
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



Software Safety Risk in Legacy Safety-Critical Computer Systems 

Janice Hill 
NASA, Kennedy Space Center, Florida 

University of Florida 
Janice.L.Hil/@nasa.gov 

Abstract 

Safety-critical computer systems must be engineered to 
meet system and software safety requirements. For legacy 
safety-critical computer systems, software safety 
requirements may not have been formally specified during 
development. When process-oriented software safety 
requirements are levied on a legacy system after the fact, 
where software development artifacts don't exist or are 
incomplete, the question becomes 'how can this be done?' 
The risks associated with only meeting certain software 
safety requirements in a legacy safety-critical computer 
system must be addressed should such systems be selected 
as candidates for reuse. This paper proposes a method for 
ascertaining formally, a software safety risk assessment, 
that provides measurements for software safety for legacy 
systems which may or may not have a suite of software 
engineering documentation that is now normally required. 
It relies upon the NASA Software Safety Standard, risk 
assessment methods based upon the Taxonomy-Based 
Questionnaire, and the application of reverse engineering 
CASE tools to produce original design documents for 

legacy systems. 

1. Introduction 

When planning for the production of new software, 
technical and process-oriented software safety requirements 
are included during the software development lifecycle. 
Meeting these types of requirements is part of what is 
called making a 'safety case'. [3] [4] [5] [9] Process­
oriented software safety requirements, such as those 
contained in government and industry safety standards, 
may be levied on a legacy system after the fact. Often, 
software development artifacts don't exist or are 
incomplete. How can a legacy safety-critical computer 
system meet these new standards? 

The method proposed here is aimed at providing a 
quantitative measure of the safety of legacy computer 
systems which are still in use and may be reused but may 
not have a complete set of software engineering 
documentation as required by any number of software 
safety standards. In the NASA "Software Safety 

Rhoda Baggs, Ph.D. 
Assistant Professor of Computer Sciences 

Florida Institute of Technology 
rbaggs@fit.edu 

Standard", sets of "software safety activities, data, and 
documentation necessary for the acquisition or 
development of software in a safety-critical system" are 
described. [2] As part of the design for a particular system, 
it is recommended in this NASA standard that "the 
following documentation shall address safety-critical 
software". These particular documents are common 
artifacts of the system and software development processes 
that should contain all the requirements, methods and 
procedures for safety-critical software. See Figure 1. 

I. Software Safety Plan 
2. Software Project Management Plan 
3. Software Configuration Management Plan 
4. Software Quality Assurance Plan 
5. Software Requirements Specification 
6. Software Design Documentation 
7. Verification and Validation Plan 
8. Safety Analyses and Reports 
9. Test Documentation 
10. User documentation and procedures 
II. Operations and Maintenance Plan 

Figure 1 . NASA Software Safety Standard 
documentation requirements [2] 

Let us call this documentation list the "Beta Set" or simply 
p, 

One plan of action for assessing the safety of a legacy 
computer system and therefore make a safety case for the 
software, is to analyze software design documentation 
artifacts which must either be located or created for legacy 
systems. Following the methodology, these artifacts will 
be used or created if necessary to produce such an 
assessment. At the same time, a'new taxonomy catered and 
tweaked for software safety and based upon work done by 
the Software Engineering Institute will be used. From this 
'software safety risk taxonomy', a Taxonomy-Based 
Questionnaire (TBQ) is developed and used as part of the 
formula for quantifying the software safety risk. It is 
worthwhile to note that this method exhibits the following 
crucial software engineering characteristics: completeness, 



fairness, robustness, and although complex, directly 
derivable from known technologies. 

2. The Problem and Solution 

Put simply, a measure of software safety risk must be 
ascertained for legacy systems in consideration for reuse. 
General software risk is the expected loss that can occur 
when software is developed, used or maintained. [I] The 
risk posed by safety-critical software will vary with the 
system safety criticality, which consists of the type of 
hazards and the level of control or influence the software 
has on system safety factors. [2] Calculating software 
safety risk is an essential part of determining the specific 
activities and depth of analyses needed to meet process­
oriented software safety requirements. It is useful to define 
a composite function R(F,G) which will give an estimation 
of the software safety risk involved in using or re-using a 
particular legacy safety-critical computer system. R(F,G) 
represents such a function where F is itself a function that 
calculates a measure of software safety risk on a system 
with a complete set of software engineering documentation. 
F is based on the ''Taxonomy Based Questionnaire (TBQ)" 
as outlined in [6] [7] [10]. G is a similar function that 
calculates the software safety risk based upon 
documentation supplied by various reverse engineering 
CASE tools and or techniques. 

Once R, F, and G are defined, along with the CASE tools 
to help produce a software system documentation suite, a 
calculation of the software safety risk of the legacy system 
can be made. This results in a set of software safety risk 
metrics for decision making for mitigation strategies. 

3. Formalizing the Problem Solution 

Let us define the following formal sets and functions. 
Note that each will be explained in greater detail in 
subsequent sections. 

