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Introduction:  The ancient Martian orthopyroxe-

nite ALH 84001experienced a complex history of im-

pact and aqueous alteration events. Treiman [1] identi-

fied petrographic evidence for its involvement in four 

or five crater-forming impacts following its initial 

crystallization “in a body of magma somewhere be-

neath Mars’ surface”. Adopting his relative chronology 

of events, fractured, granular bands present in 

ALH84001 were formed in an early (first?) impact 

event. The accompanying thermal metamorphism ho-

mogenized mineral compositions and probably was 

accompanied by production of feldspathic glass from 

igneous feldspars. In a later event, fractures in the 

granular bands became hosts to carbonate rosettes that 

often are found in association with the feldspathic 

glass. Sm-Nd studies [2,3] yielded ages of ~4.5 Ga, 

and carbonate formation was dated at 3.90±0.04 Ga by 

the Rb-Sr method and 4.04±0.10 Ga by the U-Th-Pb 

method [4]. The Sm-Nd ages have been cited as giving 

the time of igneous crystallization of ALH84001, an 

interpretation challenged by [5] on the basis of an ~4.1 

Ga Lu-Hf age. 

Here we summarize 
147

Sm-
143

Nd and 
146

Sm-
142

Nd 

analyses performed at JSC. Further, using REE data 

[6-8],  we model the REE abundance pattern of the 

basaltic magma parental to ALH84001 cumulus ortho-

pyroxene. We find the 
146

Sm-
142

Nd isotopic data to be 

consistent with isotopic evolution in material having 

the modeled Sm/Nd ratio from a time very close to the 

planet’s formation to igneous crystallization of 

ALH84001 as inferred from the Sm-Nd studies. 

147
Sm-

143
Nd: Fig. 1 shows results for 

147
Sm-

143
Nd 

analyses at JSC of 22 bulk samples and mineral sepa-

rates. An isochron fit (Isoplot model 1 [9]) gives an 

age of 4.568±0.088 Ga (2) and Nd = +1.2±0.8 rela-

tive to a Chondritic Uniform Reservoir (CHUR, [10]). 

These values are within uncertainty of those originally 

reported for five bulk samples and a pyroxene separate 

[3]. We attribute an apparently irreducible scatter in 

the 
147

Sm-
143

Nd data (MSWD ~ 100) to post-magmatic 

disturbance of the Sm-Nd system. 

A more restricted set of Sm-Nd data from [5] is in 

good agreement with our own. An isochron fit to four 

data presented by [5] (S2-S3-S4-R1) gives an age of 

~4.63 Ga. (Their bulk rock leachate datum (L1) is 

omitted from the regression). Tentatively adopting the 

~4.09 Ga Lu-Hf age as the crystallization age and or-

thopyroxene as an end-member component on a hypo-

thetical mixing line results in a calculated Nd ~+5 for 

orthopyroxene data from both labs implying a source 

of the ALH84001 parental magma depleted in LREE. 
146

Sm-
142

Nd: Fig. 2 shows Isoplot model 1 results 

for data for 16 samples yielding  initial 
146

Sm/
144

Sm 

(I(Sm)) = 0.0031±0.0009 and 
142

Nd = -0.36±0.12 at 

CHUR 
147

Sm/
144

Nd = 0.1967 [10]. Elevated values of  


142

Nd >0 for the pyroxenes and 
142

Nd <0 for samples 

of low 
147

Sm/
144

Nd, particularly for leachate Opx(L) 

(~phosphates) and bulk rock samples, are inconsistent 

with the ~4.09 Ga Lu-Hf age. MSWD = 5.1 shows 

these data to be much less disturbed by post-magmatic 

reheating than the 
147

Sm-
143

Nd data, probably because 

events later than ~4.1 Ga are not registered. The age 

calculated relative I(Sm)=0.0076 and T=4.558 Ga for 

angrite LEW 86010 (equivalent to I(Sm)=0.0081 at T 
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Figure 1. 147Sm-143Nd isochron plot for bulk samples and 

mineral separates of ALH84001. The isochron is fit to JSC 

data. Data from [5] adjusted for differing normalizations 

are shown for comparison. 

