Lunar Water Resource Demonstration (LWRD)

ex luna, aqua

Anthony C. Muscatello
January 7, 2009
Major Contributors

- ASRC: Tracy Gibson, Steve Perusich, Steve Parks, and Kyle Weis
- NASA: Jeremy Parr, Mark Nurge, Dale Lueck, Janine Captain, Curtis Ihlefeld, Tom Moss, Jackie Quinn, and Bill Larson
Outline

- Background
- RESOLVE Project and Field Demonstration
- LWRD Key Design Requirements
- Design
 - Fluid systems design
 - Water Bed design
 - Other component design
 - ProE 3-D model
 - Hydrogen bed calculations
 - Actual components
- Mass Reduction Strategy
- Power Estimate
- Planned Testing Deviations
- Lab and Field Demonstration Results
- Hydrogen Quantification Test Results
- Major Milestones
- Summary
Background

- LWRD is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction)
- RESOLVE is an ISRU ground demonstration:
 - A rover to explore a permanently shadowed crater at the south or north pole of the Moon
 - Drill core samples down to 1 meter
 - Heat the core samples to 150C
 - Analyze gases and capture water and/or hydrogen evolved
 - Use hydrogen reduction to extract oxygen from regolith
- The field demo took place on Mauna Kea as an analog site for the Moon (EBU2)
- JSC, GRC, KSC, NORCAT, CSA and CMU involved
- EBU1 established feasibility
RESOLVE Block Diagram

CMU Scarab Rover
- Mobility
- Structural Support
- Stable Platform

NORCAT (CA) Drill
- Core Samples
- Sample Delivery
- Quarter Cores

NORCAT (CA) Crusher
- Crush Samples
- Weigh
- Sample to Reactor

GRC Reactor
- Heat Samples
- 150°C for RVC/LWRD
- 900°C for ROE

JSC/KSC GSE Cart
- Power
- Electronics
- Argon and Compressed Air
- Vacuum Pump

KSC RVC
- GC Analysis
- Quantify Water, H₂ and Other Gases

KSC LWRD
- Capture/Quantify Water
- Purify Gas for H₂ Capture/Quantification

JSC/KSC ROE
- Oxygen Extraction
- Produce and Quantify Water

KSC Software - Control and Operate Systems; Collect Data

47th AIAA Aerospace Sciences Meeting

NASA KSC LWRD Team

JOHN F. KENNEDY SPACE CENTER
Nov. ISRU Field Test Infrastructure and Test Layout

Varied Terrain, Slopes, & Rock
Distribution for Resource Prospecting/Mobility Demo

Main Camp Area

This Road will be graded

RESOLVE/Scarab Field Test Location

Main Access Road to Test Area

Access Road to ISRU Areas

Outpost Oxygen Production Field Test Location

Staging/Unpacking Area

Mauna Kea; Ha'ie Pohaku

Bad road here Cannot negotiate much

Lodging Infrastructure
Lunar-Like Terrain on Mauna Kea
Purpose of LWRD

- Capture up to 6 g of water per regolith/soil core sample and quantify up to 20 g of water (backup to GC measurements)
- Capture and quantify up to 0.15 g of hydrogen from same core sample (backup to GC measurements)
- Quantify within 20% accuracy
Key Design Requirements

- Prevent water condensation
 - Operate in 150C/130C Hot Boxes
 - Heated head recirculation pump
 - Heat trace Reactor gas lines
- Minimize number of transfers
 - 500 cc Surge Tank
- Absorb water at 130C
 - "Moisture Gone" zeolite absorbent
- Have sufficient water absorption capacity
- Quantify water
 - Desorption of MG is too slow; use RH probe, P, V, and T
Key Design Requirements (Cont.)

