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Abstract. Global optimization of a multivariable function - constrained by bounds 
specified on each variable and also unconstrained - is an important problem with 
several real world applications. Deterministic methods such as the gradient algorithms as 
well as the randomized methods such as the genetic algorithms may be employed to solve 
these problems. In fact, there are optimization problems where a genetic algorithm/an 
evolutionary approach is preferable at least from the quality (accuracy) of the results 
point of view. From cost (complexity) point of view, both gradient and genetic 
approaches are usually polynomial-time; there are no serious differences in this regard, 
i.e., the computational complexity point of view. However, for certain types of problems, 
such as those with unacceptably erroneous numerical partial derivatives and those with 
physically amplified analytical partial derivatives whose numerical evaluation involves 
undesirable errors and/or is messy, a genetic (stochastic) approach should be a better 
choice. We have presented here the pros and cons of both the approaches so that the 
concerned reader/user can decide which approach is most suited for the problem at hand. 
Also for the function which is known in a tabular form, instead of an analytical form, as 
is often the case in an experimental environment, we attempt to provide an insight into 
the approaches focusing our attention toward accuracy. Such an insight will help one to 
decide which method, out of several available methods, should be employed to obtain the 
best (least error) output. 
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applications. Deterministic methods such as the gradient algorithms as well as the randomized 
methods such as the genetic algorithms may be employed to solve these problems. In fact, there 
are optimization problems where a genetic algorithmlan evolutionary approach is preferable at 
least from the quality (accuracy) of the results point of view. From cost (complexity) point of 
view, both gradient and genetic approaches are usually polynomial-time; there are no serious 
differences in this regard, i.e., the computational complexity point of view. However, for certain 
types of problems, such as those with unacceptably erroneous numerical partial derivatives and 
those with physically amplified analytical partial derivatives whose numerical evaluation 
involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better 
choice. We have presented here the pros and cons of both the approaches so that the concerned 
reader/user can decide which approach is most suited for the problem at hand. Also for the 
function which is known in a tabular form, instead of an analytical form, as is often the case in 
an experimental environment, we attempt to provide an insight into the approaches focusing our 
attention toward accuracy. Such an insight will help one to decide which method, out of several 
available methods, should be employed to obtain the best (least error) output. 

1. Introduction 

Let x = {x1 x2 . x,] be an n dimensional vector. The problem is to find/compute a vector x 

that globally minimizes the function f(x) which is given in a tabular form or in an analytical 

form. The term optimization implies either minimization or maximization. Minimizing the 
function f(x) is the same as maximizing the function [- f(x) 1 . Unless otherwise specified, we 

will imply by the term minimization the global minimization. If the constraints or, equivalently, 
the bounds on each element/variable x. are specified, then the problem is called a constrained 

function optimization problem. Else, it is an unconstrained function optimization problem. 

An invited talk at the Ffih international Conference on Dynamic Systems and Applications (May 30-June 02, 
2007) in Atlanta, Georgia.



Although a real worldlpractical design problem is rarely unconstrained, a study of this 
(unconstrained) class of problems is important for the following reasons. 

(i) The unconstrained minimization algorithms provide a deeper insight required for the 
study of constrained minimization techniques. 

(ii) Some of the robust2 algorithms for constrained minimization need the use of 
unconstrained minimization methods. 

(iii) The constraints do not have significant effect in certain design problems. 
(iv) The unconstrained minimization algorithms can solve certain engineering analysis 

problems such as the nonlinear displacement response problems involving a structure 
under a specified load. Here the potential energy is minimized. 

Conversion of constrained to unconstrained problem A constrained function optimization 
problem can be made an unconstrained function optimization problem. For instance, the 

constraint a, ^ x. ^ b. is equivalent to x, = a. + (b1 - a1 ) sin 2 , where q is unconstrained. 

Thus, this equation can be used where x, appears. However, such procedures can become very 

complicated. Hence several simpler procedures have been developed [1-8]. 

