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Future space exploration missions require advanced thermal control systems (TCS) to 
dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary 
from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to 
effectively control cabin and equipment temperatures under widely varying heat loads and 
ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need 
for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating 
variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-
based working fluid that is compatible with existing lightweight aluminum heat exchangers. 
The TCS is lightweight, compact, and requires very little pumping power. The critical 
characteristics of the core enabling technologies were demonstrated. Functional testing with 
condenser tubes demonstrated the key operating characteristics required for a reliable, 
freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient 
responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, 
and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that 
the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on 
aluminum by an order of magnitude. Performance comparison with state-of-the-art designs 
shows significant mass and power saving benefits of this technology. 

I. Introduction 
Future spacecraft, rovers, and habitats will require high-performance thermal control systems that can dissipate a 

wide range of heat loads in harsh thermal environments. Environmental temperatures can vary by more than 200 K 
during each environmental cycle (Stephan 2011) and heat loads can change by an order of magnitude when the 
power supply mainly comes from solar panels. However, cabin temperatures must be controlled within a narrow 
range to ensure the comfort of crew members and to reduce thermal stresses in electronic components and other 
equipment. Therefore, a future TCS must be able to vary the thermal conductance between the cabin and the 
ambient over a wide range.  Furthermore, when the cabin heat load is low and ambient is very cold, temperatures in 
radiators can fall below the freezing point of the working fluid. Fluid freezing poses many hazards. One such hazard 
is potential rupture of the radiator tubes due to the expansion of the working fluid during local freezing or thawing 
processes. Another problem is the very slow thawing process during which the TCS will not be able to achieve its 
full heat dissipation capacity.  
 Several approaches have been studied to achieve variable thermal conductance and freeze-tolerance. For 
example, a two-loop configuration was studied for NASA Altair Lunar Lander (Stephan 2011). This approach uses a 
secondary circulation loop with working fluid that has a freezing temperature well below the minimum environment 
temperature that the radiator would experience. This requires an interface heat exchanger between the loops and a 
separate circulation pump for the secondary loop. Furthermore, working fluids with low freezing temperatures 
typically have poor thermal and fluid properties, requiring larger heat exchangers or higher pumping power. A 
variation of this approach uses loop heat pipes to eliminate the circulation pump; however, this adds complexity 
during start-up and mass to the system. Other approaches to prevent freezing include (1) using survival heaters to 
prevent working fluid from freezing, (2) actively controlling radiator conductance by varing the radiator exposed 



 

 
American Institute of Aeronautics and Astronautics 

 

 

2

surface areas or surface effective emissivity (Bannon et al. 2010), (3) removing working fluid from some of the 
radiator tubes to reduce active areas and therefore the heat dissipation capacity (Ganapathi et al. 2009), and 
(4) allowing working fluid to freeze on the internal surfaces of radiator tubes while maintaining a small liquid flow 
through the center of the tubes (Nabity et al. 2008). However, all these methods incur some performance penalties in 
terms of mass, power, reliability, and recovery time, or pose technical challenges due to their low TRL. For these 
reasons, there is a strong need for an alternative lightweight, reliable TCS that self regulates its thermal conductance 
and can tolerate freezing of its working fluid. 

II. TCS With Freeze-Tolerant and Varaiable-Conductance Radiator 
A single-loop TCS with freeze-tolerant radiator that has variable thermal conductance is being developed at 

Creare. As shown in Figure 1, the TCS uses a single-phase circulation loop inside the cabin for heat acquisition and 
transfer, and a low-pressure, two-phase loop outside the cabin for heat rejection. Single-phase circulating water in 
the hot portion of the circulation loop is cooled in a membrane evaporator by evaporating a very small fraction of 
the circulating water. The resulting water vapor condenses in the freeze-tolerant condenser, which has a self-
regulating thermal conductance to control the heat rejection rate. The condenser has unique design features that 
allow water vapor to flow into the condenser and condensate to flow out of the condenser even when a large section 
of the condenser tube is frozen, thus enabling the radiator to continue to work effectively. An ejector pump then 
draws the condensate from the external condenser back into the main loop. Each radiator passively self-regulates its 
thermal conductance to the ambient environment, giving them heat rejection turndown ratios higher than 20. The 
pumped coolant loop uses a benign working fluid that consists mainly of water with a very low concentration of 
corrosion inhibitors and biocides, which ensures the working fluid is compatible with existing aluminum heat 
exchangers, crew health, and vehicle systems.  

