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Abstract—The cloud computing environment offers malicious 
users the ability to spawn multiple instances of cloud nodes that 
are similar to virtual machines, except that they can have 
separate external IP addresses.  In this paper we demonstrate 
how this ability can be exploited by an attacker to distribute 
his/her attack, in particular SQL injection attacks, in such a way 
that an intrusion detection system (IDS) could fail to identify this 
attack. To demonstrate this, we set up a small private cloud, 
established a vulnerable website in one instance, and placed an 
IDS within the cloud to monitor the network traffic. We found 
that an attacker could quite easily defeat the IDS by periodically 
altering its IP address.  To detect such an attacker, we propose to 
use multi-agent plan recognition, where the multiple source IPs 
are considered as different agents who are mounting a 
collaborative attack. We show that such a formulation of this 
problem yields a more sophisticated approach to detecting SQL 
injection attacks within a cloud computing environment. 
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I. INTRODUCTION 
Cloud computing offers new opportunities for software 

distribution, resource allocation, convenience, and information 
security for users, but it also creates new opportunities for 
malicious users to penetrate security layers and damage, 
destroy or steal data of other users. One advantage that a cloud 
computing environment offers to malicious users is the ability 
to spawn multiple instances of cloud nodes that are similar to 
virtual machines, except that they can have separate external 
IP addresses. In this paper we demonstrate how this ability can 
be exploited by an attacker to distribute his/her attack, in 
particular SQL injection attacks, in such a way that an 
intrusion detection system (IDS) could fail to identify this 
attack. To demonstrate this, we set up a small private cloud 
using the Eucalyptus [10] cloud environment, established a 
vulnerable website in one instance, and placed an IDS (open 
source OSSIM [11]) within the cloud to monitor the network 
traffic. We found that an attacker, using a freely available 
SQL injection tool (Havij) could quite easily defeat OSSIM by 
periodically altering its IP address, i.e., by hopping from one 
instance to another in the cloud. 
  

To detect such an attacker, we propose to use multi-agent 
plan recognition [1][2][4][5], where the multiple source IPs 
are considered as different agents who are mounting a 
collaborative attack. We show that such a formulation of this 
problem yields a more sophisticated approach to detecting 
SQL injection attacks within a cloud computing environment. 
  

II. RELATED WORK 
In the past, very little work has been done to study security 

issues and strategies in a cloud computing environment. 
“Digital Forensics for Eucalyptus” [9] considered security 
vulnerabilities in a Eucalyptus cloud, and our work can be 
considered as an extension or a continuation of that work, 
since we not only address exploitation of some vulnerabilities 
of Eucalyptus cloud, but also how to detect a resulting attack, 
where existing IDS fail. 
 

SQL injection continues to be a threat and is discussed in 
depth in "A classification of SQL-injection attacks and 
countermeasures” [3]. Although multiple methods exist to 
prevent or detect SQL injection attempts, these methods tend 
to focus on single actions.  It can be difficult to differentiate a 
single action of an attack from normal traffic, so Security 
information and event management programs (SIEMs) try to 
correlate multiple activities with the plan of an attacker [6]. 
SIEM directives typically look for a pattern of activity from a 
single user to increase the reliability of an alert, but do not 
consider whether the actions of multiple agents have 
collectively achieved a malicious goal. 
 

Multi-agent plan recognition [1][2][4][5] (MAPR) has been 
formalized and studied recently in abstract and theoretical 
settings, and to the best of our knowledge it has not been 
applied to any realistic cyber-security problem. Hence in this 
respect our work constitutes the first practical application of 
MAPR. 

III. DESCRIPTION OF SETTING 
In this section we describe how the various components of 

our system are setup, and how they operate. In succession, we 



will describe the Eucalyptus cloud setup that we used, the 
Havij SQL injection tool and the network traffic sniffer Snort, 
which is used as a sensor by the security event manager 
OSSIM to generate its alerts. Finally we describe how a 
simple strategy of switching source IP address can defeat 
OSSIM. 

