Reactor Simulator Testing Overview

Presented by
Michael Schoenfeld

Propulsion Research and Technology Branch/ER24
NASA Marshall Space Flight Center
Nuclear Systems Team

- focuses on technology development for a variety of space nuclear systems
 - state-of-the-art capability in non-nuclear testing (electric heaters to closely mimic the static and dynamic thermal performance of nuclear fuels)
 - fission reactor and radioisotope systems.
 - applications of surface and spacecraft power & nuclear propulsion (thermal, electric, advanced concepts like fusion, plasma, etc.)

Program/Project Support

- primary Program/Project support

 - Fission Surface Power efforts supported by ETDD through the Nuclear Systems Office. The MSFC program lead is Mike Houts/VP33. Technology Demonstration Unit (TDU)
 - TDU is an end-to-end system test of a reactor simulator (RxSim), Power conversion Unit, and Heat Rejection System in a thermal vacuum.
 - TDU is intended to demonstrate the major element of a notional FSPS.
 - RxSim perform integrated testing of the TDU components
Scope Reactor Simulator

Technology Demonstration Unit

Reactor Simulator

Gas and Vacuum Racks

Facility Gas, Vacuum, & Power Panels

Power Rack

Data and Control Rack
OBJECTIVE
• integrated testing of the TDU components

TESTING SUMMARY
• verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment.
• thermal test heat regeneration design aspect of a cold trap purification filter
• pump performance test at pump voltages up to 150 V (targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V)

TESTING HIGHLIGHTS
• gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations.
• instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings.
• cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration.
• ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.
Reactor Simulator Integrated Setup

Reactor Simulator in Chamber

User Interface Controls & Gas & Vacuum Panels

Core & Pump Power Panels
Core Simulator Control System Modes

1. Basic: Control current (I) and voltage (V) settings of each heater zone in the core simulator.
2. Power: Control total power setting for the core simulator.
3. Power Ramp: Control total power from starting point to new set point over period of time.
4. Temperature: Control the NaK outlet temperature of the core simulator.
5. Reactor Simulator Function: Remotely control core power by an external Labview real time controller that runs a Simulink model simulating the feedback response of a nuclear reactor.
ALIP Control System Modes

1. Voltage: control the line-line voltage setting of the ALIP power supply
2. Flow Rate: control the NaK mass flow rate
Outcomes

• gas and vacuum ground support test equipment performed effectively for NaK fill, loop pressurization, and NaK drain operations.

• instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings.

• cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration.

• ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

Questions?

NASA/MSFC ER24
michael.p.schoenfeld@nasa.gov
256-544-4557