
Detecting Distributed SQL Injection Attacks in a
Eucalyptus Cloud Environment

Alan Kebert, Bikramjit Banerjee, Juan Solano
School of Computing

The University of Southern Mississippi
Hattiesburg, MS 39402, USA
Alan.Kebert@eagles.usm.edu

Wanda Solano
National Center for Critical Information

Processing and Storage
National Aeronautics and Space Administration

Stennis Space Center, MS 39529, USA
Wanda.m.solano@nasa.gov

Abstract—The cloud computing environment offers malicious
users the ability to spawn multiple instances of cloud nodes that
are similar to virtual machines, except that they can have
separate external IP addresses. In this paper we demonstrate
how this ability can be exploited by an attacker to distribute
his/her attack, in particular SQL injection attacks, in such a way
that an intrusion detection system (IDS) could fail to identify this
attack. To demonstrate this, we set up a small private cloud,
established a vulnerable website in one instance, and placed an
IDS within the cloud to monitor the network traffic. We found
that an attacker could quite easily defeat the IDS by periodically
altering its IP address. To detect such an attacker, we propose to
use multi-agent plan recognition, where the multiple source IPs
are considered as different agents who are mounting a
collaborative attack. We show that such a formulation of this
problem yields a more sophisticated approach to detecting SQL
injection attacks within a cloud computing environment.

Keywords—cloud computing; Distributed Attack; Eucalyptus;
SNORT; Havij; OSSIM; MAPR

I. INTRODUCTION
Cloud computing offers new opportunities for software

distribution, resource allocation, convenience, and information
security for users, but it also creates new opportunities for
malicious users to penetrate security layers and damage,
destroy or steal data of other users. One advantage that a cloud
computing environment offers to malicious users is the ability
to spawn multiple instances of cloud nodes that are similar to
virtual machines, except that they can have separate external
IP addresses. In this paper we demonstrate how this ability can
be exploited by an attacker to distribute his/her attack, in
particular SQL injection attacks, in such a way that an
intrusion detection system (IDS) could fail to identify this
attack. To demonstrate this, we set up a small private cloud
using the Eucalyptus [10] cloud environment, established a
vulnerable website in one instance, and placed an IDS (open
source OSSIM [11]) within the cloud to monitor the network
traffic. We found that an attacker, using a freely available
SQL injection tool (Havij) could quite easily defeat OSSIM by
periodically altering its IP address, i.e., by hopping from one
instance to another in the cloud.

To detect such an attacker, we propose to use multi-agent
plan recognition [1][2][4][5], where the multiple source IPs
are considered as different agents who are mounting a
collaborative attack. We show that such a formulation of this
problem yields a more sophisticated approach to detecting
SQL injection attacks within a cloud computing environment.

II. RELATED WORK
In the past, very little work has been done to study security

issues and strategies in a cloud computing environment.
“Digital Forensics for Eucalyptus” [9] considered security
vulnerabilities in a Eucalyptus cloud, and our work can be
considered as an extension or a continuation of that work,
since we not only address exploitation of some vulnerabilities
of Eucalyptus cloud, but also how to detect a resulting attack,
where existing IDS fail.

SQL injection continues to be a threat and is discussed in
depth in "A classification of SQL-injection attacks and
countermeasures” [3]. Although multiple methods exist to
prevent or detect SQL injection attempts, these methods tend
to focus on single actions. It can be difficult to differentiate a
single action of an attack from normal traffic, so Security
information and event management programs (SIEMs) try to
correlate multiple activities with the plan of an attacker [6].
SIEM directives typically look for a pattern of activity from a
single user to increase the reliability of an alert, but do not
consider whether the actions of multiple agents have
collectively achieved a malicious goal.

Multi-agent plan recognition [1][2][4][5] (MAPR) has been
formalized and studied recently in abstract and theoretical
settings, and to the best of our knowledge it has not been
applied to any realistic cyber-security problem. Hence in this
respect our work constitutes the first practical application of
MAPR.

