Eagleworks Laboratories

WARP FIELD MECHANICS 102:
Energy Optimization

Dr. Harold “Sonny” White
NASA JSC
The Challenge of Interstellar Flight

- **Voyager 1 mission:**
 - 0.722 t spacecraft launched in 1977 to study outer solar system and boundary with interstellar space.
 - After 33 years, Voyager 1 is currently at 116 Astronomical Units (AU) from the sun travelling at 3.6 AU per year,
 - no spacecraft launched to date will overtake Voyager 1.

- If Voyager 1 were on a trajectory headed to one of the Sun’s nearest neighboring star systems, Alpha Centauri at 4.3 light years (or 271,931 AU), it would take ~75,000 years to traverse this distance at 3.6 AU/year.
Putting things in PERSPECTIVE...

- Project Daedelus sponsored by British Interplanetary Society in 1970’s to develop robotic interstellar probe capable of reaching Barnard’s star, at ~6 light years away, in 50 years.
- The resulting spacecraft was 54,000t,
- 92% fuel for fusion propulsion system.
- ISS is ~450t

Picture courtesy of Adrian Mann, www.bisbos.com, used with permission
ISS picture courtesy of NASA (STS-135 fly-around)
"Originally an experimental craft to test the new "Diametric Induction Drive", the XCC-05 was later sold to a multinational consortium of asteroid prospectors, and christened the "Earth Space Ship Lewis & Clark." With its new propulsion this ship was able to reach and survey the "Transition Zone" at the extreme boundaries of the Solar System. Fifteen months into its survey mission it transmitted the following message: 'Long range scans indicate an unidentified ship beyond 115 AU. Definitely a maneuvering ship. Setting course to investigate, will advise. *** It was never heard from again.*** - Fictional vehicle, Marc Millis Design, courtesy of NASA. BACKGROUND courtesy Mike Okuda.
What about hyper-fast interstellar travel?

• Is there a way within the framework of physics such that one could cross any given cosmic distance in an arbitrarily short period of time, while never locally breaking the speed of light (11th commandment)?

SPACEWARPS (inflation)

WORMHOLES (shortcuts)
Inflation: Alcubierre Metric

Warp Metric:
\[ds^2 = -dt^2 + \left(dx - v_s f(r_s) dt \right)^2 + dy^2 + dz^2 \]

Shaping Function:
\[f(r_s) = \frac{\tanh(\sigma(r_s + R)) - \tanh(\sigma(r_s - R))}{2 \tanh(\sigma R)} \]

York Time:
\[\theta = v_s \frac{x_s}{r_s} \frac{df(r_s)}{dr_s} \]

York Time is measure of expansion/contraction of space

Energy Density:
\[\frac{1}{8\pi} G^{00} = -\frac{1}{8\pi} \frac{v_s^2(y^2 + z^2)}{4r_s^2} \left(\frac{df(r_s)}{dr_s} \right)^2 \]

Appealing Characteristics

Proper acceleration in the bubble is formally zero.

- Flat space-time inside the bubble: (divergence of $\phi = 0$)
- MCC clocks synchronized with onboard clocks: (Coordinate time = proper time)

Unappealing characteristic: (square peg, round hole)

Images courtesy NASA
HOPE: Bubble Topology Optimization

York Time magnitude decreases

Energy density magnitude decreases

“bubble” thickness decreases

Surface plots of York Time & T^{00}, $\langle v \rangle = 10c$, 10 meter diameter volume, variable warp “bubble” thickness
As bubble thickness increases, York Time intensity decreases.

Allowing the bubble to get thicker reduces the flat space-time real-estate in the center.

Changing topology greatly reduces the energy required.

But space-time is really stiff: $c^4/8\pi G$

Can we further reduce the energy required by reducing the stiffness?

Maybe...but we need to engage higher dimensional models to do so.
Higher Dimensional Models??