 

Figure 1. Layout of a Single-Loop TCS With Freeze-Tolerant Condensers/Radiators Having a Variable 
Thermal Conductance 

The TCS also can provide a very high cooling power if needed by directly venting water vapor to the external 
environment. The vent valve in the TCS also allows venting of noncondensable gas in the condensers during 
scheduled maintenance.  

The TCS combines components that are being developed at Creare, and technologies that have already been 
developed at NASA JSC and United Technologies Corporation Aerospace Systems (UTAS) to create a thermal 
control system that will meet the challenges of temperature control on future manned spacecraft. The three key 
elements in the TCS and their features are discussed below. 
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Subcooled, Single-Phase Loop Inside Cabin. The single-phase loop inside the cabin is pressurized to a level high 
enough to provide sufficient subcooling to prevent two-phase flow in this loop. This allows the use of simple single-
phase heat exchangers to absorb heat. Using a single-phase loop also eliminates potential flow instability associated 
with two-phase flows and thus simplifies system design, operation, control, and maintenance. This is especially true 
in a system that has multiple cold plates with different flow resistances and heat loads. The subcooling also prevents 
cavitation in circulation pumps, simplifying pump design and enhancing pump reliability. The pumps control the 
loop circulation flow rate to maintain the cabin temperature. These design features lead to a compact, lightweight 
TCS with a large heat transfer capacity.  

Direct Evaporative Chiller. Heat rejection from the single-phase loop is accomplished by direct evaporative 
cooling. A small fraction of the circulation water evaporates to cool the bulk circulating flow. The resulting water 
vapor flows to the parallel radiation-cooled condensers outside the cabin. The condensate is drawn back to the loop 
inside the cabin with a passive, cavitation-tolerant ejector pump. For a fixed evaporation pressure, the heat rejection 
rate in the evaporative chiller can be controlled by the circulation water flow rate. Due to the high heat transfer 
coefficient associated with the evaporation process, the evaporative chiller is far more compact than a single-phase, 
liquid-to-liquid heat exchanger in a conventional system using a secondary loop. Furthermore, for a given size 
radiator panel, the maximum heat rejection capacity of a two-phase flow is appreciably higher than that of a 
single-phase flow. This is because the temperature of a two-phase flow does not decrease as it flows across the 
condenser, while a single-phase flow always does. Compared to a system using heat pipes (including loop heat 
pipes) in its external secondary loop, our system eliminates the need for interface heat exchangers, heat pipe 
accumulators, and bypass control needed in extremely cold environments. Current heat pipes also have the 
shortcoming of limited heat transport capacity and operating stability issues associated with multiple condensers.  

The configuration of the internal portion of our TCS is similar to the liquid cooling loop in future spacesuits 
incorporating the Spacesuit Water Membrane Evaporator (SWME) currently under study by NASA for evaporative 
cooling (Bue and Makinen 2011). Our TCS eliminates water venting by incorporating radiation cooled condensers 
to condense water vapor and draw the condensate back inside the cabin. Minimizing consumables is critical for 
future long-duration exploration missions.  

Freeze-Tolerant Condensers/Radiators. The radiation cooled condenser is freeze-tolerant and has design features 
that self-regulate its thermal conductance to the ambient environment. The variable conductance allows the TCS to 
maintain a stable evaporation pressure for the evaporative chiller, and thus a stable cabin temperature even when the 
variations in cabin heat loads and ambient temperature are large. The freeze-tolerant condensers also enable water as 
working fluid. This eliminates the need for other working fluids with very low freezing temperatures that have much 
poorer thermophysical properties relative to water.  

III. Condenser/Radiator Design Optimization 
Condenser Design Features. The radiation-cooled condensers are designed to tolerate freezing of the working 

fluid and yet continue to reject heat. Compared with other radiator designs, the key difference in this 
condenser/radiator is the continuous connection between the vapor channel and the condensate return channel. 

The condenser has three distinct operating regions. Close to the vapor inlet is the active region operating at the 
inlet vapor temperature; at the distal end is the inactive region at the effective sink temperature; and in between lies 
a short transition zone. The length of the active region is proportional to the condensation rate. It increases with TCS 
input power which leads to more vapor. The length of the active region also increases when the effective sink 
temperature is increased due to the lower local condensation heat flux. When the active regime extends to the distal 
end of the condenser tube, the condenser heat rejection capacity reaches its maximum value. This ability of the 
condenser to regulate the length of its own active region enables it to achieve a variable thermal conductance to the 
ambient environment.  

With a relatively uniform heat sink temperature over the entire radiator panel, the far end of the condenser tube 
will always be at the lowest temperature of the entire tube. Therefore, water will tend to start to freeze at that end. 
The frozen section will gradually extend toward the vapor inlet as the heat load decreases or the ambient 
temperature decreases. This behavior will prevent water from being trapped between two iced sections. This feature 
prevents excessive stresses in the condenser tube associated with fluid expansion during freeze-thaw cycles.  