A. Eucalyptus Cloud 

 
Fig. 1. The Eucalyptus Cloud Environment 

The cloud environment on which this work is based is 
shown in Fig. 1. It contains three nodes, the head node – the 
manager of all communication with the external world – and 
two other nodes that offer various computational and storage 
resources to users. The communication between the head node 
and the other nodes are via an ethernet switch.  An IDS 
(OSSIM) sniffs all packets passing through this switch. This 
gives OSSIM a vantage point to monitor any external attack 
on resources within the secondary nodes. In particular, we 
establish a vulnerable website within a VM in node 1. Fig. 1 
also shows users outside the cloud accessing the cloud 
resources through the head node.  Our attack computers were 
located outside the Eucalyptus cloud, but still able to 
compromise the database inside the cloud node. 

B. Havij 
 In order to demonstrate an attack we used a program called 
Havij.  Havij is a freely available SQL injection tool.  SQL 
injection is the process of inserting arbitrary SQL code into a 
form whose input is queried against a SQL database.  The form 
expects a user input, such as a username field on a login page, 
but if the text is not carefully sanitized a malicious user may 
place SQL commands into the field and cause the database to 
execute unintended commands. Havij facilitates this sort of 
activity by discovering the important field names needed for 
many SQL commands: database names, table names, and the 
columns of the tables.  Havij can also reveal the contents of an 
unsecured database.  It does this by first issuing a series of if-
statements that test the length of field names, and then test the 
numerical value of the ascii characters representing individual 
characters of field names. Havij cannot ask the SQL database 
for the values directly, so it uses these comparisons to perform 
a binary search against a table of ascii numerical values.  Each 
comparison will usually return zero immediately if false, but if 
true then an expensive MD5 benchmarking will be performed 

on a given string whose runtime will be reported to Havij. 
Based on this runtime, Havij can detect the binary outcome of 
the comparison. Fig. 2 shows a partial example of this process. 
The statements containing “if (Length” are part of a single 
binary search to determine the length (in this example 5) of the 
name of the database. The subsequent statements containing “if 
(ascii(substring” attempt to  find the 5 characters one by one. 
The last statement of the form “if 
(ascii(substring((database()),x,1))=y,BENCHMARK…” that 
contains =y, marks the end of the process of finding the xth 
character. In this example, the 1st character has been 
determined to be “d”, the ascii character with code 100. The 
search for the 2nd character starts next, but is not completed in 
Fig. 2. 

 

Fig. 2. Sample of (partial) tcpdump of a Havij attack formatted to be 
readable 

 Sometimes, perhaps due to delays in processing by the 
database, Havij receives non-zero runtimes for false statements 
that cause the binary search to go out of range or return a 
wrong length or character.  This is usually inconsequential, as 
the search may be run again and comparing two searches 
allows the operator to fill in missing or wrong characters.  In 
order to describe the database, Havij first runs these searches 
for length of the database name.  Next it will perform binary 
search for that number of characters to determine the database 
name.  Once it has the database name it can issue statements to 
determine the number of tables in the database.  From there it 
will find each table name in a similar manner to the way it 
finds the database name, targeting the length of table names 
and then each character of the table names.  It may then do this 
for column names in each table, and then for data contained in 
the table.  Once the structure of the database is known, a hacker 
may execute arbitrary commands by filling in the appropriate 
values. 

 Fig. 3 shows an attack where Havij has determined the 
length of the database’s name to be 5, and then conducted 5 
separate binary searches for the characters in the database’s 
name, discovering the name “dummy”. Fig. 4 shows an 
advanced stage of this attack where Havij has discovered the 



name of a table (“users”) in the database “dummy”, and used it 
to discover the three field names “user”, “email” and 
“password”. This attack can be manually continued through 
Havij, by selecting the columns in Fig. 4, and clicking 
“GetData”, to reveal the contents of the table, potentially 
compromising sensitive data. 

 

Fig. 3. Havij after finding the name of our database “dummy.” 

C. Snort 
We decided to use the popular packet sniffer Snort to detect 

these attacks.  Snort compares the content of packets against a 
library of rules, and upon finding a packet whose contents 
match a rule, may raise an alert, log the packet, drop the 
packet, or perform some user defined function.  With 
appropriate rules, Snort easily detects the Havij attack, but the 
functionality of Snort is greatly diminished by the large volume 
of alerts it raises.  For example: our Snort rule library checks 
the packet content for the “BENCHMARK” command Havij 
uses to check the results of its binary search.  This causes Snort 
to alert hundreds of times for one Havij attack.  This problem is 
worse if valid traffic can contain suspicious content.  For 
example, the character “ ‘ “ is often needed in SQL injection 
commands to end the query that is intended to run and allow 
the arbitrary commands to be inserted, but “ ‘ “ may also be 
part of valid names like “O’Reilly.” A snort rule that checks 
for “ ‘ “ in the packet will alert on the name “O’Reilly” unless 
additional conditions are added to the rule.  Each additional 
condition to reduce false positives makes the rule easier to 
defeat.  This results in a tradeoff between reducing false 
positives and decreasing detection rate.  Since Snort only 
considers one packet at a time, it is very difficult to avoid false 
positives.  This is where SIEMs come in. 