BRAIN-FREEZE

Remember: Always eat your Orion Ice Cream Flower S L O W L Y...
Brane Cosmology: Chung-Freese metric

\[ds^2 = -c^2 dt^2 + \frac{a^2(t)}{e^{2kU}} dX^2 + dU^2 \]

- \(a(t) \) term is the scale factor and \(k \) is a compactification factor for the extra space dimensions.
- Represents the 3+1 space (we live here or on the brane)
- Represents the bulk (we live at \(U=0 \))
Null Geodesics (e.g. light rays)

If \(U=0 \), \(\frac{dU}{dt}=0 \), then \(\frac{dX}{dt}=1c \) as expected

Speed of photon in coordinate space

\[
\frac{dX}{dt} = \frac{ce^{kU}}{a(t)} \sqrt{1 - \frac{dU^2}{c^2 \frac{dt^2}{a(t)^2}}}
\]

If \(kU \) gets large, \(\frac{dX}{dt} > 1 \) (hyperfast travel)

If \(\frac{dU}{dt}=1 \), \(\frac{dX}{dt}=0 \) (light comes to a standstill)

Analogies to Alcubierre metric:\(^1\):

\[
\gamma \approx e^{U} \\
\phi \approx U \\
\frac{d\phi}{dt} \approx \frac{dU}{dt}
\]

2D-3D “Hyperspace” Analogy

\[dX^2 = dx^2 + dy^2 \]

“BULK”

“BRANE”

\[dU \]
“Hyperspace” Oscillations

- Even though space-time is incredibly “stiff”, higher dimensional space-time model can be used to alleviate this using the following trick:

\[
\frac{dU}{dt} \Rightarrow 1, \ U = 0
\]

\[
\therefore \frac{dX}{dt} \Rightarrow 0
\]

- How can this scenario be physically established?

\[
\frac{dU}{dt} \approx \frac{d\phi}{dt}
\]

- Further, if there needs to be large \(dU/dt\) with \(U=0\), then there needs to be oscillation in \(d\phi/dt\) so this will occur repeatedly.

Reduces stiffness of spacetime!
From Our Vantage Point...

Oscillate the bubble intensity
Exotic Mass Warp Requirements, 10m diameter, \(v_{\text{apparent}} = 10c \)

- THINNER BUBBLE/RING
- Shell Thickness Fraction \((2R/S)\)
- THICKER BUBBLE/RING

Graph by Dr. Harold "Sonny" White

Chung-Freese null geodesics

\[
\frac{dX}{dt} = \frac{c e^{u(t)}}{a(t)} \sqrt{1 - \left(\frac{dU}{c dt}\right)^2}
\]

- Jupiter \(1.9 \times 10^{27} \)
- Earth \(6.0 \times 10^{24} \)
- Moon \(7.4 \times 10^{22} \)
- Vesta \(2.6 \times 10^{20} \)

- ISS \(4.0 \times 10^5 \)
- Nimitz carrier \(9.1 \times 10^7 \)

Bulk Velocity, \(dU/dt \)
- \(dU/dt = 0c \)
- \(dU/dt = 0.9c \)
- \(dU/dt = 0.999c \)
- \(dU/dt = 0.99999c \)
- \(dU/dt = 0.9999999c \)
- \(dU/dt = 0.999999999c \)

Energy Density Topology Approximations
White-Juday Warp Field Interferometer

- White-Juday Warp Field Interferometer developed after putting metric into canonical form\(^1\):

\[ds^2 = \left[v_s^2 f(r_s)^2 - 1 \right] \left[dt - \frac{v_s f(r_s)}{v_s^2 f(r_s)^2 - 1} \, dx \right]^2 - dx^2 + dy^2 + dz^2 \]

- Generate microscopic warp bubble that perturbs optical index by 1 part in 10,000,000
- Induce relative phase shift between split beams that should be detectable.