S: A legacy safety-critical computer system whose 
level of software safety based on software safety risk is to 
be defined. 

~: Set of software engineering documentation artifacts 
which represent software safety requirements for S. 

~I: Set of already existing software engineering 
documentation for S (worst case ~I is the empty set, 
otherwise ~I C ~). 

132: Set of software engineering documentation for S 
that does not exist and therefore we need to develop using 
reverse engineering tools (worst case ~ = 132. otherwise 132 
C~). 

F (~): A function (or method or process) for calculating 
the software safety risk of S, based on ~. 

G(fu): A function (or method or process) for 
calculating the software safety risk of S, based on 132. 

R(F, G): A composite function for measuring software 
safety risk for S. 

F (~) and G(fu) are mutually exclusive and functionally 
independent. 

4. Defining the Formal Sets and Functions 

4.1. The Beta Set (P) 

The Beta Set, (~) is either a full or partial subset of the 
documentation requirements list taken from the NASA 
Software Safety Standard as listed in Figure 1. This makes 
~ a complete or 'ideal' set of documentation as 
recommended by NASA for addressing software safety 
requirements. Ideally, this complete set of artifacts is 
produced during development. Since this research 
addresses the problem for legacy safety-critical computer 
systems, it is more likely that these types of systems will 
have a partial set. This is especially true for systems and 
sub-systems from the Space Shuttle and the International 
Space Station programs, which were initiated prior to the 
development of the NASA Software Safety Standard Note 
that according to the NASA standard, this list can be 
tailored or specialized for particular systems. 

4.2. The Beta One and Beta Two Sets (II. and P2) 

~I and 132 represent those software documentation 
artifacts that do exist for S and those that do not exist for S 
(~I and ~2' respectively). 

To define these two sets, first a legacy safety-critical 
computer system, S is identified as a candidate for reuse. 
The appropriate project personnel responsible for the 
legacy system are interviewed to create a project profile, to 
find out what documentation artifacts exist and if any 
'tribal knowledge' of the system is available [15]. Based 
on the results of the interviews, ~I is produced. 132 is then 
found from ~ - ~I' 

4.3. Calculating F(P) 

F(~) is found using the value of~, which is the tailored 
or specialized set of documents that address the safety­
critical software in the candidate legacy computer system, 
S. F uses the Taxonomy Based Questionnaire since "most 
project risks are usually known by project personnel and as 
a consequence can be surfaced and managed" [6]. The 
proposed function (method or process) that is applied to ~ 
is summarized by the following steps: 
1. Define a TBQ based on the software safety taxonomy 
and catered for legacy systems. The software safety 
taxonomy maps the characteristics of software development 
of safety-critical software, and hence of software safety 
risks. [6] 



2. Use the TBQ to elicit risks and identify issues (e.g., 
potential risks). The taxonomy is designed to facilitate the 
classification of the risks themselves, as associated with the 
software development process, including the safety 
requirements [6] [10]. P will map to the taxonomy and so 
will the risks and issues captured in this process step. 
3. Analyze the risk data using methods based on the 
Software Engineering Institute (SEI) Software Risk 
Evaluation (SRE) practice. [8] [10] The analysis will aid in 
translation of the risks for later decision making. [8] 
4. Perform risk ranking. 

4.3. Calculating G(Pl) 

G(I32) is calculated using 132, which represents any 
documentation that wasn't recovered or otherwise obtained 
with the production of PI but has been determined to be 
useful when the determination of P was made. 132 is to be 
supplied by reverse engineering CASE tools and or 
techniques. The proposed function (method or process), G 
that is applied to P2 is summarized by the following steps: 
1. Determine appropriate reverse engineering tools for use 
in developing the specific set of documents defined by P2. 
2. Select and acquire available tools to create the P2 set, 
based on step 1. 
3. Create the P2 set of documents. If tools are not available 
for some of the documents, then the risk of not finding a 
tooVtechnique to develop these documents will be assessed 
as part of function G. 
4. Analyze the risk data using methods based on the SEl's 
SRE practice. [8] [10]. 
5. Perform risk ranking. 

4.4. Calculating R(F, G) 

The composite function R(F, G) will be calculated using 
the results from functions F(P) and G(I32). Function R(F, G) 
has the following steps: 
1. Research risk matrices to use for quantifying the 
complete set of software safety risks calculated so far. Start 
with investigating the use of the 4x5 risk matrix in the 
NASA Office of Safety and Mission Assurance Risk 
Management Procedural Requirements. [13] 
2. Determine appropriate risk assessment tools and 
processes to use with the software safety risks. One 
example is the DDP tool [14] used at NASA and the Jet 
Propulsion Laboratory (JPL), which is a risk-informed 
requirements engineering tool. 
3. Select the appropriate risk matrix, risk assessment tools 
and processes. 
4. Use the risk assessment tools and processes to define 
software safety risk metrics. 

