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Aeroacoustic and Performance Simulations  
of a Test Scale Open Rotor 

 
Russell W. Claus 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
This paper explores a comparison between experimental data and numerical simulations of the 

historical baseline F31/A31 open rotor geometry. The experimental data were obtained at the NASA 
Glenn Research Center’s Aeroacoustic facilty and include performance and noise information for a 
variety of flow speeds (matching take-off and cruise). The numerical simulations provide both 
performance and aeroaucostic results using the NUMECA’s Fine-Turbo analysis code. A non-linear 
harmonic method is used to capture the rotor/rotor interaction. 

Nomenclature 

BPF blade passage frequency 
BPFa aft blade passage frequency 
BPFf forward blade passage frequency 
BPR by pass ratio 
FWH Ffowcs Williams Hawkings 
GRC NASA Glenn Research Center 
Nc corrected rotational speed, rpm 
NLH non-linear harmonic 

Introduction 
Due to its high propulsive efficiency an open rotor gas turbine engine has the potential to minimize 

specific fuel consumption in a new generation of transport aircraft (Ref. 1). Other concepts, such as the 
ultra-high bypass fan (BPR > 10) offer improved fuel burn performance with low noise, but their 
propulsive efficiency lags behind the open rotor by a significant margin. The greatest weakness of the 
open rotor concept was illustrated during the flight testing: high levels of tonal noise. 

NASA supported substantial research into the open rotor concept during the 1980s that was 
terminated after the flight testing of prototypes on a Boeing 727 and a McDonnell Douglas MD 80 
(Ref. 2). This early effort served to illustrate the potential of the concept, but did not resolve noise and 
other concerns. The F31 /A31 geometry studied in this report is an example of the geometries explored 
during this time period. The blades were remanufacturered from original geometry coordinates and tested 
at the NASA Glenn Research Center (GRC) in collaboration with General Electric (Ref. 3). The 
referenced report provides an open dataset that can be used to validate numerical tools and provides a 
general technology baseline reflecting the previous open rotor research. 

This report compares experimental data to numerical simulations of the flow field matching 
conditions in GRC’s aeroacoustic testing facilty. The intent is to explore the predictive accuracy of 
steady-state analysis for the performance and acoustics of the F31/A31 geometry. Previous studies 
indicated the potential to capture acoustic information from numerical analysis (Ref. 4). Envia et al., 
(Ref. 5) used time-accurate simulations for the F31/A31 flowfield to make reasonable acoustic estimates 
of tonal noise on the F31/A31 blades. The general expectation is that a steady-state analysis employing a 
non-linear harmonic (NLH) model for the rotor/rotor interface may be able to estimate tonal noise levels 
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at a reduced computational cost and with a shorter turn-around. This report will document the 
performance level predicted using NLH  and test the accuracy of its acoustic predictions. 

Computation Approach 
Numerical simulations solved the Reynold’s Averaged Navier-Stokes equations using the Numeca’s 

Fine-Turbo (Ref. 6) suite of codes. This software has a fully integrated suite of tools that enable rapid 
mesh generation, domain decomposition, flow solver and visualization. The mesh generation can be 
controlled through a series of application specific wizards that tailor the grid topology and optimization to 
the application-specific geometry. Commonly, the defaults for the mesh generation provide good mesh 
characteristics, however, adjustments were made using available manual controls. The operating blade 
shapes were provided (Ref. 3) in IGES format for nominal take-off blade pitch. Cruise blade orientations 
were generated using the blade rotation features in Fine Turbo. 

Fine-turbo employs a variety of possible rotor/stator interface techniques and differing turbulence 
models. In this study, the steady-state options were used including the Spalart-Almos turbulence model, 
the mixing plane approximation and the NLH model. NLH models the unsteadiness of the blade wakes 
assuming the flow is temporally periodic. The periodic disturbances can then be decomposed as 
fundamental frequencies of the blade passage frequency (BPF). Deterministic stresses can then be solved 
for using a time-marching spectral method representing one upstream and one downstream flow 
pertabation. These time-marching equations are solved until a steady-state is achieved. In this study, each 
perturbation was represented by three frequencies, although test calculations where examined with five 
frequencies that indicated no significant change in results.  

A typical calculation was started by obtaining a fully-converged mixing-plane solution. This result 
was then used as the starting point for the NLH calculation. The NLH calculation would usually converge 
only about one or two additional-order of magnitudes on the global residual, so additional parameters 
would be monitored to ensure full convergence.  