Condenser Design Analysis. To maintain a comfortable cabin environment, the evaporative chiller needs to 
operate at a saturation temperature below 20°C. The corresponding saturation vapor pressure is only 17.5 torr. 
Therefore, pressure drop within the vapor lines connecting the evaporative chiller to condensers must be limited to 
no more than 2 torr. This low-pressure drop requirement, coupled with the low density of water vapor, necessitates a 
condenser tube with a relatively large diameter. Other design constraints for the condenser/radiator, including the 
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IV. Ejector Pump Design 
The ejector pump is a critical system component responsible for returning the low-pressure condensate in the 

radiator panel back to the high-pressure cabin loop. To raise the pressure of the condensate back to the cabin loop 
pressure, our approach is to use a single-stage ejector that uses a small flow of high-pressure water from the main 
circulation loop to raise the condensate pressure to an intermediate pressure, e.g., 10 psia, and then employ a small 
booster pump to complete the process. The intermediate pressure only needs to be high enough to avoid cavitation in 
the booster pump. For a 6 kW cooling system, the primary flow rate is only about 4 g/s, or 32 lb/hr. This is only 
about 10% of the main pump flow rate. The ideal power input for the booster pump is only about 1.5 W.  

We completed scoping analyses to develop a preliminary ejector pump design that will recirculate radiator 
condensate with 5°C of subcooling using a primary motive stream at 45 psia. To prevent cavitation in the suction 
flow, which would increase suction flow volumetric flow rate and thus reduce the ejector entrainment ratio, we limit 
the maximum acceleration pressure drop from the suction inlet to the mixing chamber inlet to less than 0.05 psi. As 
a result, the suction flow area must be relatively large.  

A preliminary ejector design, with dimensions determined from conservation laws and empirical diffuser 
performance maps, was analyzed with a CFD model for incompressible fluid. Figure 5 shows the ejector pump 
model. The nozzle diameter is only about 0.5 mm.  

 

Figure 5. CAD Model of a Preliminary TCS Ejector Pump 

The computational domain is axisymmetric and thus only a 20-degree section of the entire ejector was modeled. 
Mesh refinement near the walls and mixing regions resolves boundary layer growth (particularly in the diffuser), as 
well as the shearing region where the high-speed nozzle exit flow and the entrained suction flow meet. Pressure 
boundary conditions are imposed at the inlet (45 psia), suction inlet (0.26 psia), and diffuser outlet (11 psia), and the 
resulting mass flow rates were determined from the CFD results.  

The resulting primary flow rate is 4.03 g/s and the suction flow rate is 2.24 g/s, corresponding to an entrainment 
ratio of 0.56 with an ideal exit pumping power of 1.47 W. Table 1 provides a summary of all key ejector 
performance data predicted by the CFD analysis.  

Figure 6 shows the pressure contours within the ejector. The ejector design includes a larger suction throat which 
reduces the acceleration pressure drop and thus cavitation potential. The minimum pressure in this region is about 
1600 Pa which corresponds to a saturation temperature of 14°C. Short regions of sub-saturation pressures are 
allowable as the cavitation bubbles have fast, but finite growth rates. If the fluid transit period across the 
low-pressure region is sufficiently small, minute vapor bubbles might not have adequate time to grow before 
entering higher pressure regions where they will condense.  

The CFD results were also used to iteratively determine the optimum length of the mixing section. The mixing 
section must be long enough to allow the suction flow and primary flow to reach the same speed and pressure. An 
excessively long mixing chamber, however, can cause large flow losses due to wall friction. We iteratively adjust 
the chamber length to maximize the ejector performance (i.e., maximize suction flow rate) for the given pressure 
boundaries.  
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Table 1. Ejector Pump CFD Predictions 

Overall Mechanical Efficiency 18.2% 

Primary Mass Flow rate (g/s) 4.03 

Suction Mass Flow rate (g/s) 2.24 

Entrainment Ratio (-) 0.56 

Primary Flow Inlet Pressure (psia) 44.9 

Suction Pressure (psia) 0.26 

Outlet Pressure (psia) 11.2 
Minimum Suction Pressure (psia) 
[Corresponding Tsat (°C)] 

0.232  
[14] 

Nozzle Bulk Exit Velocity (m/s) 23.6 

Nozzle Efficiency (-) 90.4% 

Bulk Velocity Entering Diffuser (m/s) 8.14 

Diffuser Inlet Pressure (psia) 8.0 
 

 

 

Figure 6. Ejector Pump Pressure Contours. Pressure in the region just upstream of the nozzle jet in the 
suction flow is approximately 1600 Pa.  