- Absorb/desorb hydrogen efficiently
 - FSEC developed new hydride former; works at room temp.
- Operate during 8-12 hr workday
 - Desorb water beds overnight (or during ROE)
 - Split full RESOLVE ops over two days
- Stay under 60 kg mass limit
 - Minimized masses of individual components
 - Transferred Ar, vacuum pump and electronics to GSE
- Demonstration on Mauna Kea in November 2008
 - Keep close track of schedule; fix issues quickly
- Limited budget
 - Work efficiently; minimize equipment costs
LWRD Process Summary

- At 150C in the Reactor, transfer gases to Surge Tank; measure RH, P, & T; and transfer to Water Beds two times (up to ~1.5 g water)
- Transfer residual gases to Hydrogen Bed, vent unabsorbed gases, heat to 300C and measure P & T of desorbed gas in Surge Tank and H₂ Bed (skipped this step in Hawaii demo)
- Subsequent transfers: measure RH, P, & T in Surge Tank since gases will consist of >90% water vapor; and vent
- Repeat sequence for each quarter core
LWRD Layout

- 4 port rotary valve (Vx)
- Rotary valve for restrictors
- Solenoid valve (SVx)
- Diaphragm Pump (Px)
- Regulator (Rx) or Hand Regulator (HR31)
- Pressure Transducer (PTx)
- Pressure Gauge (Gx)

Diagram:
- Reactor
- Surge Tank
- Hot Box Blower/Heater
- 150°C Box
- Vent
- 130°C Box
- H₂O Capture
- H₂ Capture
- Thermocouple (Tx)
- Relative Humidity Probe (RHx)
- Flow Meter (FM35)
- Hand Valve (HVxx) for refills
- Gas Filter (Fx)
- Pressure Relief Valve (PRx)
- Quick Disconnect (QDx)

GSE
Vacuum Pump

LWRD
MEC LabVIEW Screen

47th AIAA Aerospace Sciences Meeting

NASA KSC LWRD Team

JOHN F. KENNEDY SPACE CENTER
Mark I Water Beds
LWRD Surge Tank

Volume = ~500 cc
(w/ RH probe)
Recirculation Pump

Pump heads withstand up to 170°C

Design goals:
- Minimum inlet vacuum
- Maximum outlet pressure
- Minimum mass and power
High Temperature Latching Solenoid Valves
LWRD Top Looking Down
LWRD Side View – 130C Box Removed
LWRD Design Activities (cont.)

- Worked with GRC and JSC on heat tracing of lines from Reactor to RVC/LWRD and ROE
- Updated thermal analysis of Hot Boxes (with GRC)
 - Recalculated power for different warm up times
 - Estimated heat loss/power makeup
- Developed several operations timelines and stepwise operations
- Updated the Mass Analysis and developed a simple strategy to save weight if necessary
- Recirculation tests of Water Beds show complete water absorption in 3 min at 3 LPM and 1 LPM at 130°C
 - Amount absorbed = 6.6 g at 3 LPM
Hydrogen Desorption

- H_2 Bed size = 50 g of new absorber
- Absorber H_2 capacity = 0.10 g (0.2%)
- Average lunar H_2 expected = 0.088 g (0.11% H_2)
- Free bed volume = 25.3 cc
- ΔP at 300°C = 1200 psi (rated at 150 psi) + equilibrium like water bed desorption
- Therefore, use Surge Tank; $\Delta P = 32$ psi
- Encourages dehydriding to completion
Partially Assembled LWRD
Partially Assembled LWRD
Mass Reduction Strategy

1. Construct the system as planned with 1.4 kg of mass savings available from removal of one ROE water bed and the hydrogen bed during the demo if needed.

2. Keep the neon and hydrogen tanks on the rover.

3. Once everything is constructed and we have actual masses, remove those tanks if necessary (-3.8 kg).
LWRD Power vs. Time
3/20/08 Estimate

Power, Watts

Time, min
Planned Testing Deviations

- Lab – full capabilities demonstration
- Hawaii – no hydrogen absorption/desorption/quantification demonstration
GSE Cart and Rover Ready to Operate
Hawaii Demo, 11/4/08

Hot Box Temp. (125-130°C)

Reactor Temp. (°C)