The acoustic signature of an open rotor is typically dominated by tonal noise mechanisms (Ref. 3). 
These noise sources arise due to steady and unsteady pressure forces with the unsteady forces much 
smaller than the steady forces. A single propeller typically generates tonal noise related to the BPF and its 
higher harmonics. The sound pressure level associated with the higher harmonics typically decreases 
rapidly at higher frequencies for a single rotor. With an open rotor, the interactions between the two 
blades can lead to higher sound pressure levels at the higher interaction tones. Indeed, for the experiment 
used in this report, the higher order harmonic associated with a tone twice the forward BPF and one times 
the aft BPF generated higher sound levels than the primary BPFs. 

The acoustics were calculated using a post-processing module in Fine-Turbo. The module solved the 
Ffowcs Williams Hawkings (FWH) equations modeling acoustic propogation. Acoustic sources were 
selected following the approach suggested in Reference 4. An acoustic observer was postioned to match 
the locations of microphone in the experiment. The periodicity of the acoustic signal was estimated as 
1/(BPFf – BPFa) or ~0.00452 s. Typically 128 time periods captured the primary blade harmonics and the 
related interaction tones. 

Figure 1 illustrates the general flow domain used in the reported calculations. The inflow boundary is 
located upstream of the test pylon and extends to the end of the test article. The radial domain extends to 
six times the radius of the rotors for take-off conditions. Cruise calculations were made with an extended 
radial domain including eight times the rotor radius. External boundary conditions (static conditions) were 
specified at the domain limits to match the appropriate test conditions. Inflow boundary conditions 
specified total quantities at standard day conditions. 
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Figure 1.—Circumferentially averaged Mach number for a typical open rotor at take-off conditions, rpm 3395. Flow is 

left-to-right. 
 
 
 
Fine-turbo employs a multi-block domain decompostion that was meshed to provide good resolution 

for both acoustic and flow fields. Mesh characteristics were good with aspect ratios typically under 500, 
expansion ratios under 2, angular deviation under 20 and skewness above 30. The mesh region where the 
aspect ratio approached 500 were less critical portions for the flow field (i.e., far field). 

Figure 2(a) illustrates the mesh used around the rotor blades at the mid-span location. Figure 2(b) 
illustrates the mesh near the trailing edge of the forward rotor. The mesh density was more than needed 
for aerodynamic force representation and was selected to provide the best possible near-field resolution 
for the acoustic post-processing.  

Table 1 displays the various calculation details. The mesh used for take-off conditions was reduced for 
cruise comparisons as no acoustic data were recorded. 

 
 
 

TABLE 1.—MESH DENSITIES USED IN VARIUOS CALCULATIONS 
Operating point Forward row mesh Aft rotor mesh Row 1 farfield Row 2 farfield Total 

Cruise 1738731 1693467 2144870 1917110 7923859 

Take-off 3817287 4079727 3893370 3807310 16482067 
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(a) 

 
(b) 

Figure 2.—(a). Overview of the mesh used around the rotors. Blades are displayed in take-off pitch at 
50 percent span. (b) Mesh refinement around the trailing edge of the forward rotor at mid-span. 
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Results 
The F31/A31 geometry was analyzed at two different operating conditions, nominally related to take-

off and cruise flight speeds. The take-off conditions (Mach no. ~0.2) had experimentally-measured 
acoustic data that enabled comparison with the Fine-Turbo FWH acoustic calculations. 

Take-Off Condition 

Figure 3 displays open rotor thrust levels versus corrected rpm (Nc) for both experimental data and 
numerical simulations. At all rotational speeds, the numerical calculations are slightly higher than 
experiment. In general, the rotor thrust is well predicted across the range of rotational speeds for take-off 
flow conditions. 

Figure 4 displays a comparison of acoustic sound levels versus fundamental BPFs and interaction 
tones for the F31/A31 geometry at take-off conditions. The microphone location was at 90° to the aft 
rotor and 1.5 m from the centerline. The simulation employed a corrected rpm of 6625 versus 6598 
experimentally. The primary BPFs are labeled 10 and 12 (corresponding to the number of blades per row) 
with higher order harmonics such as 20 or 24 (2 time the primary BPF) and the interaction tones 
displayed. The experiment indicates that the highest sound level is produced by an interation tone (32 – 
twice the BPFa plus one times the BPFf) at about 110 dB. The simulations over-predict sound levels for 
several tones including the primary BPFs and the highest interaction tone, 32. The over-prediction is just 
a few decibels. Several tones are under-predicted, but overall, sound pressure levels are reasonably well-
predicted, with under-prediction at the higher tones. 

