Design and Development of the Observation and Analysis of Smectic Islands in Space Experiment

N.R. Hall,1 P. Tin,2 C.C. Sheehan,3 R. Stannarius,4 T. Tittel,4 N. Clark,5 J. Maclennan,5 M. Glaser,5 and C. Park5

1NASA Glenn Research Center, USA; 2National Center for Space Exploration Research, USA; 3ZIN Technologies, USA; 4University of Magdeburg, Germany; 5University of Colorado, USA

Introduction

The primary objective of Observation and Analysis of Smectic Islands in Space (OASIS) experiment is to exploit the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics.

Background

Freely suspended liquid crystal (FSLC) films exhibit a combination of physical characteristics.
- The study of equilibrium and out-of-equilibrium phenomena in reduced dimensionality, for example, liquid crystal ordering and fluctuations in two dimensions, and the effects of finite size on liquid crystal phase transitions.
- FSLC films in microgravity present extraordinary opportunities for the study of fluid dynamic and thermodynamic behavior in reduced dimensionality, and for the exploration of fundamental nonequilibrium fluid interfacial phenomena.

Liquid Crystal Phases

Stable fluid structures
- Quantized thickness
- Ultra-thin FSLC Films

Surfaces
- Symmetry
- Fields

Ultra-thin FSLC Films
Quantized thickness (3 nm for a single molecular layer)
- Stable fluid structures
- Largest surface-to-volume ratio
- Low vapor pressure

Depolarized Reflected Light Microscopy (DRLM) of Tilted Smectic (SmC) Film

Space and Terrestrial Applications

Adaptive Optical Elements
- As diverse as inter and intra satellite communications, 3D optical switching in space optical communications, remote sensing (LIDAR), lunar landing/rendevous/docking
- Advantage of photonic devices over conventional mechanical beam steering parts, light weight, very low power
- ESA supported UPM for LC programmable blaze grating (SLM)

Space Suit Head-Mount Displays
- Very fast switching, defect free and high resolution (also military applications)
- Consumer Electronics

Experiment Testing to be Conducted in Microgravity

Bubble Inflation
- Bubble chamber
 - Bubble film thickness
 - Bubble inflation size control
Observation by reflected light imaging
- Low resolution video (bubble chamber)
 - Bubble inflation
 - Global bubble structure
 - Global organization (islands and droplets)
- High-resolution video microscopy
 - Island structure and dynamics
 - Orientational textures
 - Island thickness
Manipulation
- Air jets (bubble chamber)
 - Island generation
 - Film hydrodynamics
- Inkjet drop ejector (bubble chamber)
 - Island and droplet generation
- Electric field (bubble chamber)
 - Induced island interactions
 - Electrohydrodynamics
 - Temperature gradients (bubble chamber)
 - Thermocapillary effects
 - Dynamic inflation and deflation (bubble chamber)
 - Nucleation of islands and pores

Test Objectives

- Exercise flight experiment system functions such as pressure quenching and pulsation, thermocapillary, inkjet droplet device, air jets, and E-field.
- Used two different liquid crystal samples (50/50 8CB and MX12160 type) and tested bubble inflation system in microgravity.
- Experiment flew on the OASIS Parabolic Flight System in the Zarges Container shown below.