Design and Development of the Observation and Analysis of Smectic Islands in Space Experiment

1NASA Glenn Research Center, USA; 2National Center for Space Exploration Research, USA; 3ZIN Technologies, USA; 4University of Magdeburg, Germany; 5University of Colorado, USA

Introduction

The primary objective of Observation and Analysis of Smectic Islands in Space (OASIS) experiment is to exploit the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics.

Background

Freely suspended liquid crystal (FSLC) films exhibit a combination of physical characteristics:
- The study of equilibrium and out-of-equilibrium phenomena in reduced dimensionality, for example, liquid crystal ordering and fluctuations in two dimensions, and the effects of finite size on liquid crystal phase transitions.
- FSLC films in microgravity present extraordinary opportunities for the study of fluid dynamic and thermodynamic behavior in reduced dimensionality, and for the exploration of fundamental nonequilibrium fluid interfacial phenomena.

Liquid Crystal Phases

Ultra-thin FSLC Films

Quantized thickness (3 nm for a single molecular layer)
- Stable fluid structures
- Low vapor pressure

Depolarized Reflected Light Microscopy (DRLM) of Tilted Smectic (SmC) Film

Reflection microscope image

OASIS International Space Station (ISS) Flight Experiment

The OASIS spaceflight experiment comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of FSLC films in space. It will be executed using four different liquid crystal materials in four separate sample chambers that will be contained in the Microgravity Science Glovebox (MSG) onboard the ISS.

Experiment Testing to be Conducted in Microgravity

Bubble Inflation
- Bubble chamber
 - Bubble film thickness
 - Bubble inflation size control

Observation by reflected light imaging
- Low resolution video (bubble chamber)
- Bubble inflation
 - Global bubble structure
 - Global organization (islands and droplets)
- High-resolution video microscopy
 - Island structure and dynamics
 - Orientational textures
 - Island thickness

Manipulation
- Air jets (bubble chamber)
 - Island generation
 - Film hydrodynamics
- Inkjet drop ejector (bubble chamber)
 - Island and droplet generation
- Electric field (bubble chamber)
 - Induced island interactions
 - Electrohydrodynamics
- Temperature gradients (bubble chamber)
 - Thermocapillary effects
- Dynamic inflation and deflation (bubble chamber)
 - Nuclearation of islands and pores

Space and Terrestrial Applications

Adaptive Optical Elements
- As diverse as inter and intra satellite communications, 3D optical switching in space optical communications, remote sensing (LIDAR), lunar landing/rendevous/docking
- Advantage of photonic devices over conventional mechanical beam steering parts, light weight, very low power
- ESA supported UPM for LC programmable blaze grating (SLM)

Space Suit Head-Mount Displays
- Very fast switching, defect free and high resolution (also military applications)

Consumer Electronics

European Parabolic Flight

An engineering test unit of the OASIS experiment was tested on the DLR 20th/NOVESPACE 97th parabolic flight campaign in Merignac, France, September 10 to 14, 2012.

Test Objectives

- Exercise flight experiment system functions such as pressure quenching and pulsation, thermocapillary, inkjet droplet device, air jets, and E-field.
- Used two different liquid crystal samples (50/50 8CB and MX12160 type) and tested bubble inflation system in microgravity.
- Experiment flew on the OASIS Parabolic Flight System in the Zarges Container shown below.

Test Summary

- The syringe pump allowed for excellent thin film bubble formation with little to no premature island formation.
- Pressure quenching and pulsation was tested.
- Thermocapillary, inkjet droplet device, and air jets all worked well. E-field not visible with macro camera.
- Analysis continues on the data by PI team.