Reactor Pressure, psig

Relative Humidity, %

Surge Tank Pressure, psia

First Transfer

Final Transfer

Time, min

47th AIAA Aerospace Sciences Meeting

NASA KSC LWRD Team

38
Lab/Field Demonstration Results

<table>
<thead>
<tr>
<th>Date</th>
<th>Total Water Transferred</th>
<th>Mass of Tephra</th>
<th>% Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/24/08</td>
<td>0.27g</td>
<td>85g</td>
<td>0.31</td>
</tr>
<tr>
<td>9/24/08</td>
<td>0.08g</td>
<td>90g</td>
<td>0.09</td>
</tr>
<tr>
<td>9/24/08</td>
<td>0.35g</td>
<td>85g</td>
<td>0.41</td>
</tr>
<tr>
<td>9/25/08</td>
<td>0.33g</td>
<td>85g</td>
<td>0.39</td>
</tr>
<tr>
<td>9/25/08</td>
<td>0.29g</td>
<td>85g</td>
<td>0.34</td>
</tr>
<tr>
<td>11/4/08</td>
<td>0.11g</td>
<td>66g</td>
<td>0.17</td>
</tr>
<tr>
<td>11/5/08</td>
<td>0.13g</td>
<td>72g</td>
<td>0.18</td>
</tr>
<tr>
<td>11/6/08</td>
<td>0.16g</td>
<td>92g</td>
<td>0.17</td>
</tr>
<tr>
<td>11/8/08</td>
<td>0.13g</td>
<td>71g</td>
<td>0.19</td>
</tr>
<tr>
<td>11/9/08</td>
<td>0.11g</td>
<td>76g</td>
<td>0.15</td>
</tr>
<tr>
<td>11/10/08</td>
<td>0.19g</td>
<td>90g (LN$_2$)</td>
<td>0.22*</td>
</tr>
</tbody>
</table>
Field Demonstration Results

<table>
<thead>
<tr>
<th>Date</th>
<th>GC results (corrected)</th>
<th>LWRD results (corrected)</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/5/08</td>
<td>48mg</td>
<td>39mg</td>
<td>-18%</td>
</tr>
<tr>
<td>11/6/08</td>
<td>47mg</td>
<td>57mg</td>
<td>21%</td>
</tr>
<tr>
<td>11/8/08</td>
<td>46mg</td>
<td>47mg</td>
<td>3%</td>
</tr>
<tr>
<td>11/9/08</td>
<td>45mg</td>
<td>34mg</td>
<td>-24%</td>
</tr>
<tr>
<td>11/10/08</td>
<td>52mg</td>
<td>65mg</td>
<td>24%</td>
</tr>
</tbody>
</table>

Average difference: 18%
Hydrogen Quantification Results

(To be entered when they become available)

<table>
<thead>
<tr>
<th>Date</th>
<th>Mass of H₂ in Reactor, g</th>
<th>LWRD results, g</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/x/08</td>
<td>26.4mg</td>
<td>xx mg</td>
<td>yy%</td>
</tr>
<tr>
<td>12/x/08</td>
<td>26.4mg</td>
<td>xx mg</td>
<td>yy%</td>
</tr>
<tr>
<td>12/x/08</td>
<td>44.0mg</td>
<td>xx mg</td>
<td>yy%</td>
</tr>
<tr>
<td>12/x/08</td>
<td>70.4mg</td>
<td>xx mg</td>
<td>yy%</td>
</tr>
<tr>
<td>12/x/08</td>
<td>70.4mg</td>
<td>xx mg</td>
<td>yy%</td>
</tr>
<tr>
<td></td>
<td>Average difference</td>
<td></td>
<td>zz%</td>
</tr>
</tbody>
</table>
Major Milestones

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Final Design</td>
<td>2/15/08</td>
</tr>
<tr>
<td>Component Assembly and Testing</td>
<td>4/15/08</td>
</tr>
<tr>
<td>RESOLVE Integration and Testing at KSC</td>
<td>9/12/08</td>
</tr>
<tr>
<td>Shipping, Integration w/Rover, Testing at CMU</td>
<td>9/27/08</td>
</tr>
<tr>
<td>Field Test on Mauna Kea</td>
<td>11/13/08</td>
</tr>
<tr>
<td>Final Report</td>
<td>1/31/09</td>
</tr>
</tbody>
</table>
Summary

- LWRD Team has accomplished all major goals in design, construction, and testing.
- Redesigned compared to EBU1 because of changes in assumptions and requirements.
- Successfully completed November field demo on Mauna Kea in Hawaii.
- Achieved acceptable agreement with GC results for water and hydrogen as a backup system.