During the course of a three year research initiative, it is 
projected that the composite function R(F,G) will be 
calculated for several legacy safety-critical computer 
systems at the Kennedy Space Center, Florida. There are 

many legacy launch and landing support systems to choose 
from at this NASA facility, with some currently being 
considered for reuse to monitor and control the next 
generation of space vehicles. Thus, the proposed 
quantitative measure of the software safety risk is expected 
to assist engineers and management in risk mitigation 
strategies when these legacy systems are reused. 

s. Conclusion 

Much published work has been explored with respect to 
the reverse engineering of software systems, and even with 
legacy systems, not much has been attempted on the 
specific issue of software safety risk. The authors believe 
that the NASA Software Safety Standard, by providing a 
list of artifacts (Figure 1.) achieves the desired connection 
proposed here between legacy safety-critical computer 
systems, and a technique for calculating software safety 
risk. 

This paper outlines a proposal for a methodology that 
will provide a quantitative measure of the safety of legacy 
computer systems which are being considered for reuse but 
may not have a complete set of software engineering 
documentation as required by software safety standards. 
The methodology is based on existing risk elicitation and 
evaluation techniques which will be adapted for software 
safety requirements. The research project to investigate the 
methodology is in its early stages. Results from this initial 
research will be documented in a follow-on paper. 

6. Acknowledgement 

This research is supported by the NASA Office of 
Safety and Mission Assurance and the NASA IV&V 
Facility, Software Assurance Research Program. 

7. References 

[1] S. Sherer "The Three Dimensions of Software Risk: Technical, 
Organizational and Environmental", Proceedings of the 2l1h 
Annual Hawaii International Conference on System Sciences, 
IEEE, 1995, pp. 369-380. 

[2] NASA Office of Safety and Mission Assurance, NASA-STD-
8719.13B Software Safety Standard w/Change 1, 2004. 

[3] L-H.Eriksson, "Using Formal Methods in a Retrospective 
Safety Case", SAFECOMP 2004, LNCS 3219, Springer-Verlag, 
Heidelberg, 2004, pp. 3144. 

[4] S. Gardiner (ed.) "Testing Safety-Related Software. A 
Practical Handbook", Springer-Verlag, London, 1999. 

[5] T.M. Bull, EJ. Younger, K.H. Bennett, Z. Luo, "Bylands: 
Reverse Engineering Safety-Critical Systems", IEEE, 1995. 



[6] M. J. Carr, S. L. Komia, I. Monarch, F. C. Ulrich, C. F. 
Walker, "Taxonomy-Based Risk Identification", Software 
Engineering Institute Technical Report, CMU/SEI-93-TR-6, 
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1993. 

[7] K. P. Batista Webster, K. M. de Oliveira, N. Anquetil "A 
Risk Taxonomy Proposal for Software Maintenance", 
Proceedings of the 21st IEEE International Conference on 
Software Maintenance. (ICSM '05), IEEE Computer Society, 
2005. 

[8] R. P. Higuera, Y. Y. Haimes, "Software Risk Management" 
Software Engineering Institute Technical Report. CMU/SEI-96-
TR-012, Carnegie Mellon University, Pittsburgh, Pennsylvania, 
1996. 

[9] A.J. Shears, and T. Cockram, "An e-Safety Case Approach to 
Assuring Safety in UK Legacy Air Launched Munitions", 
Retrieved December 14, 2006 from, http://www.praxis­
cs.com/eSafetyCase/downloadslparariyaperv2.pdf 

[10] G.J. Pandelios, S.G. Behrens, R. L. Murphy, R.C. Williams, 
and W.R. Wilson, "Software Risk Evaluation (SRE) Team 
Member's Notebook (Version 2.0), Software Engineering Institute 
Technical Report. CMU/SEI-99-TR-029, Carnegie Mellon 
University, Pittsburgh,Pennsylvania, 1999. 

[II] European Cooperation for Space Standardization Secretariat, 
"Space Product Assurance Methods and techniques to support the 
assessment of software dependability and safety", Draft ECSS-Q-
10-80 ESA Publications Division, ESTEC, Netherlands, 2006. 

[12] C. Boldyreff, J. Brittle, C. Korhonen, P. Kyaw, J. Lavery, 
D. Nutter, and S. Rank, "Web-Based Support for Managin~ Large 
Collections of Software Artefacts", Proceedings of the 21 IEEE 
Annual International Computer Software and Applications 
Conference (COMPSAC '03), IEEE Computer Society, 2003. 

[13] NASA Office of Safety and Mission Assurance, NPR 8000.4 
Risk Management Procedural Requirements w/Change 1. Ch. 2, 
2004. 

[14] M.S. Feather, S.L. Cornford, K.A. Hicks, K.R. Johnson, 
"Applications of tool support for risk-informed requirements 
reasoning", International Journal of Computer Systems Science & 
Engineering volume 20 no. 1. CRL Publishing Ltd, January 2005. 

[15] http://en.wikipedia.orglwikilTribal_knowledge, Retrieved 
December 14, 2006 from, Wikipedia. The Free Encyclopedia, 
Wikimedia Foundation, Inc., 2006. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5