V. Proof-of-Concept Freeze-Tolerant Demonstration 
Freeze-Tolerant Condenser. The proof-of-concept freeze-tolerant condenser prototype is a tube-in-shell style 

design (Figure 7). The concept demonstrator design incorporates the prototypical flow and heat transfer 
characteristics of the optimized radiator panel design. The demonstrator is convectively cooled rather than 
radiatively to simplify the test setup. However, the condenser shell is sized to approximate the axial conduction of 
an aluminum radiator panel.  
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Figure 7. Phase I Prototype Condenser Design 

Prototypical Condenser Test Facility. Figure 8 provides a schematic of the test facility to demonstrate the key 
features of the freeze-tolerant condenser. The major components consist of a low-pressure evaporator, a prototypical 
condenser tube, and a convectively cooled radiator load simulator.  

The evaporator consists of a stainless steel tube, an internal circulating micro-pump, an external tape heater, and 
a liquid spray tube. The evaporator simulates the output vapor flow from a membrane evaporative chiller in an 
actual TCS. The vapor production rate is adjusted using the tape heater. A high-accuracy pressure gauge provides 
precise measurement of the saturation pressure, and consequently, saturation temperature. A T-type thermocouple 
immersed in the evaporator provides a secondary check of the vapor state leaving the evaporator.    

 

Figure 8. Schematic of Test Facility 

An outer tube surrounding the condenser tube serves as a radiative load simulator. Air circulates through the 
annular gap between the condenser tube and the simulator shell to convectively cool the condenser. The thermal 
resistance from the condensed vapor to the air flow is representative of the resistance from the condensing vapor to 
the radiative heat sink in actual applications. A propylene glycol-water loop flows in a counter-flow heat exchanger 
to chill the air prior to the radiative load simulator.  

Ten thermocouples were installed axially along the condenser tube. The tip of each thermocouple is positioned in 
the midpoint of the condenser tube wall and reflects the fluid temperature inside the condenser. The array of 
thermocouples provides information regarding the axial temperature profile inside the condenser, allowing us to 
observe how the active and frozen condenser lengths change depending on the load. The temperature change of the 
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from TC5 to TC2. At 170 min, the condenser inlet valve is opened with the heater power returning to 45 W. The 
active, two-phase zone advances in response to the increased heat load. Axial conduction begins the melting process 
of the frozen zone. Within 15 minutes, the condenser has regulated itself to a point where it is rejecting the increased 
load, despite the fact that the melting process is not complete. The latent heat of fusion allows the radiator to 
accomodate a fast power ramp to its full design load even though the time to reestablish a steady operating state 
takes nearly 40 minutes. This example clearly demonstrates the freeze-tolerance capability.  

VI. Demonstration of Biocide and Corrosion Inhibitors 

Water is the most benign working fluid and has the best transport and thermodynamic properties. However, pure 
water is corrosive to pipes and heat exchangers made of aluminum alloys. To overcome this problem and to prevent 
formation of biofilm, corrosion inhibiting and biocidal additives must be introduced in the water. UTAS has 
identified a promising organic acid-based corrosion inhibition package for water in aluminum heat exchangers. Test 
results show that the additives are stable over a wide temperature range (275 K to 333 K) and through a 24-hour 
freeze/thaw cycle. Furthermore, short-term corrosion test data indicate greater than an order of magnitude reduction 
in aluminum corrosion rate. The results of this development effort are briefly discussed below. 

An iterative process was undertaken to determine the appropriate concentration of each ingredient in the 
water-based coolant. This was a balancing act between ideal target concentrations and the solubility of the mixture 
in the target temperature range (275 K to 333 K) and through a freeze/thaw cycle. Solubility was based on visual 
examination of the solutions to ensure clarity with no signs of precipitation and/or stratification.  

CPP (Cyclic Potentiodynamic Polarization) was used as an analysis tool to estimate the corrosion rate of 
aluminum alloy heat exchanger material in the subject coolant. Tafel extrapolation per ASTM G 102 was performed 
on the CPP data curves to provide a corrosion rate estimate. This method is also capable of revealing any tendency 
for pitting for the combination of material and environment (in this case, the subject coolant). Aluminum Alloy 6951 
samples were soaked in the coolant solution for approximately 2.5 weeks before testing.  