Gradual increase in importance of genetic algorithms over deterministic ones Always we need a 
numerical solution for the real world implementation. An analytical solution is of no use to an 
engineer until it is translated into numbers. The most important tool for a numerical solution is a 
computer - rather a digital computer, although an analog computer has its own usage in certain 
problems such as obtaining a discrete Fourier transform through the fast Fourier transform. 
However, the accuracy in an analog computer unlike that in a digital computer is very limited, 
i.e., it is usually not more accurate than 0.001%. This figure translates to four significant digits. 
This limitation is due to that of the device measuring a physical quantity in an analog computer, 
which is usually not more accurate than 0.01% [9]. A digital computer may be used to practically 
any finite precision (word length) and is so dominant that by the term computer, we would imply 
a digital computer and not an analog one. An analog computer may be much faster than a digital 
computer as in the case of a discrete Fourier transform. But the digital computers over years are 
progressively improved in speed, memory, as well as band width. Every 18 months the CPU 
(central processing unit) speed is doubling, every 12 months band width is doubling while every 
9 months hard disk space is doubling. Consequently, many problems which were posed earlier 
and could not be solved because of computing resource limitations are now being solved. We 
provide below a brief account of past computing years and the gradual increase in importance of 
randomized algorithms such as the genetic algorithms over deterministic algorithms such as the 
gradient methods. 

Before we proceed, we like to point out that the speed of computing, the storage space as 
well as the band width go hand in hand. That is, just increasing the computing speed without 
increasing the memory and band width could result in an operational bottle-neck since a high 
speed CPU will be bogged down due to too many data retrieval and storage operations if the 

2 A robust algorithm is one that must produce correct output regardless of whether the input actually belongs to the 
restricted domain or not, i.e., whether it is an inlier or not. In fact, a subjective implication of robust algorithm is the 
insensitivity to an outlier/noise.



memory size as well as band width is not commensurable, i.e., if these are not relatively large. 
As stated in the previous paragraph, both CPU and memory space is progressively improving 

Pre-high speed computing years (1946-1964) This nineteen year period may be divided into two 
parts of the first generation (vacuum tubes) computers early first generation (1946-53) and 
late first generation (1953-59) and the second generation (transistors) computers (1959-64) [10]. 
The main memory cycle time was .04-40 ms (milliseconds) during the early first generation 
while it was .O1-.02 ms during the late first generation and .002 - .01 ms during the second 
generation. An early first generation computer was capable of executing about 1 0 operations per 
second on an average while a late first generation could execute about 5 x 1 0 operations per 
second on an average. Hardly a negligible fraction (compared to modem computers) of practical 
computing existed during 1946-53. Randomized algorithms were not perceived during these 
years as a viable alternative to deterministic ones. This is because randomized algorithms were 
not so much developed as it is today. Also these needed apparently large amount of computation 
compared to that required by a deterministic one. In reality, however, all randomized algorithms 
are polynomial-time, i.e., fast. Specifically genetic algorithms (global search techniques) were 
almost nonexistent during 1946-64. Psychologically we were more comfortable with 
deterministic algorithms than with nondeterministic ones. As a matter of fact we did not have 
much faith/confidence about the result/output which remains variant at each run. This is because 
of the seed to generate required random numbers for the randomized/probabilistic algorithm 
differs from one run to another - a situation very much unlike any deterministic algorithm such 
as the gradient methods. A deterministic algorithm will always produce exactly the same output 
on the same computer, no matter how many times the program (algorithm) is run/executed. Thus 
gradient algorithms were the only practical acceptable means to optimize a multivariable 
function and very little of these algorithms were computerized nor were there as sophisticated 
gradient methods/other deterministic methods as we have today (2007). 

High-speed computing years (1964-1975) This eleven years may be divided into two parts of the 
third generation (monolithic integrated circuits) computers - early third generation (1964-69) 
and late third generation (1969-75). The main memory cycle time was 0.5-2 1w during the early 

third generation while it was 0.02-1 1w during the late third generation. An early third 
generation computer could execute 106 (one million) operations per second on an average while 
a late third generation computer was capable of executing about 20x 106 (twenty million) 
operations per second on an average. The enhanced speed allowed the scientists/engineers to 
explore more compute intensive problems which were hitherto discouraged due to 
processing/memory speed limitations. Also, they developed newer and newer algorithms suitable 
for computation for real world problems. Randomized algorithms such as the genetic algorithms 
and evolutionary approaches started gaining popularity increasingly. These algorithms started 
gaining momentum and being considered as possible candidates for practical computations along 
with the deterministic ones. But these were yet to become sufficiently appealing for extensive 
computation in lieu of deterministic ones and were yet to be widely accepted means of global 
function optimization. 

