Advances in the Development of a WCl$_6$ CVD System for Coating UO_2 Powders with Tungsten

NASA Advanced Exploration System (AES) Project: Nuclear Cryogenic Propulsion Stage

NETS 2013
27 February 2013

O. Mireles, A. Tieman, J. Broadway, R. Hickman
NASA Marshall Space Flight Center
omar.r.mireles@nasa.gov
• NTP fuels under development
 − W-60vol%UO₂ CERMET

• Minimize erosion
 − Prevent H₂ propellant (2850-3000 K) from reducing UO₂ fuel kernels
 − Clad each fuel kernel in tungsten

• Coat spherical dUO₂ powders with 40 vol% W

• Coated spherical powders advantageous for HIP
 − Higher powder packing %TD
 − Minimize powder segregation
Problem & Objectives

- WF$_6$ process
 - Residual F exacerbates fuel loss
 - HF bi-product

- WCl$_6$ process
 - Minimal Cl contamination
 - More complex than WF$_6$ process (solid-to-vapor vs. gaseous reagent)

- Vendor cost to coat dUO$_2$ excessive

- Develop a lab-scale prototype that utilizes the WCl$_6$ process that enables cost effective coating of spherical dUO$_2$ powders
CVD Apparatus & Procedure

- **WCl₆ process**
 - Fluidized bed reactor
 - Raining feed system
 - H₂/Ar 10:1 ratio
 - 25 g batches
 - 30 to 60 min

\[
\text{WCl}_6 + 3\text{H}_2 \rightarrow \text{W} + 6\text{HCl} + \text{Ar} + x\text{s} \text{H}_2
\]
CVD Results

CVD Run 4: 60 minutes. W coated ZrO2, average particle OD 31.0 μm, average coating thickness 1.76 μm.

CVD Run 5: 30 minutes. W coated ZrO2.
Performance Improvement

- Vapor yield optimization
- Flow Line Blockage
 - Indications of temperature dependence
 - Continued blockage results in line leakage
- Component optimization
- Materials optimization
- System control and monitoring

H₂ and WCl₆/Ar mixture junction at reactor inlet
Sublimer outlet line blockage
WCl₆ and W coated ZrO₂ blockage
Sublimer outlet ball joint vacuum grease blow by location
Sublimer Characterization & Optimization

- Increase WCl₆ vapor yield
- Determine min/max sublimation temperatures
- Characterize yield vs. temp and carrier gas flow rate
- Optimize WCl₆ vapor yield

<table>
<thead>
<tr>
<th>T₀°C (°C)</th>
<th>t (min)</th>
<th>Vial No</th>
<th>Mᵣ (g)</th>
<th>Mᵣ-WCl₆ (g)</th>
<th>M₀-WCl₆ (g)</th>
<th>Initial M₀-WCl₆ (g)</th>
<th>ΔM (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>30</td>
<td>1</td>
<td>16.0</td>
<td>21.1</td>
<td>5.1</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>170</td>
<td>30</td>
<td>2</td>
<td>15.9</td>
<td>21.1</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>30</td>
<td>3</td>
<td>15.6</td>
<td>21.0</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>30</td>
<td>4</td>
<td>15.9</td>
<td>21.0</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>5</td>
<td>16.0</td>
<td>21.2</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>30</td>
<td>6</td>
<td>15.7</td>
<td>20.9</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>30</td>
<td>7</td>
<td>15.7</td>
<td>21.0</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>30</td>
<td>8</td>
<td>15.6</td>
<td>20.8</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sublimer Temperature Profiles

Argon pre-heater only

Sublimer heat tape only

Argon pre-heater and heat tape

PID set-points for desired sublimer frit centerline temp.
Sublimer Characterization: 160 °C Run

- Sublimer Temperature Profile
- Sublimer (post test)
- Sublimer outlet line (post test)
- Sublimer outlet frit 1 up stream (post test)
- Vacuum cryo trap (post test)
Failed run due to “cotton candy” blockage.

Blockage a function of temperature schedule and entrained volatiles (cleaning solutions and water)

Sublimer are now baked to 150 °C for 1 hour to drive off volatiles in the frit immediately before a run.