 

Fig. 4. Havij after identifying each column in the users table. 

 

D. SIEM/OSSIM 
SIEM stands for Security Information and Event 

Management.  A SIEM uses tools like snort to detect various 
things, but interprets the results at a higher level before making 
alerts to the operator.  We used the open source SIEM OSSIM 
for this project.  OSSIM uses what its creators call a 
correlation engine to reduce false positives.  The correlation 
engine relies on user created correlation directives to determine 
when to raise an alert.  A correlation directive takes data from 
one or more sensors, like Snort, and tries to match them to 
patterns of malicious activity by organizing the data into 
correlation levels.  The first level is always a single occurrence 
of a suspicious activity.  Instead of alerting the operator 
immediately, the correlation directive moves to level two 
which will have a set of conditions and a timeout.  If the 
conditions of level two are met before the timeout, the directive 
will elevate to level three and begin trying to meet a new set of 
conditions with a new timeout.  The user defines how reliable 
each level is in indicating an attack, and this value along with 
the user assigned value of the assets that the SIEM is 
monitoring determines when an alert is actually raised.  While 
the Havij attack generates hundreds of lower levels alerts, the 
correlation engine raises only one alarm. Fig. 5 shows the 
directive accumulating multiple snort activations while the far 
right column displays the correlation level of 3 where the 
single alert is raised. 



 

 

Fig. 5. Snort activations and correlation level 3 

This directive generates an alert at level three.  It is 
activated by Snort detecting the BENCHMARK command in 
the packet content.  Upon initial detection of the command and 
elevation to level two, it looks for fifty activations in 6 seconds 
between the same source and destination IPs that activated 
level one.  If it sees fifty activations before the timeout, an alert 
will be raised and it will elevate to level 3 where it attempts to 
collect 1000 activations in the next 10 seconds between the 
same source and destination IPs.  This directive easily picks up 
on a Havij attack, which generates hundreds of BENCHMARK 
commands within a few seconds in order to perform the binary 
searches. The details of the directive appear in Fig. 6. 

 

Fig. 6. The OSSIM correlation directive fired upon Havij attack. 

E. Simulating a Directive 
Unfortunately, we had difficulty getting our setup of 

OSSIM to perform consistently.  Due to limited resources and 
time, we chose to simulate this directive with a python script 
and a tcpdump file.  Tcpdump is a utility that captures traffic 
across a network in a widely used format.  We used tcpdump to 
capture traffic from an attack.  We then used a script to create a 
log of all the packets that contained the BENCHMARK 
command to simulate the snort activations.  Using this data, 
our script counted up the number of activations before the 
timeout for each IP, elevating to level three in the same way 
that the OSSIM correlation would.  An alert was then raised if 
enough activations were found.  This is shown in the top part 
of Fig. 7. 

Next, to simulate a distributed attack, we modified the IP 
addresses in the attack traffic so that after every 20 packets the 

IP would change, and these changes cycle within a set of 6 
distinct IP addresses. This is a realistic simulation of a 
distributed attack, especially in a cloud computing 
environment, where a user can launch multiple instances with 
distinct IP addresses. By contrast, multiple VMs on a single 
machine do not acquire distinct external IP addresses (but they 
do acquire distinct internal addresses). After distributing the 
attack across the 6 distinct IP addresses, the script was still able 
to detect each attack, but since activations for any single IP 
address never exceeded the conditions, each distinct source IP 
remained at level two and raised no alarm. This is shown in the 
middle part of Fig. 7. However, the total number of packets 
sent by any single IP address is not under 50 (as shown in the 
bottom part of Fig. 7 for a single source), indicating that it is 
the temporal staggering of the packets that defeats level 2 of 
the directive, not a straightforward distribution of the packets 
among multiple sources which would make each source count 
fall under the threshold of 50 packets. In general, for any 
directive expecting x activations within time t before raising an 
alarm, n activations must be spread over more than (n/x) IP 
addresses such that an IP address is not reused before t, where 
lowering x makes it harder to slip past but more likely to raise 
false alarms.   