III. DESCRIPTION OF SETTING
In this section we describe how the various components of

our system are setup, and how they operate. In succession, we

will describe the Eucalyptus cloud setup that we used, the
Havij SQL injection tool and the network traffic sniffer Snort,
which is used as a sensor by the security event manager
OSSIM to generate its alerts. Finally we describe how a
simple strategy of switching source IP address can defeat
OSSIM.

A. Eucalyptus Cloud

Fig. 1. The Eucalyptus Cloud Environment

The cloud environment on which this work is based is
shown in Fig. 1. It contains three nodes, the head node – the
manager of all communication with the external world – and
two other nodes that offer various computational and storage
resources to users. The communication between the head node
and the other nodes are via an ethernet switch. An IDS
(OSSIM) sniffs all packets passing through this switch. This
gives OSSIM a vantage point to monitor any external attack
on resources within the secondary nodes. In particular, we
establish a vulnerable website within a VM in node 1. Fig. 1
also shows users outside the cloud accessing the cloud
resources through the head node. Our attack computers were
located outside the Eucalyptus cloud, but still able to
compromise the database inside the cloud node.

B. Havij
 In order to demonstrate an attack we used a program called
Havij. Havij is a freely available SQL injection tool. SQL
injection is the process of inserting arbitrary SQL code into a
form whose input is queried against a SQL database. The form
expects a user input, such as a username field on a login page,
but if the text is not carefully sanitized a malicious user may
place SQL commands into the field and cause the database to
execute unintended commands. Havij facilitates this sort of
activity by discovering the important field names needed for
many SQL commands: database names, table names, and the
columns of the tables. Havij can also reveal the contents of an
unsecured database. It does this by first issuing a series of if-
statements that test the length of field names, and then test the
numerical value of the ascii characters representing individual
characters of field names. Havij cannot ask the SQL database
for the values directly, so it uses these comparisons to perform
a binary search against a table of ascii numerical values. Each
comparison will usually return zero immediately if false, but if
true then an expensive MD5 benchmarking will be performed

on a given string whose runtime will be reported to Havij.
Based on this runtime, Havij can detect the binary outcome of
the comparison. Fig. 2 shows a partial example of this process.
The statements containing “if (Length” are part of a single
binary search to determine the length (in this example 5) of the
name of the database. The subsequent statements containing “if
(ascii(substring” attempt to find the 5 characters one by one.
The last statement of the form “if
(ascii(substring((database()),x,1))=y,BENCHMARK…” that
contains =y, marks the end of the process of finding the xth
character. In this example, the 1st character has been
determined to be “d”, the ascii character with code 100. The
search for the 2nd character starts next, but is not completed in
Fig. 2.

Fig. 2. Sample of (partial) tcpdump of a Havij attack formatted to be
readable

 Sometimes, perhaps due to delays in processing by the
database, Havij receives non-zero runtimes for false statements
that cause the binary search to go out of range or return a
wrong length or character. This is usually inconsequential, as
the search may be run again and comparing two searches
allows the operator to fill in missing or wrong characters. In
order to describe the database, Havij first runs these searches
for length of the database name. Next it will perform binary
search for that number of characters to determine the database
name. Once it has the database name it can issue statements to
determine the number of tables in the database. From there it
will find each table name in a similar manner to the way it
finds the database name, targeting the length of table names
and then each character of the table names. It may then do this
for column names in each table, and then for data contained in
the table. Once the structure of the database is known, a hacker
may execute arbitrary commands by filling in the appropriate
values.

 Fig. 3 shows an attack where Havij has determined the
length of the database’s name to be 5, and then conducted 5
separate binary searches for the characters in the database’s
name, discovering the name “dummy”. Fig. 4 shows an
advanced stage of this attack where Havij has discovered the

name of a table (“users”) in the database “dummy”, and used it
to discover the three field names “user”, “email” and
“password”. This attack can be manually continued through
Havij, by selecting the columns in Fig. 4, and clicking
“GetData”, to reveal the contents of the table, potentially
compromising sensitive data.