Reactor manifold frit should be maintained above 210 °C to prevent blockage.
Sublimer Characterization: TGA

- Observation of sublimation inflection points using Thermal Gravimetric Analysis (TGA)
- Objective: Quantify WCl₆ onset sublimation temperature and sublimation rate

Conclusion: Sublimation onset at 33-35 °C, 101-105 °C, and 188 °C. Retained 200 °C nominal temperature.
Based on coarse sublimer characterization data

Higher fidelity rates obtained using TGA

CVD runs at 200 °C exhibited excessive vapor yield

160 °C selected as optimal sublimer frit center-line operating temperature
• Assumptions
 – Ar & H2 flow-rates 1 & 10 SLPM respectively
 – Gas mixture enters at 200 °C and 20 psia
 – Glass surface temperature of 900 °C
 – Furnace starts at ~ 5” and ends at 17”
 – Axial conduction through the glass is neglected

• Results
 – Gas at low flows, through un-insulated glass, is rapidly cooled by outside
 – No thermal reason for expander
 – Particle velocity reason for expander (retain fines)

• Conclusion: Reactor and expander sections too long. Shorten reactor 4 inches, shorten expander 10.5 inches.
Materials Compatibility Study

- Glass (Pyrex/quartz)-to-304 SS seals
 - Significant corrosion in CVD environment
- Corrosion resistant candidate materials
 - Ti 6-4, Inconel 600, Inconel 718, Hastelloy C-276
- Exposed coupons in sublimer and expander
- Larson Electronic Glass provided with material samples to determine seal suitability
 - Samples torch annealed on a glass lathe
 - Seals frozen then immersed in hot water
 - Heated in oven to observe strain
 - Cleaning (removing oxide layer from metal)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Seal</th>
<th>Strain Test</th>
<th>Strain (rel. to 304 SS)</th>
<th>Thermal Shock Test</th>
<th>Post Test Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy C-276</td>
<td>Fail</td>
<td>Fail (fell apart)</td>
<td>Higher</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>Good</td>
<td>Low</td>
<td>Lower</td>
<td>Minor internal separation (like 304 ss)</td>
<td>Cleaned up well</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>Good</td>
<td>Slightly > Inconel 600</td>
<td>Lower</td>
<td>Fail (fell apart)</td>
<td>N/A</td>
</tr>
<tr>
<td>Titanium 6-4</td>
<td>Good</td>
<td>Low</td>
<td>Lower</td>
<td>No change</td>
<td>Unsuccessful without abrasive</td>
</tr>
</tbody>
</table>

- Inconel 600 selected over Ti 6-4 due to corrosion resistance, weldability, and cost
- Sublimer will remain Pyrex while expander and metal-to-glass transitions made of Inconel 600
CVD Upgrades

- Gas line simplification, valve sequence, ball/socket joints
- Pneumatic powder fill pinch valve
- Ar & H₂ pre-heaters
- Collection Hopper
- Burn-stack hinge & nichrome flame arrestor
- H₂ and Ar Reactor Inlet Bellows
- Markez Z1028 O-rings
- Inconel 600 Expander (optimum height)
- Inconel 600-to-Quartz Reactor Seals
- H₂ Area Monitor
- Lexan Containment
- DAQ System
- Manifold Filter
- Heating Jackets
- Sublimer Bore Scope
• Demonstrated viability and utilization of:
 - Fluidized powder bed
 - WCl₆ CVD process
 - Coated spherical particles with tungsten

• The highly corrosive nature of the WCl₆ solid reagent limits material of construction

• Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements
Future Work

• Optimize process variables in order to produce coating properties that meet requirements

• Characterize coatings as a function of substrate microstructure and process variables

• Design CVD system to process large quantities of power required for engine scale fuel fabrication
Acknowledgements

- Funding was provided by the “Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage” project.

- The authors would like to thank Grace Belancik, Richard Booth, Andrew DeSomma, Roger Harper, Stan MacDonald, Tim Nelson, Ronald Renfroe, Adam Kimberlin, Gabriel Putnam, Zachary Koch, Eric Stewart, Frank Zimmerman, Mike Houts, Jim Martin of NASA MSFC, Dave Bradley of YetiSpace, Jeff Ogle of Alloy Engineering, Chuck Larson of Larson Electronic Glass and Gene Nelson of AG Scientific Glass.

- The opinions expressed in this presentation are those of the author and do not necessarily reflect the views of NASA or any NASA Project.