Super-high-speed computing years (19 75-1990) The term supercomputer has a time-dependant 
non-rigid definition since today's supercomputer tends to become tomorrow's normal computer. 
Further, there is no generally accepted definition for fourth generation (very large scale



integrated circuits and possibly with vector processors) as well as fifth generation (depicting 
artificial intelligence, which is mainly due to the software simulation of the natural intelligence) 
computers. It is thus not useful to carry the concept of computer generation beyond the third 
generation. We consider computers introduced since 1975 as modem computers and refer to the 
third generation computers as those of the past. However, for the purpose of speed relative to that 
of the past computers, a modem computer was loosely termed as a supercomputer if its speed 
exceeds 100 million operations per second (one hundred million floating point operations per 
second, i.e., one hundred megaflops). Such a technological improvement gave a significant 
impetus to scientists/researchers to explore much more compute intensive algorithms such as the 
randomized ones and perceive the scope/utility of these algorithms over the deterministic 
algorithms such as the gradient methods for global optimization. A gradient method could get 
stuck at a local minimum unless appropriate measures are taken to get out of this situation while 
a genetic/evolutionary algorithm has much in general much less probability to 

Ultra-high-speed computing years 0990-onwards) Compared to the foregoing speeds, it would 
be reasonable to term a processing speed exceeding 1000 million (i.e., one billion) flops as an 
ultra-high speed. The ultra-high frequency band is generally accepted as 3000-300 megahertz. 
Electrical signals propagates no faster than the speed of light. A random access memory used to 
i09 cycles per second (one gigahertz) will deliver information at 10_b (i.e., 0.1 nanosecond) 
speed if its diameter is 3 centimeters since in 10_b seconds, light travels 3 centimeters [9]. It is 
physics rather than technology and architecture sets up the limits/barriers to increase the 
computational speed arbitrarily. The physical barriers are the (i) speed of light, (ii) the thermal 
efficiency, and the quantum barriers. Per mass of hydrogen atom (1.67 x 10_24 gm), maximum 
2.505 x 1023 bits/sec can be theoretically processed/transmitted. Since the estimated number of 
protons in the universe is 1 0, if the whole universe is dedicated to information processing, then 
no more than 7.9 x iO'°3 bits per year can be processed [9]. The ultra-high speeds along with 
ultra-large memory and ultra-large band-width have permitted the scientists to encroach into the 
realm of hitherto unexplored NP-hard problems such as a large traveling salesman problem 
(TSP) of immense practical importance in a meaningful way. While a deterministic algorithm for 
the TSP is combinatorial/exponential-time needing evaluation of(n-1)! paths to obtain the exact 
minimum cost path, a genetic (heuristic) algorithm which is always polynomial-time would need 
relatively very little computation to provide us a low cost path, which though may/may not be 
the exact minimum cost path, that is accepted and used by the traveling salesman. Maybe in 
future a better (lower cost) path will be found by the algorithm possibly with increased 
computing power (processing speed, storage, and band width). The purpose is to impress on the 
fact that randomized algorithms will be the only tool to explore the vast world of NP-hard 
problems [9]. The deterministic algorithms will have no entry to this world as these could take 
billions of centuries to produce the required output. Even the estimated age of the universe is a 
numerical zero compared to this computation time. In the present context, we are involved in 
only polynomial time deterministic algorithms such as the gradient methods as well as the 
randomized algorithms such as the genetic algorithms for function optimization which is a 
polynomial-time problem. Even in such polynomial-time problems, genetic algorithms appear to 
be the only options for most real-world problems. 

Computational complexity The optimization of the function f(x) considered here is a 

polynomial-time problem and consequently the concerned gradient (deterministic) and genetic



(randomized) approaches are all polynomial-time (i.e., fast). In this respect, all these algorithms 
are attractive and without any significant edge of one category over the other. 