 
 
 
 

 
Figure 3.—Thrust versus rotational speed at take-off conditions. 
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Figure 4.—Acoustic sound pressure levels versus fundamental and interaction tones for 

experiment and calculation. Front rotor tones; 12*n where n = 1, 2, 3, ... (where n = 1 is the 
fundamental for the front rotor). Aft rotor tones:  = 10*n where n = 1, 2, 3, ... (where n = 1  is 
the fundamental for the aft rotor). Interaction tones: 12*n + 10*m (where n = 1, 2, 3, ... and  
m = 1, 2, 3, ...).  

 
 
 
The acoustic calculations made for Figure 3 and Figure 4 are at the limits of current computing 

capabilities for approximately 12 computing nodes, e.g., approximately 40 wall clock hours and 80 GBs 
of memory. Mesh refinement studies had indicated that this mesh resolution was excessive for 
performance data (i.e., thrust), but thought to be important for acoustic predictions. To test this 
assumption, the mesh was reduced in resolution by a factor of 2 in each coordinate direction and the NLH 
model was reduced to two frequencies representing each perturbation. This resulted in a calculation that 
could be made on a single node computer with 3GB of memory in less than 12 hr. Figure 5(a) displays the 
acoustic results from this calculation. The level of agreement seen in the calculations indicates that the 
acoustic calculation was not as sensitive as expected for the 90° angle. The mesh sensitivity should be 
greatest at the highest frequencies. Figure 5(b) displays a comparison between the fine and course mesh 
calculations at  the higher frequency tones.  

Figure 5(c) displays the results of the fine and coarse mesh calculations for a microphone location of 
140° and radial distance of 1.5 m. These results display a clear mesh dependency that is not seen at the 
90° location. Here the additional mesh resolution is clearly beneficial.  

While the agreement with data for the two acoustic calculations is encouraging, this should be viewed 
with caution. Envia (Ref. 5) indicates that acoustic estimates beyond the NLH simulation harmonics—
three times the fundamental for both the front and aft rotor on the fine mesh—should be unreliable. 
Acoustic predictions at tones above 30 or 36, such as the tones seen in Figure 5(b), should be expected to 
be less accurate. However, these calculations do not display this trend. This issue will be the focus of 
future studies.   
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(a)  

(b)  

(c)  
Figure 5.—(a) Experiment versus calculated acoustic tone levels using a coarse mesh at take-off conditions. 

Microphone at 90° and 1.5 m from centerline.(b) Mesh comparison at higher acoustic tones—course versus fine 
mesh. Microphone at 90° and 1.5 m from centerline. (c) Experiment/fine mesh/coarse mesh calculations with the 
microphone located at 140° and 1.5 m. 
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Figure 6.—Cruise condition (Mach no. 0.8) thrust versus corrected rotational speed 

(rpm). The experimental blade rotations were 64.4° (forward)/61.8° (aft). 
Corrected speeds used static temperatures. 

Cruise Operating Conditions (Mach Number = 0.8) 

Figure 5 displays cruise condition thrust levels, experiment versus simulation. These results are 
reasonably close to the experimental data especially at the lower range of rpm. For the cruise calculations 
the forward and aft blades were rotated to match the experimental blade angles: 64.4° forward  and 61.8° 
for the aft rotor.  

The discrepancy between data and calculation at the higher rpm levels may be due to structural 
twisting of the blades as a functions of the rotational velocity. This discrepancy was not apparent for the 
take-off results, but the high speed blade pitch may better align with the rotational velocity which results 
in a more significant deformation.  

Summary 
The intent of this paper was to document aerodynamic performance and acoustic simulations of the 

F31/A31 open rotor geometry. This historical dataset is available as noted in Reference 4. Overall 
aerodynamic data was reasonably well predicted, with very good agreement seen at take-off conditions 
and less accurate predictions for cruise conditions. The initial fine mesh used in this analysis (16M nodes) 
was thought to be necessary for accurate acoustic predictions, however, very reasonable agreement was 
seen using a course mesh (2M nodes) at the 90° side location. Noise measurements at the 140° location 
were significantly more sensitive to mesh resolution. Overall, the aerodynamic and acoustic simulations 
matched experimental data reasonably well. Cruise operating point simulations may benefit additional 
studies that better match the experimental flowfield. 

There were two unexpected results from this study. The first is that a steady-state model of rotor/rotor 
interations (NLH) was able to capture acoustic data to a reasonable extent. Future studies will examine if 
this finding remains true for advanced open rotor geometries and continues to provide reasonable 
estimates for high frequency interation tones. The second is that the cruise thrust results did not match as 
well as the take-off results. These unexpected findings will be studied in future efforts. 
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