 

Fig. 7. Top: The attack from a single IP source, that raises an alert from the 
correlation angine. Middle: Attack spread across 6 source IP addresses.  
Events are detected but level 2 is not passed for any source, so no alert is 
raised by the correlation engine. Bottom: A single IP source sends more than 
50 packets (210 packets) in all, showing that level 2 was defeated by temporal 
staggering of the packets. 

  

IV. MULTI-AGENT PLAN RECOGNITION 
Multi-agent plan recognition (MAPR) refers to the problem 

of explaining the observed behavior trace of multiple agents 
by identifying the (dynamic) team-structures and the team 



plans (based on a given plan library) being executed, as well 
as predicting their future behavior [1][2]. 
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Fig. 8. Multi-agent blocks world example. 

 
Fig. 9. Trace of activities of 4 robotic arms, shown in Fig. 8 

     We first illustrate MAPR in a multi-agent blocks word 
domain, shown in Fig. 8, Fig. 9, and Fig. 10, using standard 
PDDL operators. In Fig. 8 we see two teams of robotic arms 
assemble (i.e., spell out) the goal words ``TAR'' and ``AXE'' 
from separate stacks, starting from the (not necessarily) same 
initial configuration. Fig. 9 shows the trace of 6 steps of 
activities of the 4 robotic arms available to the (remote) 
recognizer, who is not aware of the team-structure (i.e., the 
mapping of agent-id to stack-id). This assumption partly 
models the realistic incomplete information under which the 
recognizer must operate. While arms 1 and 2 appear to jointly 
assemble ``TAR'', and arms 3 and 4 appear to jointly assemble 
``AXE'', arms 2 and 3 seem to assemble ``TAX'' as well, 
creating ambiguity for the recognizer. The key insight is to 
partition the trace into non-overlapping team plans, such that 
invalid teams (such as the supposed team of agents 2 and 3) 

fail to yield a complete partition hypothesis. In this example, 
agents 1 and 4 would be executing illegal plans individually, 
or building separate stacks as a team, neither of which yields a 
valid partition hypothesis. Fig. 10 shows a (non-unique) plan 
from the library, for start state in Fig. 8 and goal ``TAR'', in 
the form of a plan graph. This is a graph based on the partially 
ordered set of steps needed to achieve a goal from a start state, 
with added constraints for multi-agency: role constraints 
(which steps need to be performed by the same agent) and 
concurrency constraints (which steps need to be executed 
simultaneously; not needed in this illustration). The above 
illustration is adopted from a previous paper by the authors 
[2]. 

 
Fig. 10.  A plan graph for the blocks world example. 

 

V. APPLICATION OF MAPR FOR DETECTION OF HAVIJ 
ATTACK 

The SQL injection attack of Havij follows a pattern that can 
yield the abstract plan graph shown in Fig. 11. 
 

Find length
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Binary Search
1

Binary Search
2

Binary Search
L…..

 
Fig. 11. Abstract plan graph corresponding to Havij attack 

Here a binary search first finds the length of a certain field, 
say L. Then L binary searches are done in succession, 
followed by a return to the top (abstract) action. Suppose the 
ith binary search returns a character that is used to fill the ith 



character of a string s. Then the string s[1:L] will be a part of 
the query used in the next search, e.g., after the name of a 
database is found this way, the queries to detect the names of 
tables in that database will include the name of the database 
already found. A string that differs by only a few characters 
from the database name used later should still be accepted 
because of the occasional false positives in the benchmark 
command.  This pattern repeats to find the names of tables in 
the database using the database name, and then again to find 
the column names in a table using that table’s name.  
   
     A solution to the problem of limiting false positives while 
still detecting an attack that is spread across multiple agents is 
to use plan recognition.  Rather than relying on a single IP 
generating sufficient suspicious activity to raise an alert, a 
plan recognition algorithm searches input from all users to see 
if steps in a plan have been completed.  For this pattern an 
algorithm would find the length command and then identify 
the search result by finding the last “=” or equivalent symbol.  
It would then look for that number of binary searches using 
the ascii and substring commands.  If it sees these actions it is 
reasonable to assume that a field name has been found 
whether spread across multiple agents or not. 
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