Fig. 3. Havij after finding the name of our database “dummy.”

C. Snort
We decided to use the popular packet sniffer Snort to detect

these attacks. Snort compares the content of packets against a
library of rules, and upon finding a packet whose contents
match a rule, may raise an alert, log the packet, drop the
packet, or perform some user defined function. With
appropriate rules, Snort easily detects the Havij attack, but the
functionality of Snort is greatly diminished by the large volume
of alerts it raises. For example: our Snort rule library checks
the packet content for the “BENCHMARK” command Havij
uses to check the results of its binary search. This causes Snort
to alert hundreds of times for one Havij attack. This problem is
worse if valid traffic can contain suspicious content. For
example, the character “ ‘ “ is often needed in SQL injection
commands to end the query that is intended to run and allow
the arbitrary commands to be inserted, but “ ‘ “ may also be
part of valid names like “O’Reilly.” A snort rule that checks
for “ ‘ “ in the packet will alert on the name “O’Reilly” unless
additional conditions are added to the rule. Each additional
condition to reduce false positives makes the rule easier to
defeat. This results in a tradeoff between reducing false
positives and decreasing detection rate. Since Snort only
considers one packet at a time, it is very difficult to avoid false
positives. This is where SIEMs come in.

Fig. 4. Havij after identifying each column in the users table.

D. SIEM/OSSIM
SIEM stands for Security Information and Event

Management. A SIEM uses tools like snort to detect various
things, but interprets the results at a higher level before making
alerts to the operator. We used the open source SIEM OSSIM
for this project. OSSIM uses what its creators call a
correlation engine to reduce false positives. The correlation
engine relies on user created correlation directives to determine
when to raise an alert. A correlation directive takes data from
one or more sensors, like Snort, and tries to match them to
patterns of malicious activity by organizing the data into
correlation levels. The first level is always a single occurrence
of a suspicious activity. Instead of alerting the operator
immediately, the correlation directive moves to level two
which will have a set of conditions and a timeout. If the
conditions of level two are met before the timeout, the directive
will elevate to level three and begin trying to meet a new set of
conditions with a new timeout. The user defines how reliable
each level is in indicating an attack, and this value along with
the user assigned value of the assets that the SIEM is
monitoring determines when an alert is actually raised. While
the Havij attack generates hundreds of lower levels alerts, the
correlation engine raises only one alarm. Fig. 5 shows the
directive accumulating multiple snort activations while the far
right column displays the correlation level of 3 where the
single alert is raised.

Fig. 5. Snort activations and correlation level 3

This directive generates an alert at level three. It is
activated by Snort detecting the BENCHMARK command in
the packet content. Upon initial detection of the command and
elevation to level two, it looks for fifty activations in 6 seconds
between the same source and destination IPs that activated
level one. If it sees fifty activations before the timeout, an alert
will be raised and it will elevate to level 3 where it attempts to
collect 1000 activations in the next 10 seconds between the
same source and destination IPs. This directive easily picks up
on a Havij attack, which generates hundreds of BENCHMARK
commands within a few seconds in order to perform the binary
searches. The details of the directive appear in Fig. 6.

Fig. 6. The OSSIM correlation directive fired upon Havij attack.

E. Simulating a Directive
Unfortunately, we had difficulty getting our setup of

OSSIM to perform consistently. Due to limited resources and
time, we chose to simulate this directive with a python script
and a tcpdump file. Tcpdump is a utility that captures traffic
across a network in a widely used format. We used tcpdump to
capture traffic from an attack. We then used a script to create a
log of all the packets that contained the BENCHMARK
command to simulate the snort activations. Using this data,
our script counted up the number of activations before the
timeout for each IP, elevating to level three in the same way
that the OSSIM correlation would. An alert was then raised if
enough activations were found. This is shown in the top part
of Fig. 7.

