General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Catherine C. Kammerer, Materials & Processes Engineering Manager
United Space Alliance, USK-507, Kennedy Space Center, FL 32899
Phone (321) 861-8123; Fax (321) 861-7465
Catherine.Kammerer-1@ksc.nasa.gov

Janice K. Lomness, Scientist
NASA, KT-E, Kennedy Space Center, FL, 32899
Phone (321) 867-1839; Fax (321) 867-0692
Janice.K.Lomness@nasa.gov

Paul E. Hintze, Scientist
NASA, KT-E, Kennedy Space Center, FL, 32899
Phone (321) 867-3751; Fax (321) 867-0692
Paul.E.Hintze@nasa.gov

Joseph A. Jacoby, Black Belt
United Space Alliance, USK-163, Kennedy Space Center, FL, 32899
Phone (321) 861-6677; Fax (321) 861-0247
Joseph.Jacoby-1@ksc.nasa.gov

Richard W. Russell, Aging Aircraft Principal Engineer
NASA, MV7, Kennedy Space Center, FL, 32899
Phone (321) 861-8618; Fax (321) 867-7104
Richard.W.Russell@nasa.gov

ABSTRACT: The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100” to 0.600” inches and the depth ranged from 0.003” to 0.020”. One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.

KEYWORDS:
Design of Experiment, Nondestructive Evaluation, Corrosion

CONFERENCE:
Aging Aircraft 2007
Palm Springs, CA
16-19 April 2007