Accuracy, flexibility, and simplicity We are essentially concerned with practical application of 
function optimization. We have considered typical problems including test ones and found that 
the genetic algorithms are significantly better than the gradient algorithms in tenns of accuracy, 
flexibility as well as simplicity. Often partial derivatives computation accurately in a gradient 
method turns out to be a bottle-neck. 

Global versus local optimization The gradient methods usually give a local minimum. This is not 
the goal of our problem. We need to determine the global minimum. So we need to devise a way 
possibly divide the domain into an appropriate number of sub-domains, each having only one 
minimum and then apply a gradient method for each sub-domain. On the other hand, genetic 
algorithms have the tendency to search the global minimum and hardly get stuck at a local 
minimum. 

In section 2, we discuss gradient methods which have specific scopes. Also, in this section, we 
present genetic algorithms with their applicability to solve various function optimization. 
Besides, we have also included Matlab codes for some of the algorithms. In section 3, we include 
typical examples including test ones to illustrate the gradient as well as genetic algorithms along 
with gradient method implemented by Matlab. We have stressed on accuracy (quality of result) 
and complexity (cost of the result). Also included are some relevant graphs (up to 3 dimensions) 
for the purpose of visualization of the nature/character of the function. We demonstrate in this 
section that genetic algorithms are the winners. Section 4 comprises conclusions. 

2. Gradient and Genetic Algorithms 

Gradient methods The Davidon-Powell variable metric method and the Fletcher-Reeves 
conjugate gradient method are among the most efficient general-purpose gradient methods for 
function optimization while the Powell-Smith method can be used with advantage when the 
derivative computation presents difficulty [8, 12-20]. Immense attention was given to develop 
these methods during 1 960s and 1 970s by the concerned scientists/researchers and thus 1960-
1975 may be called the golden period in the development of gradient algorithms for function 
optimization. During this period, genetic algorithms were not practically known. Gradient 
methods were the sole dominant algorithms for the optimization on a main-frame digital 
computer. The Matlab command fminsearch has implemented the popular Nelder-Mead 
downhill simplex method (direct search) proposed by J.A. Nelder are R. Mead in 1965 [20] in its 
software. While sometimes a combination of Nelder-Mead method and a genetic algorithm [211 
can be used profitably, this combined method lacks in simplicity (no partial derivative 
computations) and generality (no divergence) inherent in a genetic algorithm alone. 

We omit here the description of the Davidon-Powell variable metric, the Fletcher-Reeves 
conjugate gradient, the Powell-Smith, and the Nelder-Mead methods used here to conserve space 
as these are available in the foregoing literature [8, 12-21] as well as in the internet. However, 
we provide a brief description of the multi-dimensional bisection based genetic algorithm [22] as 
this method is not widely and possibly readily available.



Genetic Algorithm A genetic algorithm (GA) inspired by Darwin's theory of evolution and 
employed to solve optimization problems unconstrained or constrained - uses an 
evolutionary process. It is a search algorithm mimicking mechanics of natural selection and 
natural genetics. A GA is used to find a true or an approximate solution to an optimization 
problem occurring in engineering, computer science, economics, mathematics, or any other area. 

In 1975, John Holland, University of Michigan, developed a GA by describing how to apply 
the principles of natural evolution to solve optimization problems [23]. His initial goals were 
two-fold, viz., improving the understanding of natural adaptation process, and designing artificial 
systems which may have properties similar to natural systems. Genetic algorithms constitute a 
branch of evolutionary algorithms (BA). BA (inspired by evolutionary biology) mechanisms are 
similar to biological evolution involving reproduction, mutation, recombination, natural 
selection, and survival of the fittest. 

A GA was motivated from biological processes such as crossovers, and mutations involving 
chromosomes - gene-carrying body in the nucleus of a cell, and DNA the main constituents 
of the chromosomes of all living things. A genetic approach is to generate successive sets of 
generations (solutions), making each new generation to inherit properties from the best available 
chromosomes of the precedent. In this process, the weak chromosomes are replaced (survival of 
the fittest) with new chromosomes which have gone through crossover and mutation operations. 
The weakest chromosomes (12.5%) are crossover (recombination) with the strong (12.5%) 
chromosomes. 

