Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

Jeffrey I. Eldridge
NASA Glenn Research Center
Cleveland, OH

37th International Conference on Advanced Ceramics & Composites
Daytona Beach, FL
January 29, 2013
Acknowledgments

• NASA GRC
 - Dongming Zhu (High heat flux testing)
 - Tim Bencic (2D surface temperature mapping)
 - Joy Buehler (Metallography)
• Penn State
 - Doug Wolfe (EB-PVD)
• U. Connecticut
 - Eric Jordan (SPPS)
• Metrolaser
 - Tom Jenkins (VAATE engine test team)
• Emerging Measurements
 - Steve Allison (VAATE engine test team)
• Funding by NASA Fundamental Aero and Air Force Research Laboratory.
Motivation

• Address need to test & monitor performance & health of TBCs.
 – Lab environment assessment tool
 – Engine environment validation tool
• Essential for safely increasing engine operating temperatures.

Approach: Luminescence-Based Monitoring of TBC Performance

• Multifunctional TBCs with integrated diagnostic capabilities
• Erosion monitoring
• Delamination progression monitoring
• Temperature sensing
 – Above & below TBC
 – Engine environment implementation
 – 2D temperature mapping
TBC Translucency Provides Window for Optical Diagnostics

Light Transmission Through YSZ

1 mm thick
13.5 YSZ single crystal (transparent)

135 μm thick
Plasma-sprayed 8Y SZ (translucent)

Backlit by overhead projector.
Erosion Detection Using Erosion-Indicating TBCs

Coating Design

Erosion monitoring by luminescence detected from exposed YSZ:Eu and YSZ:Tb sublayers
Luminescence reveals location and depth of coating erosion.

EB-PVD TBCs produced at Penn State, D.E. Wolfe.
Detecting TBC Delamination by Reflectance-Enhanced Upconversion Luminescence

- Two-photon excitation of Er\(^{3+}\) produces upconversion luminescence at 562 nm with near-zero background for strong delamination contrast.
- Yb\(^{3+}\) absorbs 980 nm excitation and excites luminescence in Er\(^{3+}\) by energy transfer.
- Delamination contrast achieved because of increased reflection of excitation & emission at TBC/crack interface.
EB-PVD TBCs

EB-PVD TBCs produced at Penn State, D.E. Wolfe.

SEI

20 kV 550X 50 µm

BEI

20 kV 3kX 10 µm

Undoped YSZ

YSZ:Er,Yb

130 µm

6 µm

YSZ

YSZ:Er(1%),Yb(3%)

NiPtAl

Rene N5
Upconversion Luminescence Images During Interrupted Furnace Cycling for EB-PVD TBC with YSZ:Er(1%),Yb(3%) Base Layer

1 furnace cycle = 45min @ 1163°C + 15 min cooling

Batch 1

7.5 sec acquisition

<table>
<thead>
<tr>
<th>0 cycles</th>
<th>1 cycle</th>
<th>10 cycles</th>
<th>20 cycles</th>
<th>30 cycles</th>
<th>40 cycles</th>
<th>60 cycles</th>
<th>80 cycles</th>
<th>100 cycles</th>
<th>120 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>140 cycles</td>
<td>160 cycles</td>
<td>180 cycles</td>
<td>200 cycles</td>
<td>220 cycles</td>
<td>240 cycles</td>
<td>260 cycles</td>
<td>280 cycles</td>
<td>300 cycles</td>
<td>320 cycles</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>340 cycles</td>
<td>360 cycles</td>
<td>380 cycles</td>
<td>400 cycles</td>
<td>420 cycles</td>
<td>440 cycles</td>
<td>460 cycles</td>
<td>480 cycles</td>
<td>500 cycles</td>
<td>520 cycles</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>540 cycles</td>
<td>560 cycles</td>
<td>580 cycles</td>
<td>600 cycles</td>
<td>620 cycles</td>
<td>640 cycles</td>
<td>660 cycles</td>
<td>680 cycles</td>
<td>700 cycles</td>
<td>720 cycles</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>740 cycles</td>
<td>745 cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

130 µm

YSZ

YSZ:Er(1%),Yb(3%)

NiPtAl

Rene N5

1 cm
Change in Upconversion Luminescence Intensity with Furnace Cycling to TBC Failure

- #1 fails at 620 cycles
- #2 fails at 500 cycles
- #3 fails at 745 cycles

early indication of TBC life
Failure Progression
EB-PVD TBC with YSZ:Er(1%),Yb(3%) Base Layer

Microdelamination + TGO growth

400 cycles
- Bright spots produced by large-separation micro-delaminations between TBC & TGO produced by bond coat instabilities (rumpling).

200 cycles
- Small microcracks between TBC & TGO increase intensity but may not be resolved individually.

Luminescence Image
- Delamination increases luminescence intensity.
- TGO growth decreases luminescence intensity.

TGO growth during furnace cycling

- 0 cycles
- 30 cycles
- 200 cycles
- 700 cycles
Monitoring TBC Delamination Around Cooling Holes

- **Problem:** Cooling holes in turbine blades and vanes can act as stress-concentrating failure initiation sites for surrounding TBC. Potential severity of these effects are unknown.

