one can investigate other statistical methods for outlier detection, we believe activities in this
area should focus on expanding the reference model to include pilot check-lists under nominal non-
normal (such as inflight shutdown, loss of air-data, etc.). Encoding this knowledge as additional
elements in the reference model will enable the same data mining and/or inference rules to detect
anomalies that arise due to pilot and aircraft interactions. Some of these anomalies can be mapped
to incipient aircraft problems or airport-related problems. This is the first step towards
understanding emergent events that neither the aircraft OEM nor component supplier can
anticipate, and hence positively impact aviation safety.

Onboard reasoning and evidence handling. The definition of prognostic monitors enables the
member systems to encode futuristic evidence. It standardizes a probabilistic expression (in the
form of a prognostic vector) which can directly participate in the Bayesian reasoning process. We
believe this expression is sufficient to handle incipient faults that arise in engines, electrical systems,
APU, bleed systems and avionics. The gap one needs to fill is related to expressing evidence from a
structural health monitoring system. This evidence has both space (location of damage) and time
information. The prognostic fusion within VIPR needs to be expanded to handle this form of
complex evidence. Based on our experience, we recommend pre-processing of such evidence before
it enters the fusion step. In other words, we should address the challenge of how to fuse two
monitors that provide the same damage-related evidence such that one is looking at the problem
from the left and the other one is looking g at it from the right. A data-driven scheme for performing
this spatial averaging is an open area of research.

Page 42

8.

8.1

References

Documents Referenced in this Report

Numbers on the following document references correspond to the cross-reference numbers in the body

of this report.

1.

9.

10.

8.2

G. D. Hadden, D. Mylaraswamy, C. Schimmel, G. Biswas, X. Koutsoukos, and D. Mack, “Vehicle
Integrated Prognostic Reasoner (VIPR) 2010 Annual Final Report,” NASA/CR-2011-217147
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110012171 2011012606.pdf

D. Mylaraswamy, “Vehicle Level Reasoning and Data Mining,” CIDU, 2010.

D. Mylaraswamy, D. Hamilton, and G. Hadden, “Information Protocols: NASA VIPR Program,”
Technical Report, submitted by Honeywell to NASA (CDRL Sequence Number: 4.1.03), December
20009.

D. K. Frederick, J. A. DeCastro, J. S. Litt, “C-MAPSS User’s Guide for the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS),” NASA/TM-2007-215026

D. L. C. Mack, G. Biswas, X. D. Koutsoukos and D. Mylaraswamy, “Using Tree Augmented Naive
Bayesian Classifiers to Improve Engine Fault Models," presented at the 8th Bayesian Modeling
Applications Workshop in Barcelona, Spain on July 14th, 2011.

D. L. C. Mack, G. Biswas, X. D. Koutsoukos, D. Mylaraswamy, and G. Hadden, “Deriving Bayesian
Classifiers from Flight Data to Enhance Aircraft Diagnosis Models,” to be presented at the Annual
Conference of the Prognostics and Health Management Society, 2011.

R. M. Bharadwaj, D. Cornhill, and D. Mylaraswamy, VIPR Metric Report, CDRL 4.3.05, 2012.

R. M. Bharadwaj, K. Kim, C. S. Kulkarni, G. Biswas, “Model-Based Avionics Systems Fault Simulation
and Detection,” American Institute of Aeronautics and Astronautics, AIAA Infotech Aerospace 2010,
April 2010, Atlanta, GA. AIAA-2010-3328.

T. Dodt, “Introducing the 787,” ISASI, Sept 2011,

http://www.ata-divisions.org/S TD/pdf/other/IntroducingtheB-787.pdf .

D. Mylaraswamy, et al., “Vehicle Integrated Prognostics Reasoning,” NASA Aviation Safety Annual
Meeting, St Louis, 2011.

Published VIPR documents

The following documents were published under this contract:

1.
2.

3.