The GA for a general search problem starts with creation of a population of individuals, 
represented by chromosomes. Individuals are a set of bit/character (non-bit) strings analogous to 
what we see in our own DNA. The individuals in the population then go through a process of 
evolution. Those individuals that are fitter/stronger, while competing for resources in the 
environment, are more likely to survive and propagate their genetic material (genome). 

A GA encodes/represents 'the potential solutions' as a set of strings of numbers/characters. 
Two solutions are mated to form new solutions (off-springs) through crossover/mutation. 

The GA requirements are (i) a genetic representation of the solution domain and (ii) an 
objective function (a fitness function) to evaluate the solution domain. The first step in applying 
a GA is to encode appearance, behavior, physical qualities of an individual chromosome. 
Encoding involves changing the values of x, and y, into a string consisting of l's and 0's 

(binary expansion of the numbers). The length of each binary string depends greatly on the 
accuracy that is needed. Bit string chromosomes are quite handy because they can represent 
everything. The bit string structure shared by all the chromosomes is called the genetic 
representation. 

We use a string vector consisting of is and Os as a chromosome to represent real values of 
the variable x,. The string of genes (a gene can take different values or alleles. For example, a 

gene for eye color may have alleles black, brown, etc.) that completely specifies a potential 
solution is known as a chromosome. 

The domain of each variable x 1 has length [dh —dl] where dh and dl are respectively the 

upper and the lower bounds of the domain in which the value of any variable x, exists. Here, the 

precision requirement is denoted as xp decimal digits. The precision requirement implies that the 
interval (range) [dh —dl] should be divided into at least [dh _dl]* lOxp equal sized subintervals.



The initial population is formed by selecting individuals (chromosomes) where their values 
are evenly distributed between dl and dh. The population size is determined based on the number 
of independent variables and accuracy. 

Recombination Recombination or sexual reproduction, is a key operator for natural evolution. 
Technically, it takes two genotypes (The word genotype is used to describe the set of genes for a 
particular individual) to produce a new genotype by mixing the genes found in the originals. In 
biology, the most common form of recombination is crossover. In a crossover, two chromosomes 
are cut at one point and the halves are spliced to create new chromosomes. The crossover operation 
depends on how good the individual (chromosome) is at competing in its environment. 

Mutation Mutation, sometimes called a background operator, changes a biticharacter in a 
chromosome in a random way and is used usually sparingly. The reproductive operators - 
recombination and mutation - work at the level of chromosomes. Reproduction may take place 
due to one or multi-point crossovers and occasionally by (bit-wise) mutation. 

Some GAs use a simple fitness function model to select stochastically individuals to undergo 
genetic operations such as crossover (genetically different offspring) or asexual reproduction 
(genetically unaltered offspring). Other GAs use a model in which certain randomly selected 
individuals in a subgroup compete and the fittest is selected. Different breeding techniques such as 
tournament selection, roulette wheel selection, and selection methods based on a fitness rate are 
applied to breed a new generation. 

GA for an n-variable function: parameters, operators, and perturbations In view of enormous 
computing power (over one billion flops), we divide the whole n-dimensional region into k coarse n-
dimensional sub-regions. We scan each coarse n-dimensional sub-region using a GA and then identify 
those of these sub-regions which are suspected to have a global minimum. This sub-region based 
search is a simpler form of the n-dimensional bisection based GA [22]. It is important that for each of 
the n variables, the real interval in which the required value of the variable exists should be as narrow 
(small) as possible. That is, our initial n dimensional search domain should be as small as reasonably 
possible. This is to avoid too much unnecessary computation and possibly to obviate missing a 
potential global minimum. 

To achieve this, we first identify all the parameters and the genetic operators. We then decide on a 
plan how to perturb the parameters so that the distance between two solutions, viz., (Ilbest GOS - 
worst GOSh in each subspace) comes down as much as possible, where GOS denotes a/the global 
optimal solution. These perturbations will give us deeper insight into the character/nature and the 
possible location of the GOS. The parameters are (i) the n dimensional search space, (ii) the size of a 
member (chromosome) of the population, i.e., size of a solution vector having n elements, and (iii) the 
size of the population, i.e., the number of candidate solution vectors. The genetic operators which we 
advocate to perturb here are (i) crossover and (ii) mutation. There are many possible ways of 
implementing/perturbing these operators and deciding their probabilities based on the outcome/result. 
The sole motive of any perturbation in the probability of crossover, the probability of mutation, or the 
population size is to increase the fitness value, i.e., to proceed toward the actual GOS. In fact, the 
perturbations will also improve enormously our confidence in that the true GOS has not eluded and 
escaped from our search.



