@ Information Technology

¢3 Determining Temperature Differential to Prevent Hardware

Cross-Contamination in a Vacuum Chamber

Goddard Space Flight Center, Greenbelt, Maryland

When contamination-sensitive hard-
ware must be tested in a thermal vac-
uum chamber, cross-contamination
from other hardware present in the
chamber, or residue from previous tests,
becomes a concern. Typical mitigation
strategies involve maintaining the tem-
perature of the critical item above that
of other hardware elements at the end
of the test.

A formula for relating the pumping
speed of a chamber, the surface area of
contamination sources, and the tempera-
tures of the chamber, source, and con-

tamination-sensitive items has been devel-
oped. The formula allows the determina-
tion of a temperature threshold about
which contamination will not condense
on the sensitive items. It defines a param-
eter alpha that is the fraction given by
(contaminant source area)/[chamber
pumping speed x (time under vac-
uum)??]. If this parameter is less than
107, cross-contamination from common
spacecraft material will not occur when
the sensitive hardware is at the same
te,mperature as the source of contamina-
tion (The chamber is isothermal within 5

°C.).

Knowing when it becomes safe to have
the hardware isothermal permits faster
and easier thermal transitions when
compared with maintaining an arbitrary
temperature differential between parts.
Furthermore, the standard temperature
differential may not be adequate under
some conditions (alpha>10‘4).

This work was done by David Hughes of God-
dard Space Flight Center. For further informa-
tion, contact the Goddard Innovative Partner-
ships Office at (301) 286-5810. GSC-16244-1

03 SequenceL: Automated Parallel Algorithms Derived from
CSP-NT Computational Laws

Chip manufacturers and developers of parallel and/or safety-critical software could

benefit from this innovation.

Goddard Space Flight Center, Greenbelt, Maryland

With the introduction of new par-
allel architectures like the cell and
multicore chips from IBM, Intel,
AMD, and ARM, as well as the petas-
cale processing available for high-
end computing, a larger number of
programmers will need to write par-
allel codes. Adding the parallel con-
trol structure to the sequence, selec-
tion, and iterative control constructs
increases the complexity of code de-
velopment, which often results in in-
creased development costs and de-
creased reliability.

SequenceL is a high-level program-
ming language — that is, a program-
ming language that is closer to a
human’s way of thinking than to a ma-
chine’s. Historically, high-level lan-
guages have resulted in decreased devel-
opment costs and increased reliability,
at the expense of performance. In re-
cent applications at JSC and in industry,
Sequencell has demonstrated the usual
advantages of high-level programming
in terms of low cost and high reliability.

NASA Tech Briefs, March 2013

Sequencel. programs, however, have
run at speeds typically comparable with,
and in many cases faster than, their
counterparts written in C and C++ when
run on single-core processors. More-
over, SequenceL is able to generate par-
allel executables automatically for mul-
ticore hardware, gaining parallel
speedups without any extra effort from
the programmer beyond what is re-
quired to write the sequential/single-
core code.

A Sequencel-to-C++ translator has
been developed that automatically ren-
ders readable multithreaded C++ from a
combination of a Sequencel. program
and sample data input. The Sequencel.
language is based on two fundamental
computational laws, Consume-Simplify-
Produce (CSP) and Normalize-Trans-
pose (NT), which enable it to automate
the creation of parallel algorithms from
high-level code that has no annotations
of parallelism whatsoever. In our anec-
dotal experience, Sequencel. develop-
ment has been in every case less costly

than development of the same algo-
rithm in sequential (that is, single-core,
single process) C or C++, and an order
of magnitude less costly than develop-
ment of comparable parallel code.
Moreover, SequenceL not only automat-
ically parallelizes the code, but since it is
based on CSP-NT, it is provably race free,
thus eliminating the largest quality chal-
lenge the parallelized software devel-
oper faces.

Compiling functional code to C++ is
not new. Compiling functional code to
readable C++ that runs in parallel is
much more of a challenge, and that was
the majority of this effort. For current
purposes in this effort, readability of the
generated code is crucial, in case the
human programmer wishes to add anno-
tations, or to inspect the code for verifi-
cation purposes. Moreover, by compiling
to C++ it is assured that SequenceL can
be used in any application where GC++
could be used.

Sequencell has been found to dis-
cover all potential parallelisms automat-

29



