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Introduction: Masuda and collaborators at the
University of Tokyo developed a method to confine
and transport particles called the electric curtain in
which a series of parallel electrodes connected to an
AC source generates a traveling wave that acts as a
contactless conveyor. The curtain electrodes can be
excited by a single-phase or a multi-phase AC voltage.
A multi-phase curtain produces a non-uniform travel-
ing wave that provides controlled transport of those
particles [1-6]. Multi-phase electric curtains from two
to six phases have been developed and studied by sev-
eral research groups [7-9]. We have developed an
Electrodynamic Dust Shield prototype using three-
phase AC voltage electrodes to remove dust from sur-
faces. The purpose of the modeling work presented
here is to research and to better understand the physics
governing the electrodynamic shield, as well as to ad-
vance and to support the experimental dust shield re-
search.

Analytical and Numerical Model: The govern
equations for the electrodynamic shield can be classi-
fied into to parts: (a) charged particles interacting with
the multi-phase electrodes induced E-field; (b) neutral
particles’ motion caused by dielectrophoretic forces.
For the charged particles, the equations of motion can
be derived from the forces involved:
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sums over all charged particles except itself. This is a
highly nonlinear, coupled, many body-problem where
exact solutions are unattainable analytically and must
be achieved computationally.

For the neutral particles (uncharged particles), the
force involved is a dielectrophoretic force [10] owing
to an induced electric dipole interacting with the
changing electric field of the electrodes. The time-
averaged force of an electric dipole in a spatially (and
time) dependent electric field is given by
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where " is the complex conjugate of the electric field
and Pis the induced electric dipole moment. For

spherical particles the dipole moment becomes
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where €, is the permittivity of the medium, @ is the

particle radius, and f is the Clausius-Mossotti fac-

tor given by:
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Here £, and€,, are the complex permittivities of the

particle and the medium, respectively. Combining the

above equations yields the following result for the

time-averaged dielectrophoretic force experienced by
polarizable spherical particles:
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EI and ER are the negative gradients of the poten-

tialsg; and @y, while Re(f;y, )and Im(f;,) are

the real and imaginary parts of the Clausius-Mossotti
factor respectively [11]. The analytical model is fo-
cused on finding a mathematical solution of V(7,t)

and E(7,t) in the 2-D plane above the electrodes for a
time varing voltage imposed on the square shaped
electrodes. This solution provides an important check
for the numerical finite-element E(7,#)field calcula-
tion and for the DEP (dielectrophoretic force) numeri-
cal results.

The numerical modeling employed a finite-element

method to calculate the V(#,t) and E(F,f)over the



entire plane with 12 electrodes embedded in a leyer of
an insulating dielectric medium. These results are the
bases for the charged and neutral dust particles trajec-
tory calculation. The time integration is done by using
the Huen-Verlet scheme over a fixed time domain.

Figure 1. Contour plotting of the DEP field, sine wave,
900 volts, in one of the three-phase electrodes.
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Figure 2. Trajectory calculation of 12 charged dust
particles over 8 three-phase sine signals at 900 volts.
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Figure 3. Trajectory calculation for 12 charged dust
particles over 8 three-phase square signals, 900 volts.

Figure 1 shows the dense DEP force contour lines
concentrating on top of an electrode at the boundary
between the insulating medium and free space (Mar-
tian air/vacuum). The two lower conners have strong
field lines due to the presence of a grounding plate at
the bottom of the figure. The asemetrical results at the
four comers were caused by the different phases of
neighboring electrodes.

Figure 2 reveals that under a sine wave signal, dust
particles trend to move along the dust shield surface.
Comparing this result to the square wave signal in fig-
ure 3 shows that dust particles move in the vertical
direction. These two different wave forms have about
the same clearing factors but move the dust particles in
quite different fashion.
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