The parameter (ii), viz., the size of a member depends on the number of significant digits/decimal 
places accuracy for the solution and the given dimension n, Once we decide on the accuracy
requiredldesired, we have no scope to perturb this parameter. For example, if the interval in one
dimension/variable x is [a, b] and if we need 5 decimal places accuracy then the domain of the variable 
x has length L (b - a) and the interval should be divided into at least L x 1 equal size subintervals.
If b = 4 and a = —3 then we need 20 bits for the binary vector (chromosome) since 524288 = 2' ^ 7

^ 220 = 1048576. The mapping from a binary string (b 19b 18 . . . b 1 ) to a real (decimal) number x 

from the interval [a, b] is x = a + [xlb - a)/(22° - 1)], where x' = ('90 b x 2i)10• Now if we have n 

variables then our binary vector (string) will be at least n times as large to represent a member 
(chromosome) of the population. 

We are now left with two other parameters (i) and (iii), viz., the search space and the population 
size. Interestingly both these parameters are related. For the given search space, we can perturb the 
population size, possibly increasing step by step the size starting from an arbitrary small value to a 
large value so that the difference between the worst GOS and the best GOS tends to vanish. Or, we can 
keep the population size fixed (constant and not relatively large) throughout and divide the 
search/solution space into subspaces (sub-regions). We then apply the GA for each subspace and 
identify that subspace which would contain the required GOS assuming the existence of only one GOS 
in the given original search space. The rest of the subspaces are removed. Thus our search space is 
significantly reduced. In case there are two or more doubtful subspaces where the GOS is likely, then 
we keep these subspaces while removing other subspaces. This later situation could arise if our 
population size is not sufficiently large. Although the genetic operators and their probabilities could 
contribute to some extent to our doubt, the main contributor is the population size. However, our main 
motive is to quickly and confidently reduce the search space and consequently we will keep population 
size unaltered throughout for any subspace and its further subdivision to track down the GOS. We will 
play, if necessary, with the genetic operators by varying their implementations and changing their 
probabilities to see if there is an improvement. 
Preprocessing procedure for parameter values We first identify the parameters whose values we will 
determine by actually running the GA for the given problem a number of times. It is not out of place to 
mention that due to enormous processing power/speed 3 available to us, where most of this power is 
unutilized, focusing too much on relative time complexity (minor differences in time of computation) 
is wasteful. Executing a GA a number of times and using the results still keeps the complexity 
polynomial-time and is desirable. 
Search space, population, and its member sizes Two parameters, viz., the population size and the size 
of the search space are vital. The size (number of bits) of a member (chromosome) of the population is 
predetermined based on the accuracy needed. However, if too much of accuracy is required, then this 

Every 18 months processor speed is doubling, Every 12 months band-width is doubling while every 9 months hard disk 
space is doubling. Currently, in many commercially available computers, we may execute over a billion floating-point 
operations per second (flops). On the extreme as of now (2007) the processing speed has touched 36 billion flops. The 
storage (CPU registers, cache, main executable memory, hard disk) sizes and their retrieval speed also have proportionately 
increased and are increasing. Since for higher processing power, higher storage space is a must to avoid any bottle neck in 
overall processing speed., we do have terabyte auxiliary storage space currently. The next goal is to achieve peta flops 
(peta =1015) speed. Is there a limit beyond which the speed cannot be increased? Indeed there is a limit set by the speed of 
light bamer, thermal efficiency barrier, as well as cuantum barrier do limit the computational power [9]. The number of 
protons in the universe is estimated to be around 1 7 . If the whole universe is dedicated to information processing, then no 
more than 7.8996 x 10103 bits per year can be processed [9]. However, we are still too too far away from these extreme 
speed which appears to be a universal maximum in silicon technology.



