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Abstract. The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium 

dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating 

by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at 

between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 

for system and process parameter development. Particles range in size from 100 – 50 microns in diameter. Student’s 

t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the 

spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed 

powders show great than 800% increase in the number of spherical particles over the stock powder with the mean 

spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the 

desired spherocity, and that process parameters be optimized for a more narrow particles size range.  
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INTRODUCTION 

Conventional chemical propulsion systems alone cannot provide the energy density and efficiency needed for 

successful long duration manned and robotic space flight missions; therefore new propulsion technologies must be 

leveraged if mankind is to continue pioneering the frontier of space. Nuclear fission type power generation and 

propulsion systems are a necessary evolution in realizing near term space exploration goals. NASA’s MSFC is 

developing tungsten-uranium dioxide fissile fuel rod samples for solid-core nuclear thermal rocket (NTR) 

technology applying new manufacturing and material processing technologies to build on the success of Rover-

NERVA research.  

An NTR’s solid core may be made of an arrangement of bundled hexagonal fuel rods
2
. These fuel rods are made of 

highly enriched UO2 fuel powders encapsulated in Tungsten (W) to form a cermet (ceramic-metallic) matrix 

composite. During the 1960’s and 1970’s, the joint NASA and Atomic Energy Commission’s (AEC) Rover-

NERVA program spent extensive time on the development of graphite based composite fuels for NTR engines
10

. 

Subsequent efforts such as the ANL 200 and GE 710 programs went on to investigate W-UO2 cermet fuel forms.  

Fissile fuel loss was an issue heavily researched with no simple solution. The prevalent theory, according to 

Haertling
5
, was that UO2 fissile fuel loss occurs due to mechanical failures of the fuel rod’s tungsten cladding caused 

by formation of UH3 resulting in large volumetric expansion. Hydrogen penetrates into the cermet matrix by bulk or 

grain boundary diffusion at high temperatures and reacts with the UO2 producing oxygen deficient UO2 as seen in 

Eq. (i). Upon cooling, substoichiometric UO2-x dissociates releasing free U as seen in Eq. (ii).  

                    (i) 

        (   )       (ii) 

             (iii) 
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The free uranium, which has a melting point well below 

the NTR core temperature, migrates along grain 

boundaries where it reacts with an excess of hydrogen and 

can form UH3 within the cermet; Eq.(iii). Rover-NERVA 

era investigations found that fissile fuel loss could be 

mitigated through process control techniques to improve 

particle density and purity, particle packing density and 

particle surface morphology. Spherocity, density, purity, 

and surface morphology of UO2 powder can be improved 

using thermal plasma processing.  

EXPERIMENT DESIGN 

The PSS is a 14 foot tall vertically oriented water cooled 

stainless steel vacuum chamber mounted inside of a 

carbon steel frame with a commercial spray plasma torch 

mounted inside the top of the chamber. A nearby control 

console manages the plasma forming gases, DC power 

supply for the plasma gun, and chamber vacuum level. 

Powder is metered and transported to the plasma gun by a 

commercial powder feeder. Operations require two 

operators.  

The three 12 inch diameter 304 stainless steel (SS) pipe 

sections that compose the 100 inch long chamber have an 

internal volume of 7.5 cubic feet. The chamber segments 

are mated together with Flexitallic 347 SS spiral-wound 

gaskets between ANSI B16.5 class 150 series weld neck 

flanges. Each chamber segment has 304 SS sheets rolled 

and welded together on each chamber segment seated on 

the weld neck of the flanges leaving a sealed volume in 

which cooling water flows.  

The Praxair model SG-100 multi-mode plasma spray gun 

is mounted on two brass feedthroughs that served as rigid 

mounts and supplied deionized cooling water to the 

anode, cathode, and gun face plate. The gun must be 

electrically isolated; therefore, the brass feedthroughs are 

mounted on a non-conductive garolite plate machined to 

mount to the PSS chambers top plate CF675-HN. Argon 

is the primary arc forming gas and a secondary gas of 

either hydrogen or helium was used to increase the heat 

content and velocity of the plasma. The SG-100 operates 

at maximum power level of 100 kW and must be water 

cooled
9
. The SG-100 is powered by a Halmer Robicon 

120 kW power supply and a deionized water supply pump 

with reservoir supplies cooling water. The plasma gun 

starter current is provided by a Praxair HF-2000 high 

frequency starter box.  

Stock powder and plasma-forming gases are routed to the SG-100 by 0.25 inch SS tubes inside of the chamber and 

0.25 inch teflon tubes outside of the chamber. Powder can either be internally or externally injected into the plasma 

jet though external injectors mitigate the risk of powder clogging inside of the gun.  