Next, to simulate a distributed attack, we modified the IP
addresses in the attack traffic so that after every 20 packets the

IP would change, and these changes cycle within a set of 6
distinct IP addresses. This is a realistic simulation of a
distributed attack, especially in a cloud computing
environment, where a user can launch multiple instances with
distinct IP addresses. By contrast, multiple VMs on a single
machine do not acquire distinct external IP addresses (but they
do acquire distinct internal addresses). After distributing the
attack across the 6 distinct IP addresses, the script was still able
to detect each attack, but since activations for any single IP
address never exceeded the conditions, each distinct source IP
remained at level two and raised no alarm. This is shown in the
middle part of Fig. 7. However, the total number of packets
sent by any single IP address is not under 50 (as shown in the
bottom part of Fig. 7 for a single source), indicating that it is
the temporal staggering of the packets that defeats level 2 of
the directive, not a straightforward distribution of the packets
among multiple sources which would make each source count
fall under the threshold of 50 packets. In general, for any
directive expecting x activations within time t before raising an
alarm, n activations must be spread over more than (n/x) IP
addresses such that an IP address is not reused before t, where
lowering x makes it harder to slip past but more likely to raise
false alarms.

Fig. 7. Top: The attack from a single IP source, that raises an alert from the
correlation angine. Middle: Attack spread across 6 source IP addresses.
Events are detected but level 2 is not passed for any source, so no alert is
raised by the correlation engine. Bottom: A single IP source sends more than
50 packets (210 packets) in all, showing that level 2 was defeated by temporal
staggering of the packets.

IV. MULTI-AGENT PLAN RECOGNITION
Multi-agent plan recognition (MAPR) refers to the problem

of explaining the observed behavior trace of multiple agents
by identifying the (dynamic) team-structures and the team

plans (based on a given plan library) being executed, as well
as predicting their future behavior [1][2].

A

T

R

X E

A

T

R

X E

Team	 1;	 Goal:	 TAR Team	 2;	 Goal:	 AXE

Arm	 1 Arm	 2 Arm	 3 Arm	 4

(Partial)	 Goal

A

R

T

X

E

A

.	 	

Fig. 8. Multi-agent blocks world example.

Fig. 9. Trace of activities of 4 robotic arms, shown in Fig. 8

 We first illustrate MAPR in a multi-agent blocks word
domain, shown in Fig. 8, Fig. 9, and Fig. 10, using standard
PDDL operators. In Fig. 8 we see two teams of robotic arms
assemble (i.e., spell out) the goal words ``TAR'' and ``AXE''
from separate stacks, starting from the (not necessarily) same
initial configuration. Fig. 9 shows the trace of 6 steps of
activities of the 4 robotic arms available to the (remote)
recognizer, who is not aware of the team-structure (i.e., the
mapping of agent-id to stack-id). This assumption partly
models the realistic incomplete information under which the
recognizer must operate. While arms 1 and 2 appear to jointly
assemble ``TAR'', and arms 3 and 4 appear to jointly assemble
``AXE'', arms 2 and 3 seem to assemble ``TAX'' as well,
creating ambiguity for the recognizer. The key insight is to
partition the trace into non-overlapping team plans, such that
invalid teams (such as the supposed team of agents 2 and 3)

fail to yield a complete partition hypothesis. In this example,
agents 1 and 4 would be executing illegal plans individually,
or building separate stacks as a team, neither of which yields a
valid partition hypothesis. Fig. 10 shows a (non-unique) plan
from the library, for start state in Fig. 8 and goal ``TAR'', in
the form of a plan graph. This is a graph based on the partially
ordered set of steps needed to achieve a goal from a start state,
with added constraints for multi-agency: role constraints
(which steps need to be performed by the same agent) and
concurrency constraints (which steps need to be executed
simultaneously; not needed in this illustration). The above
illustration is adopted from a previous paper by the authors
[2].

Fig. 10. A plan graph for the blocks world example.