Figure 12 represents the results of a CPP corrosion test. These curves are plots of the log of corrosion current in 
amperes (amperes per square centimeter for a 1 cm2 sample) as a function of polarization potential in volts vs. a 
Saturated Calomel Electrode (S.C.E.). The red curves give the raw data, and the green curve shows the curve model 
used in the Tafel Extrapolation, which gave corrosion rates of 0.229 mpy for this trial.  

Figure 13 shows the generic corrosion rate of aluminum as a function of pH value. At a pH value of 7.8 (the pH 
of the developed coolant), the corrosion rate is ~0.1 mm per year (or 3.9 mpy). This was used as a baseline data 
point to compare to the corrosion rate of Al 6951 alloy coupons submerged in the subject coolant for a two-week 
period of time. It should be noted that the pH of water with no buffer is expected to increase over time when in 
contact with aluminum due to the generation of aluminum hydroxide corrosion products. The corrosion rate, 
therefore, would be expected to increase over time with no buffer. 
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Figure 12. CPP Corrosion Test With Tafel Extrapolation 
in Water Based Coolant. Corrosion rate = 0.229 MPY. 

 
 
 

 

 

Figure 13. Generic Corrosion Rate of Aluminum in 
Water1 

Additionally, UTAS has developed a micro-gravity compatible means to introduce a long-acting, low vapor 
pressure biocide (ortho-phthalaldehyde) to water-based coolant systems. This biocide has been implemented on the 
International Space Station in the Internal Active Thermal Control System (IATCS) and has demonstrated high 
antimicrobial character lasting several months at a time from a single dose. 

VII. Performance Comparison With Other Technologies 
A preliminary study was conducted by UTAS to compare the freeze-tolerant radiator and TCS mass to the mass 

of other TCS and radiator combinations. Comparisons were made to the Orion TCS and radiator and to a lightweight 
body-panel UTAS radiator design. The preliminary freeze-tolerant radiator design was adjusted to have the same 
area, thickness, and redundancy as the competing radiators, while the Creare TCS mass and power were adjusted for 
the specific set of valves and pumps that are unique to that system. As shown in Table 2, the study by UTAS showed 
that Creare’s radiator mass is 43 lb lighter than the lightweight UTAS radiator mass while the system-specific 
components such as boost pumps, ejectors, and isolation valves only add about 30 lb back to the system. As a result, 
the total mass and power of Creare’s TCS is 13 lbm less than what might be considered an Orion single-loop TCS. 
Creare’s TCS also benefits from pumping water instead of a 50/50 mix of propylene glycol and water, which saves 
pumping power in the primary coolant loop. Even when considering the need for boost pumps, the power savings 
would be about 68 watts compared to the single-loop Orion baseline and 188 watts compared with the two-loop 
Orion system. More importantly, Creare’s TCS has the benefit of using water as a nontoxic coolant inside the cabin, 
and the coolant is compatible with lightweight aluminum heat exchangers. 
  

                                                           
1 <http://www.corrosion-doctors.org/Corrosion-by-Water/Constituents.htm> 
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Table 2. Mass and Size Comparison for Different TCS Technologies 

Configuration 

Radiator 
Redundant 

Loops? 
Cabin 

Coolant 

Change in 
System 
Mass 

Added 
System 
Power Area Thickness Mass 

ft2 inches lb lb W 
Orion single-loop system 249 0.040 256 yes PGW 0 0 
Orion two-loop system 249 0.040 256 yes Water + 300 +120 
Orion with variable 
conductance heat pipes 

249 0.040 256 yes Water + 188 0 

Orion single-loop system 
with UTAS radiator 

249 0.040 217 yes PGW - 39 0 

As-designed Creare TCS  248 0.010 50.5 no Water -168 -111 
Adjusted Creare TCS, with 
redundant loops 

249 0.040 173 yes Water -53 -68 

 

VIII. Conclusions 
This paper describes early development of a TCS with freeze-tolerant radiators that have self-regulating thermal 

conductance for future manned spacecraft thermal control. Functional performance testing using convectively-
cooled prototypical condenser tubes demonstrated the operating characteristics required for a reliable, freeze-tolerant 
condensing system, namely (1) self-regulating thermal conductance with short transient responses to varying 
thermal loads, (2) effective operation in a partially frozen state, (3) fast start-up from fully frozen state, and (4) the 
ability to survive a fully frozen state without suffering structural damage. A biocide/corrosion inhibitor package was 
identified to mitigate aluminum corrosion and biofilm fouling, thus enabling water as a coolant for TCS using 
aluminum heat exchangers. Performance comparison with state-of-the-art designs shows that the TCS with 
freeze-tolerant radiators offers significant mass and power saving benefits, in addition to having the advantages of 
minimal moving parts, no active control requirements, high system reliability, and long life. 
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