Figure 1. NASA MSFC UO2 PSS 

Figure 2. Praxair SG-100 setup 
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Figure 2. PSS EGMS Diagram 

The top chamber segment (TCS) has two 600CF-HN 

(con-flat half nipples) clocked 90 degrees apart where 

Quartz viewports are fastened allowing the plasma torch 

to be viewed from two perspectives, which offer relevant 

operator based information about how the powder 

interacts with the plasma. The bottom chamber segment 

(BCS) reduces the chamber’s internal diameter from 12 

inches to 2 inches. The conical transition was machined 

from a single billet of 304 SS to a 30 degree half angle to 

allow the powders to efficiently flow towards the center 

and bottom of the chamber to be collected in a removable 

hopper. The transition matched the wall thickness of the 

12 inch pipe segments. The reduced end of the transition 

is machined to accept a counter bored 450CF flange. An 

auxiliary threaded 304 SS coupling is welded onto the 

bottom of the BCS to allow the PSS chamber water 

jackets to be drained. 

The Effluent Gas Management System (EGMS) has an 

Edwards RV8 rotary vane pump, two custom designed 

ASME AG-1 compliant HEPA filter assemblies with pre-

screens, a 1 inch Swagelok 0.334 psig relief valve, and a 

vacuum control valve. The EGMS mounts to the 600CF-

NH on the middle chamber segment of the PSS. Chamber 

vacuum level is measures by analogue vacuum dial 

gauge. The vacuum level is controlled by a manual 

vacuum pump bypass valve. The PSS typically operates at 

350 - 600 torr. Typical total gas flow into the chamber 

from the gun and powder feeder is 2 - 4 scfm. The flow 

rates of the plasma-forming gases are regulated by flow 

control orifices and upstream gas pressure
4
.  

Surrogate powder spheroidization tests used the EPPI 

171D powder feeder. The UO2 spheroidization tests will 

use a rebuilt EPI 60C powder feeder. The powder feeder 

meters the powder into a carrier gas at 0.34 – 1.0 oz./min. 

The 60C powder hopper was modified to support a 

butterfly valve and quick flange on the top for isolated 

transfer of the UO2 powders into the hopper. Three 

custom 2 lb. capacity powder transfer and loading 

hoppers were built to attach to the 60C as well as the 

bottom of the PSS for handling UO2 safely. 

 

RESULTS AND DISCUSSION 

The purpose of the PSS is to improve the spherocity of UO2 powder by plasma processing. Simultaneously, surface 

morphology should be improved making the particles a better substrate for CVD coating. In theory, angular powder 

is transported through a plasma jet by a carrier gas, where the powder is melted in the plasma jet. The particle 

consolidates and becomes spherical due to surface tension. Undesired trace elements are vaporized in the plasma 

flame yielding a higher purity product. The particle solidifies as it exits the plasma jet. The result is a highly dense, 

pure, and spherical particle with ideal surface morphology for coating
1
.  

Figure 3. PSS Top Chamber Segment 
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These experiments used F. J. Brodmann & Co. L.L.C. 

manufactured Cerium Oxide (CeO2) as a surrogate for 

UO2. CeO2 melts at 2673 K, which is lower than the 

melting point of UO2 at 3138 K, but has a phase 

composition that closely matches that of UO2, hence the 

motivation for developing CeO2 spheroidization 

parameters and process controls. The Brodmann CeO2 

powder is angular, fully dense, sintered, and crushed 

powder that is more like the stock UO2 powders that will 

be received from Idaho National Laboratories (INL) for 

W-UO2 cermet fuel development. The powder was 

classified into ranges (63-75microns, 75-90 microns, and 

90-106 microns) and photographed by a LEICA 

stereomicroscope like that illustrated in Figure 5.  

Statistical inference between the population and the samples is established by first assuming that the data is normally 

distributed, that there exists an equality of variance between the population and the powder sample, and that sample 

particle’s data is independent of others. It is therefore possible to apply the Central Limit Theorem
6
. 50 particles 

were randomly selected from each range and evaluated for minimum circumscribed diameter (d1), maximum 

inscribed diameter (d2), evidence of shelling and/or agglomeration, color, and surface morphology. The particles 

mean diameter was calculated using Eq. (1), and the particle’s spherocity was calculated using the irregularity 

parameter (IPi) in Eq. (2)
4
.
 
The sample’s mean particle size (davg) and irregularity parameter (  ̅̅ ̅) may be calculated 

using Eq. (3), and the standard deviation for mean diameter (sd)and irregularity parameter (sIP) may be calculated 

using Eq. (4). Utilizing Student’s t-distribution testing
6
, and accepting an   ̅̅ ̅ ≤ 1.2 as the criteria for spherocity

8
, it 

was shown that the stock Brodmann CeO2 powder is not spherical and that it is a very low probability that it is by 

chance; Table 1. Now, the goal of the PSS runs is to improve the spherocity of the CeO2 powder and to do so with a 

low probability that it is by chance.   