White-Juday Warp Field Interferometer

Laser + beam expander + spatial filter

Beam splitter

Mirrors

Test device mounting location

Telescope and CCD
Life imitating Art

Original concept design by Matthew Jeffries ~1964, modern rendering by Mark Rademaker

Draft of adapted concept using physics field equations and recent findings presented at 100YSS, also rendered by Mark Rademaker

Final version will be published along with 100YSS story in 2014 Ships Of The Line calendar
“2nd star to the right, straight on till morning…”

Godspeed!

Special Acknowledgements:

rendition by artist Les Bossinas found at http://www.grc.nasa.gov/WWW/bpp/BPP_Art.htm

CD-96-76634
Backups
(excerpts from Warp Field Mechanics 101)
Inflation: Alcubierre Metric

• In 1994, Alcubierre published a paper1 exploring the consequences of inflation within the context of General Relativity.
 – Paper derived inflation-based metric allowing for rapid transit times between points without locally violating the speed of light.
 – Working mechanism was proposed to be the York Time (inflation).
 – Alcubierre metric requires a halo of negative energy density which violates several energy conditions and is considered to be classically non-physical.

• Concept of Operation
 – Spacecraft departs earth using conventional propulsion system and travels distance d, where spacecraft is brought to stop relative to earth.
 – Field is turned on and craft zips off to interstellar destination, never locally breaking the speed of light, but covering the distance D in an arbitrarily short period of time.
 – Field is turned off at standoff distance d from the destination, and craft finishes journey conventionally.
 – This approach would allow journey to Alpha Centauri in weeks or months, rather than decades or centuries as measured by an earth bound observer (and spacecraft clocks).

Inflation: Alcubierre Metric

Warp Drive Metric:
\[ds^2 = -dt^2 + \left(dx - v_s f(r_s) dt \right)^2 + dy^2 + dz^2 \]

Shaping Function:
\[f(r_s) = \frac{\tanh(\sigma(r_s + R)) - \tanh(\sigma(r_s - R))}{2 \tanh(\sigma R)} \]

York Time:
\[\theta = v_s \frac{x_s}{r_s} \frac{df(r_s)}{dr_s} \]

York Time is measure of expansion/contraction of space

Dr. Harold “Sonny” White
09/02/2011
Symmetry/Asymmetry Paradox

Energy Density:

\[\frac{1}{8\pi} G^{00} = -\frac{1}{8\pi} \frac{v_s^2 (y^2 + z^2)}{4r_s^2} \left(\frac{df(r_s)}{dr_s} \right)^2 \]

Energy density toroid profile – revolve around x-axis

Symmetry Surface

Gedanken experimental NASA golf ball ship. Illustrative Purposes Only

If craft has zero initial velocity and initiates symmetrical energy density field, how does York Time know which way to go?

Dr. Harold “Sonny” White
09/02/2011
Canonical Form of Alcubierre Metric

• In 2003, this author published a paper\(^1\) that derived the canonical form of the Alcubierre metric allowing for a better understanding of the physical nature, and how it might be manifested (at least mathematically).

 – Canonical form mitigated energy density symmetry paradox and showed that working mechanism might be the boost sphere (resulting from halo) acting on initial velocity
 • e.g boost = 2, initial \(v = 27,500\)mph, apparent \(v = 55,000\)mph

 – Boost is something that can be readily engineered, while the notion of inflation is less tangible.

Canonical Form of Alcubierre Metric

Canonical Form of Alcubierre metric:

\[
 ds^2 = \left[v_s^2 f(r_s)^2 - 1 \right] \left(dt - \frac{v_s f(r_s)}{v_s^2 f(r_s)^2 - 1} \, dx \right)^2 - dx^2 + dy^2 + dz^2
\]

Since the equation is now in canonical form, the boost can be derived:

\[
 -e^{\frac{2\Phi}{c^2}} = \left[v_s^2 f(r_s)^2 - 1 \right]
\]

Or taking \(c = 1 \)…

\[
 \Phi = \frac{1}{2} \ln \left[1 - v_s^2 f(r_s)^2 \right]
\]