might either not be possible due to precision limitation of the computer or would increase the search 
density too much and consequently the time complexity. Further, real world implementation of these 
highly numerically accurate quantities may not be possible as any measuring device cannot, in general, 
give an accuracy more than .005% [5]. Hence, it is enough if our accuracy of a quantity to be used in 
the real world environment is just four significant digits. Thus we take the member size such that it 
gives at most four significant digit accuracy and at least that much accuracy (usually 2 to 4 significant 
digits) required in the given problem. Thus the member size is practically fixed unless the concerned 
quantity is not an intermediate one. For an intermediate quantity, however, one should have more than 
four significant digit accuracy so that the terminal quantity to be used in the physical world has four 
significant digit accuracy. 
Three or less variable functions: Generating graphs to reduce given search space For a given multi 
dimensional constrainedlunconstrained optimization problem involving real numbers, we assume that 
for the given problem, we are not having any knowledge about the character of the problem to start 
with. For one, two, and three dimensional problems (given in an analytical form, not in a tabular form) 
which may be considered small but nontrivial and may crop up in many practical applications, one 
may get the graph using the Matlab commands and get considerable information about the nature of 
the problem, e.g., about how frequently/closely the function is fluctuating. It may be noted that a graph 
is just a crude formlrepresentation of the actual required numerical values. Thus the graph will at best 
tell us about search space and may help us reducing the search space for global optimization to an 
extent. 
Four or more variable functions: bisecting space to reduce search space For four or more variable 
functions such a generation of graphs is impossible. We have two dimensional paper that can be used 
to represent two dimensional graphs. Since we, the common human beings, are capable of visualizing 
three dimensional objects, a three dimensional graph drawn (using projective geometry) on a two 
dimensional paper can be visualized. 

3. Numerical Experiments 

We have considered several test functions, viz., (i) Ackley, (ii) Dixon and Price, (iii) Hartmann, (iv) 
Griewank, (v) Levy, (vi) Michalewicz, (vii) Perm, (viii) Powell, (ix) Power sum, (x) Rastrigin, (xi) 
Rosenbrock, (xii) Schwefel, (xiii) Shubert, (xiv) Trid, and (xv) Zakharov functions. However, to 
conserve space, we present here the computation of a GOS for only Rosenbrock and Griewank 
functions using the gradient and genetic algorithms. This computation demonstrates that for most real 
world applications, a GA/an evolutionary approach is more desirable over the deterministic gradient 
algorithms from the accuracy point of view. This is because a GA needs to compute only functions 
and not derivatives which could often involve more error in computation. The gradient algorithms 
include the popular Matlab multivariable function minimization fminsearch that uses Nelder-Mead 
deterministic downhill simplex method. The probability of a gradient algorithm getting stuck at a local 
minimum giving an impression that it could be a global minimum is higher than that of a GA. Further, 
the GOS in a gradient method usually depends on the choice of an initial approximation for a 
multivariable function while the GOS in a GA usually depends on the search domain and the 
population size. Specifically, the accuracy of GOS in a GA also depends on the length of an element 
(chromosome) in the population.
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)2 i = 1(1)n, lowerbound ^ x ^ upperbound 

Rosenbrock Function Mesh Plot 

-2	 -2 y-axis	 x-axis 

Comparisons (2 independent 
variables) 

Rosenbrock Function 

Y xl x2 
Genetic Algorithm 0 1 1 
Gradient Algorithm 0.192964 1.437185 2.061217 
NatLab fminsearch() 0 1 1



Griewank function 

2 
Xj 

-flcos(x/Jö+1. 
4000

Comparisons (2 independent 
variables) 

Griewank Function 

y	 xl	 x2 
Genetic Algorithm	 0.028448	 9.409260	 13.306537 
Gradient Algorithm	 1.049438	 3.255481	 15.355896 
MatLab fminsearch () 	 0.496300	 0.049900	 0.099200 