  

 

  

IPavg [StDev] tcalc tcrit Prop

1.49 [0.22] 9.195 1.676 0.01%

1.53 [0.21] 11.302 1.676 0.01%

1.51 [0.22] 10.195 1.676 0.01%

C.I. (95%)

1.421 - 1.544

1.464 - 1.578

1.447 - 1.567

PSS Run #, Powder Type, Size Range

Stock; Brodmann CeO2; 90µm-106µm

Stock; Brodmann CeO2; 75µm-90µm

Stock; Brodmann CeO2; 63µm-75µm

Table 1. Summary of Stock Brodmann CeO2 Statistical Analysis 

Figure 3. Stock Brodmann CeO2 (75-90 micron) 
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PSS runs #8 and #9 were conducted on 10 Oct 2012, and were 

the first to process fully dense and angular powders. Figure 6 

shows the PSS in operation. The powder can be seen entrained 

in the plasma clearly near the bottom of the jet. The process 

parameters used for Runs #8 and #9 where referenced from 

recommended operational parameters for processing similar 

powders
9
 and are listed in Table 2. 

 
Table 2. PSS processing parameters 

 

The Run #8 and #9 powders were separately classified into 

three ranges (63-75 microns, 75-90 microns, and 90-106 

microns) and a sample was prepared for each range for 

imaging. Run #8 and #9 powders were progressively darker as 

particle size decreases as shown in Figure 7.  This observation 

may be evidence of dissociation, which may indicate that the 

powders were processed a too high a temperature. It is 

believed that the darkening is only on the surface and due to 

oxidation of the free cerium, but further analysis is needed to 

determine the nature of the darkening of processed particles. 

As with the stock Brodmann powders, 50 randomly selected 

particles from each range were evaluated for minimum 

circumscribed diameter (d1), maximum inscribed diameter 

(d2), evidence of shelling or agglomeration, color, and surface 

morphology.  

Hypothesis testing of two-proportion
6
 showed that the Run #8 and #9 powders exhibited a statistically significant 

improvement in spherocity. It was also observed that while the powders are more spherical after processing, the 

mean irregularity parameters for the run #8 and #9 powders exceeded the desired maximum of 1.2. This observation 

is supported by applying the same statistical method utilized to characterize the stock Brodmann powders. The Run 

#8 and #9 powders are also not spherical according to the established criteria; but are significantly closer; Table 3. 

 

 
 

  

Run
Power 

(kW)

Current 

(Amps)

Vacuum 

(Torr)
Arc Gas

Flow Rate 

(SCFM)
Powder

8 32.8 820 400 Ar-H2 105 Brodmann CeO2

9 36.9 820 760 Ar-H2 105 Brodmann CeO2

IPavg [StDev] Spherical Zcalc Zcrit Prop

1.2 [0.21] 66% -5.769 1.645 < 0.01%

1.39 [0.29] 32% -3.993 1.645 < 0.01%

1.37 [0.24] 28% -3.641 1.645 < 0.01%

1.3 [0.18] 30% -2.73 1.645 < 0.33 %

1.29 [0.2] 34% -4.165 1.645 < 0.01 %

1.34 [0.3] 38% -4.500 1.645 < 0.01 %

Run #8; Brodmann CeO2; 63µm-75µm 1.297 - 1.429

PSS Run #, Powder Type, Size Range C.I. (95%)

Run #9; Brodmann CeO2; 90µm-106µm 1.243 - 1.345

Run #9; Brodmann CeO2; 75µm-90µm 1.233 - 1.343

Run #9; Brodmann CeO2; 63µm-75µm 1.249 - 1.415

Run #8; Brodmann CeO2; 90µm-106µm 1.136 - 1.253

Run #8; Brodmann CeO2; 75µm-90µm 1.305 - 1.465

Table 3. PSS Run #8 and #9 Statistical Data 

Figure 5. Sieve Run #8 powders before imaging 

Figure 4. PSS in operation 
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The Run #8 Brodmann CeO2 powder processed at 32.8 

kW in argon-hydrogen plasma showed significant 

improvement with 42% of the particles passing as 

spherical (compared to <5% of stock) and the mean IP 

was improved from 1.51 to 1.32, which is a 60% 

improvement, but it is still above the desired mean IP. 

Also, 40% of the powder was noted as having a good 

surface morphology for coating. The Run #9 Brodmann 

CeO2 powder was processed at 36.9 kW in argon-

hydrogen plasma and did not show as significant an 

improvement as Run #8 with 34% of the particles passing 

as spherical, but the mean IP was slightly more improved 

from 1.51 to 1.31, which is a 65% improvement, but it is 

still above the desired mean IP. Nearly 60% of the 

powder was noted as having a good surface morphology.  

CONCLUSIONS 

The PSS successfully improved the spherocity of angular stock CeO2 surrogate powder The Run #8 Brodmann CeO2 

powder was processed at 32.8 kW in argon-hydrogen plasma and showed significant improvement with 42% of the 

particles passing as spherical (compared to <5% of stock) and the mean IP was improved from 1.51 to 1.32. The 

Run #9 Brodmann CeO2 powder was processed at 36.9 kW in argon-hydrogen plasma and did not show as 

significant an improvement as Run #8 with 34% of the particles passing as spherical. It is evident that the 

operational parameter for run #8 and #9 will not yield the desired spherocity of the surrogate powders in one pass. 

Multiple passes through the PSS would be required to lower the mean IP to below 1.2 and further improve the 

surface morphology. Further development is needed to optimize spheroidization parameters.  
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Figure 6. PSS Run #8 CeO2 (90-106 microns) 
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