Figure 2. 146Sm-142Nd data for bulk samples and mineral 

separates of ALH84001. 
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= 4.568 Ga) is T=4.425 +0.039/-0.054 Ga.  Alterna-

tively, for the newly determined   halflife of 
146

Sm (t1/2 

= 68 Ma [11]) and I(Sm)=0.0084 at 4.568 Ga, the cal-

culated relative age of ALH 84001 is 4.470 +0.035/-

0.026 Ga. 
142

Nd = -0.23±0.05 reported by [5] for a 

large (~1 gm) bulk sample (B1) is consistent with this 

isochron if 
147

Sm/
144

Nd (not measured), is estimated 

from its measured 
143

Nd/
144

Nd ratio. 
142

Nd = 

+0.19±0.13 previously reported by [12] for a bulk 

sample is not plotted because 
147

Sm/
144

Nd was not 

measured. However, we do not consider this analysis 

to be inconsistent with the 
146

Sm-
142

Nd isochron be-

cause bulk (“WR”) samples range up to 
147

Sm/
144

Nd 

~0.3 as required by this analysis (Fig. 1). Taken to-

gether, the 
142

Nd analyses of [5] and [12] are incon-

sistent with a nearly flat isochron as required by an age 

of ~4.1 Ga. 

Modeled REE abundances in parent melt: In 

Fig. 3, solid symbols represent REE patterns for ortho-

pyroxene samples from AHL 84001, taken from ion 

microprobe analyses of mineral grains [7, 8] and ICP-

MS analyses of orthopyroxene separates [6]. Open 

symbols represent REE patterns for melts parental to 

the orthopyroxene as calculated using the average of 

seven sets of REE distribution coefficients in Opx [6, 

13, 14]. The calculated parental melts are high in REE 

abundances, are LREE-enriched, and have an average 
147

Sm/
144

Nd of 0.17±0.01. The REE pattern of Martian 

crust [15] and NWA 7034 [16] are also plotted for 

comparison. The calculated REE abundances in the 

parental melts match those estimated for the Martian 

crust very well. Similarly high REE abundances occur 

in NWA 7034 [16], but differ by being slightly higher 

in overall REE abundances and having a negative Eu 

anomaly. Interestingly, 
147

Sm/
144

Nd = 0.171 in NWA 

7034 [16] equals that in the estimated Martian crust. 

Nd isotopic evolution prior to the parent melt: 

Fig. 4 shows the 
147

Sm-
143

Nd (upper) and 
146

Sm-
142

Nd 

(lower) results (yellow parallelograms). Red and green 

(for [11]) curves show Nd isotopic evolution from an 

HED (Howardite-Eucrite-Diogenite) or Earth-like par-

ent body at T = 4.568 Ga for 
147

Sm/
144

Nd = 0.17±0.01. 

Because the 
147

Sm-
143

Nd isochron was disturbed, the 

age it suggests may be biased to a value somewhat too 

old. The 
146

Sm-
142

Nd isochron probably represents a 

better estimate of a magmatic age of 4.4-4.5 Ga for 

ALH 84001. The modeled 
142

Nd evolution is consistent 

with a LREE-enriched source as calculated for the par-

ent magma from the REE abundances in pyroxene. 

Conclusions: We tentatively identify disturbances 

evident in the Sm-Nd data with the early, strong de-

formation and thermal metamorphic event identified 

texturally [1]. This event likely reset the Lu-Hf age, 

and other ages for radiometric systems less robust than 

Sm-Nd. The Sm-Nd system is particularly robust as 

demonstrated most recently for chondrites [17] be-

cause both the isotopic parent and daughter are REE. 
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Figure 3. Modeled REE abundances in ALH84001 parent 

melt. 
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Figure 4. Modeled Nd-isotopic evolution between Mars' 

formation and crystallization of ALH84001. 
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