- **Objective:** Determine the severity of the effect of cooling holes on the lifetime of surrounding TBC using upconversion luminescence imaging.

- **Approach:** Performed luminescence imaging during interrupted furnace cycling of TBC-coated specimens with arrays of 0.020” diameter laser-drilled cooling holes.
Monitoring Delamination Around Laser-Drilled Cooling Holes by Upconversion Luminescence Imaging During Furnace Cycling

1 furnace cycle = 45min @ 1163°C + 15 min cooling

1 cm

130 μm
12 μm
YSZ
YSZ:Er(1%),Yb(3%)
NiPtAl
Rene N5

7.5 sec acquisition
Effect of Cooling Holes on TBC Life

• Luminescence imaging easily detects delamination around cooling holes.
• Local delamination does initiate around cooling holes but exhibits very limited, stable growth.
• The unstable delamination propagation that leads to TBC failure actually AVOIDS vicinity of cooling holes.
• **Significance:** Cooling holes in turbine blades and vanes do not shorten TBC life and their behavior as debond initiation sites can be tolerated safely.
Luminescence-Based Remote Temperature Monitoring Using Temperature-Indicating TBCs

Surface Eu-doped YSZ layer, Eu$^{3+}$ luminescence decay

Buried Eu-doped YSZ layer, Eu$^{3+}$ luminescence decay

Decay Time vs. Temperature Calibration

606 nm Eu$^{3+}$ emission (with temperature-dependent decay)

Pulsed 532 nm illumination

Buried Eu-doped YSZ, Eu$^{3+}$ luminescence image

Undoped YSZ (118 µm)

YSZ:Eu (36 µm)

PtAl bond coat

Rene N5 superalloy substrate
AFRL Versatile Affordable Advanced Turbine Engines (VAATE) Project
Gas Turbine Engine Sensor and Instrumentation Development

NASA GRC High-Heat-Flux Laser Facility
•Proof-of-concept with easy optical access, no radiative background, no probe heating issues.
Demonstrated to 1360°C. ✓

Williams International Combustor Burner Rig
•Address probe/TP survivability & ability to “see” through flame.
Demonstrated to >1400°C. ✓

AEDC J85-GE-5
•Probe/translate through afterburner flame.
•Opportunity to test excitation/collection integrated probe.
Demonstrated to >1300°C. ✓

Goal: Demonstrate thermographic phosphor based temperature measurements to 1300°C on TBC-coated HPT stator on Honeywell TECH7000 demonstrator engine.
Temperature Line Scan Across Hot Spot During Williams Combustor Burner Heating

Traversing **High-Flame** Hot-Spot
Luminescence from YAG:Dy Coating

![Graph showing PMT signal vs. distance from edge and decay time vs. temperature](image)

substrate melting!

Luminescence emission observed through 456 nm bandpass filter

High-Flame Temperature Line Scan
Implementation of Ultra-Bright High-Temperature Phosphor

• Breakthrough discovery* of exceptional high temperature retention of ultra-bright luminescence by Cr-doped GdAlO$_3$ with orthorhombic perovskite crystal structure: Cr-doped gadolinium aluminum perovskite (Cr:GAP).
 - High crystal field in GAP suppresses thermal quenching of luminescence.
 - Novel utilization of broadband spin-allowed emission extends luminescence to shorter wavelengths where thermal radiation background is reduced.

• Enables luminescence-based temperature measurements in highly radiant environments to 1250ºC.
 - Huge advance over state-of-the-art ultra-bright luminescence upper limit of 600ºC.

*J.I. Eldridge & M.D. Chambers
Demonstrating Temperature Measurement Capability
Time-Averaged Luminescence Emission from Cr(0.2%):GAP Puck
Temperature Dependence
Superb signal-to-noise from thin 25 µm thick coating confirms retention of ultra-bright luminescence at high temperatures.
Demonstrating Temperature Measurement Capability

Calibration of Decay Time vs. Temperature for GAP:Cr Coating

Two distinct regions
200ºC < T < 750ºC: less temperature sensitive
T > 750ºC: more temperature sensitive

Fit to $\tau = \tau_2^R \frac{1 + 3e^{-\Delta E/kT}}{1 + \alpha e^{-\Delta E/kT} + \beta e^{-(\Delta E_q + \Delta E)/kT}}$
2D Temperature Mapping of Effect of Air Cooling Jets

Air Jet Fixture for Laser Heat Flux Testing

GAP:Cr Decay Time vs. Temperature Calibration

Temperature determined from decay time at each pixel.

Sequence of gated images (Tim Bencic, NASA GRC)

Temperature insensitive to surface emissivity & reflected radiation!

Courtesy of Dongming Zhu, NASA GRC
Summary

• Luminescence-based sensing successfully monitors TBC health & performance.
 - Erosion indication by self-indicating TBCs
 - Delamination progression monitoring by upconversion luminescence imaging
 • Predictive for remaining TBC life
 • Cooling hole debond initiation sites safely tolerated.
 - Temperature sensing by luminescence decay time behavior
 • Surface & depth-penetrating measurements
 • Ultra-bright high-temperature GAP:Cr phosphor enables 2D temperature mapping.

• Nearing engine-test-ready status.