Trivially, the Lorentz Transform or boost field is: \(\gamma_{\Phi} = \cosh(\Phi) \)
Surface plots of boost, $<v>=10c$, 10 meter diameter volume

Note pseudo-horizon surface at $V^2f(r_s)^2=1$

Pseudo-horizon surface not visible with larger integration step

Note pseudo-horizon at $v^2f(r_s)^2=1$ where photons transition from null-like to space-like and back to null like upon exiting. This is not seen unless the field mesh is set fine enough. The coarse mesh on the right did not detect the horizon.
A modified concept of operations is proposed that may resolve symmetry/symmetry paradox.

Spacecraft departs earth and establishes an initial sub-luminal velocity v_i, then initiates field.

When active, field’s boost acts on initial velocity as a scalar multiplier resulting in a much higher apparent speed, $v_{eff} = \gamma v_i$ as measured by either an earth bound observer or an observer in the bubble.

Within shell thickness of the warp bubble region, the spacecraft never locally breaks the speed of light and the net effect as seen by earth/ship observers is analogous to watching a film in fast forward.

Consider the following to help illustrate the point –

- Assume the spacecraft heads out towards Alpha Centauri and has a conventional propulsion system capable of reaching 0.1c.
- The spacecraft initiates a boost field with a value of 100 which acts on the initial velocity resulting in an apparent speed of 10c.
- The spacecraft will make it to Alpha Centauri in 0.43 years as measured by an earth observer.
To this point, discussion has been centered on interstellar capability, but a more “domestic” application within the earth’s gravitational well will be considered.

Energy density for metric is negative, so process of turning on a theoretical system with ability to generate negative energy density, or a negative pressure as shown in [1], will add an effective negative mass to the spacecraft’s overall mass budget.

In reference mission development using low-thrust electric propulsion systems for in-space propulsion, planners will cast part of the trade space into domain that compares specific mass a to transit time. (see LEO to L1 inset)

Specific mass of an architecture element can be determined by dividing spacecraft’s beginning of life wet mass by the power level.

Transit time for a mission trajectory can be calculated and plotted on graph that compares specific mass to transit time.

If negative mass is added to spacecraft’s mass budget, then the effective specific mass and transit time are reduced without necessarily reducing payload.

A question to pose is what effect does this have mathematically? If energy is to be conserved, then \(\frac{1}{2} mv^2 \) would need to yield a higher effective velocity to compensate for apparent reduction in mass.

EXAMPLE:

- Assuming a point design solution of 5000kg BOL mass coupled to a 100kW Hall thruster system (lower curve), expected transit time is \(~70\) days for a specific mass of 50 kg/kW without the aid of a warp drive.
- If a very modest warp drive system is installed that can generate a negative energy density that integrates to \(~2000kg\) of negative mass when active, the specific mass is dropped from 50 to 30 which yields a reduced transit time of \(~40\) days.
- As the amount of negative mass approaches 5000 kg, the specific mass of the spacecraft approaches zero, and the transit time becomes exceedingly small, approaching zero in the limit.
- In this simplified context, the idea of a warp drive may have some fruitful domestic applications “subliminally,” allowing it to be matured before it is engaged as a true interstellar drive system.

How hard is interstellar flight? Consider this: The Voyager 1 spacecraft is the highest energy spacecraft launched by humanity to date, yet it will take \(~75,000\) years to reach our nearest stellar neighbor, Proxima Centauri. To explore and expand, another way must be found by actively pursuing exotic propulsion research to help us reach the stars.

WARP THEORY

Spacetime Metric Engineering

\[
\text{Inflation: Alcubierre Metric, Canonical Form}
\]

Canonical Form

\[
\text{Inflation: Alcubierre Metric, Canonical Form}
\]

White-Juday Warp Field Interferometer

The Warp Field Interferometer will bridge the gap between speculative and experimental by continuing open discussion and collaboration and by actively pursuing opportunities to research and test the very limit of our understanding of the universe.