V. APPLICATION OF MAPR FOR DETECTION OF HAVIJ
ATTACK

The SQL injection attack of Havij follows a pattern that can
yield the abstract plan graph shown in Fig. 11.

Find length
(=L, say)

Binary Search
1

Binary Search
2

Binary Search
L…..

Fig. 11. Abstract plan graph corresponding to Havij attack

Here a binary search first finds the length of a certain field,
say L. Then L binary searches are done in succession,
followed by a return to the top (abstract) action. Suppose the
ith binary search returns a character that is used to fill the ith

character of a string s. Then the string s[1:L] will be a part of
the query used in the next search, e.g., after the name of a
database is found this way, the queries to detect the names of
tables in that database will include the name of the database
already found. A string that differs by only a few characters
from the database name used later should still be accepted
because of the occasional false positives in the benchmark
command. This pattern repeats to find the names of tables in
the database using the database name, and then again to find
the column names in a table using that table’s name.

 A solution to the problem of limiting false positives while
still detecting an attack that is spread across multiple agents is
to use plan recognition. Rather than relying on a single IP
generating sufficient suspicious activity to raise an alert, a
plan recognition algorithm searches input from all users to see
if steps in a plan have been completed. For this pattern an
algorithm would find the length command and then identify
the search result by finding the last “=” or equivalent symbol.
It would then look for that number of binary searches using
the ascii and substring commands. If it sees these actions it is
reasonable to assume that a field name has been found
whether spread across multiple agents or not.

ACKNOWLEDGMENT
The authors thank the NASA Office of Chief Technologist

at NASA Stennis Space Center for support under the 2012
Center Innovation Fund.

REFERENCES

[1] B. Banerjee, L. Kraemer, and J. Lyle. Multi-Agent Plan Recognition:

Formalization and Algorithms. In Proceedings of AAAI-10, pp. 1059–
1064, Atlanta, GA, 2010.

[2] B. Banerjee and L. Kraemer. Branch and Price for Multi-Agent Plan
Recognition. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI-11), pp. 601–607, San Francisco, CA, 2011.

[3] Halfond, W. G., Jeremy Viegas, and Alessandro Orso. "A classification
of SQL-injection attacks and countermeasures." In Proceedings of the
IEEE International Symposium on Secure Software Engineering, pp. 65-
81. IEEE, 2006.

[4] Hankz. H. Zhuo and Lei Li. Multi-agent plan recognition with partial
team traces and plan libraries. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI-11), pages 484–489,
2011.

[5] Hankz. H. Zhuo, Qiang Yang, and Subbarao Kambhampati. Action-
model based multi-agent plan recognition. In Proceedings of NIPS 2012,
2012.

[6] Karg, . OSSIM, "Correlation engine explained.." Last modified
2004/02/01. Accessed March 5, 2013.
http://www.alienvault.com/docs/correlation_engine_explained_rpc_dco
m_example.pdf.

[7] Nicolett, Mark, and Kelly M. Kavanagh. "Magic Quadrant for Security
Information and Event Management." Gartner RAS Core Reasearch
Note (May 2009) (2011).

[8] Roesch, Martin. "Snort-lightweight intrusion detection for networks." In
Proceedings of the 13th USENIX conference on System administration,
pp. 229-238. 1999.

[9] Zafarullah, Z.; Anwar, F.; Anwar, Z., "Digital Forensics for
Eucalyptus," Frontiers of Information Technology (FIT), 2011 , vol.,
no., pp.110,116, 19-21 Dec. 2011
doi: 10.1109/FIT.2011.28

[10] Nurmi, Daniel, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. "The eucalyptus
open-source cloud-computing system." In Cluster Computing and the
Grid, 2009. CCGRID'09. 9th IEEE/ACM International Symposium on,
pp. 124-131. IEEE, 2009.

[11] Karg, D., and J. Casal. Ossim: Open source security information
management. Tech. report, OSSIM, 2008.