D. Mylaraswamy, “Vehicle Level Reasoning and Data Mining,” CIDU, 2010.

T. Felke, G.D. Hadden, D. Miller, and D. Mylaraswamy, “Architectures for Integrated Vehicle Health
Management,” AIAA-2010-3433, 2010.

G.D. Hadden, D. Mylaraswamy, C. Schimmel, G. Biswas, X. Koutsoukos, and D.L.C. Mack, “Vehicle
Integrated Prognostic Reasoner (VIPR) 2010 Annual Final Report,” NASA/CR-2011-217147
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110012171 2011012606.pdf

R. Bharadwaj, D. Mylaraswamy, D. Cornhill, C. Schimmel, G. Biswas, X. Koutsoukos, and D.L.C. Mack,

“Vehicle Integrated Prognostic Reasoner (VIPR) 2011 Annual Final Report”.

Page 43

10.

11.

12.

G. Biswas, X. Koutsoukos, D. Mylaraswamy, and G.D. Hadden, “Benchmarking the Vehicle Integrated
Prognostic Reasoner,” Annual Conference of the Prognostics and Health Management Society 2010.
D. Mylaraswamy, et al., “Vehicle Integrated Prognostics Reasoning,” NASA Aviation Safety Annual
Meeting, St Louis, 2011.

D.L.C. Mack, G. Biswas, X.D. Koutsoukos and D. Mylaraswamy, “Using Tree Augmented Naive
Bayesian Classifiers to Improve Engine Fault Models,” presented at the 8th Bayesian Modeling
Applications Workshop in Barcelona, Spain on July 14th, 2011.

Srivastava, D. Mylaraswamy, R.W. Mah, E.G. Cooper, “Vehicle-level Reasoning Systems” in IVHM
Perspectives on an Emerging Field, Ed. 1.K. Jennions. Publisher: SAE International. 2011.

D.L.C. Mack, G. Biswas, X.D. Koutsoukos, D. Mylaraswamy, and G.D. Hadden, “Deriving Bayesian
Classifiers from Flight Data to Enhance Aircraft Diagnosis Models,” presented at the Annual
Conference of the Prognostics and Health Management Society, 2011.

D. Mylaraswamy, “Addressing Aviation Safety using Vehicle Level Reasoning,” 1st Indo-US Workshop
on IVHM and Aviation Safety (WIAS), NAL Bangalore, 2012.

Srivastava, D. Mylaraswamy, R.W. Mah, E.G. Cooper, “Vehicle-level Reasoning Systems” in IVHM
Perspectives on an Emerging Field, Ed. |.K. Jennions. Publisher: SAE International. 2011.

R. Bharadwaj, et al., “Vehicle Level Prognostic Reasoning System,” talk at SAE 2012 Aerospace
Electronics and Avionics System Conference, Oct 30--Nov 1, 2012. Phoenix, AZ

Page 44

REPORT DOCUMENTATION PAGE oMo ApDroved o

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To)
01-03 -2013 Contractor Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
) .) NNL0O9AAOSB, NNLO9AD44T
Vehicle Integrated Prognostic Reasoner (VIPR) Final Report 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Bharadwaj, Raj; Mylaraswamy, Dinkar; Cornhill, Dennis; Biswas, Gautam; [5e. TASK NUMBER
Koutsoukos, Xenofon; Mack, Daniel

5f. WORK UNIT NUMBER
534723.02.03.07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, Virginia 23681

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/CR-2013-217972

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 06

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Eric G. Cooper

14. ABSTRACT

A systems view is necessary to detect, diagnose, predict, and mitigate adverse events during the flight of an aircraft. While
most aircraft subsystems look for simple threshold exceedances and report them to a central maintenance computer, the vehicle
integrated prognostic reasoner (VIPR) proactively generates evidence and takes an active role in aircraft-level health
assessment. Establishing the technical feasibility and a design trade-space for this next-generation vehicle-level reasoning
system (VLRS) is the focus of our work.

15. SUBJECT TERMS

Aircraft health; Anomaly detection; Data mining; Prognostics; Reasoner

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT [b. ABSTRACT]c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U UU 45 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