MatLab Method MatLab Algorithm with Rosenbrock function 

y = 8.1777e-0l0	 x= [1.0000 1.0000]t 

Gradient Method Gradient method (Davidon-Fletcher-Powell Algorithm) with Rosenbrock 
function 

y = 0.192964 x= [1.437185 2.061217]t 

Number of

Genetic Algorithm 
2n *2 Subspace, 8 generations 

(Rosenbrock Function with 2 variables) 
_______________________________ 

Generation Range	 [ -2.0 -1.5]
______________________________ 

Range	 [ -1.5	 -1.0] 
s xl x2 xl x2 

1 1424.274202 -1.503906 -1.503906 415.034095 -1.003906 -1.019531 

2 1457.047282 -1.515623 -1.511717 415.034095 -1.003906 -1.019531 

8 1424.261985 I	 -1.503901 I	 -1.503904 408.720515 I	 -1.003904 [	 -1.003905 

_____________ Range =[-1.0	 -0.5] Range	 [ -0.5	 0.0] 

_____________ _____________ xl x2 xl x2 

1 59.692025 -0.503906 -0.503906 1.115313 -0.046875 -0.011719 

2 62.761261 -0.515624 -0.511719 1.013954 -0.003906 -0.007813 

8 59.691734 -0.503905 -0.503905 1.021884 -0.007812 -0.007812



_________ Range	 [0.0	 0.5] Range	 [ 0.5	 1.0] 
_____________ ___________ xl x2 xl x2 

1 0.990113 0.011719 0.011719

_____________ 

0.012785 0.972656 0.957031 

2 0.990113 0.011719 0.011719 0.005824 0.976563 0.960937 

8 0.486389 0.312500 0.085938 0.000396 0.980468 0.960936 

Range =[1 .0	 1.5] Range	 [ 1.5	 2.0] __________ 

______________ y xl x2 ______________ xl x2 

1 0.000000 1.000000 1.000000 8.160156 1.500000 1.968750 

2 0.000000 1.000000 1.000000 8.160156 1.500000 1.968750 

3 0.001072 1.031250 1.062500 15.513900 1.503906 1.871094 

7 0.000250 1.015625 1.031250 8.386331 1.503906 1.976560 

8 0.000253 1.015625 1.031189 8.386331 1.503906 1.976560 

MatLab Method MatLab Algorithm with Rosenbrock function 

y 8.1777e-01O	 x= [1.0000 1•0000]t 

Gradient Method Gradient method (Davidon-Fletcher-Powell Algorithm) with Rosenbrock 
function 

y = 0.192964 x= [1.437185 2.061217]t 

Genetic Algorithm 
Rosenbrock Function 

Number of with 2 variables 
Generations Y xl x2 

1 0.453125 1.250000 1.500000 
2 0.169468 1.156250 1.375000 

5 0.040039 1.125000 1.281250 
12 0.005434 0.937501 0.875000 

14 0.068836 0.938481 0.906251 
15 0.005432 0.937502 0.875004 
39 0.544158 0.281291 0.062507 
40 0.660106 0.250006 0.031260



Griewank function 

Minimize:f(x)= 400(x_100)2 —flcos()+1 i=1...n 

lowerbound x ^ upperbound 

Gradient for n=2:

(xi)*cos(*,J) —xi —	 sin 

gradient - I	 200	 20	 2 
1	 1	 1 

L200	 202 
l-X2--- COS

2 

Gnewank Function Mesh Plot 
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Griewank Function (2 variables) 

MatLab Method:MatLab Algorithm with Griewank Function (2 variables) 

y = 0.4963	 x = [0.0499 Ø09g2] 

Gradient Method: Gradient method (Davidon-Fletcher-Powell Algorithm) with 
griewank function 
y =	 1.049438	 x =	 [3.255481	 l5.355896J 

Genetic Algorithm /2n*2 subspace, 8 generations (Griewank Function with 2 variabtes) 

Number of Range [-100	 -751 Range [-75	 -50 

Generations Y xl x2 ____________ xl

____________ 

x2 

1 38.243549 -75.195313 -75.195313 19.741632 -51.367188 -50.195313 

2 38.243549 -75.195313 -75.195313 18.985257 -50.195313 -52.539063 

8 37.715221 -77.734375 -75.195030 18.985252 -50.195257 -52.538912 

______________ Range [-50	 -25 ____________ Range [-25	 0] ____________ 

____________ V xl x2 y xl

____________ 

x2 

1 6.634640 -25.585938 -25.781250 1.170814 -0.976563 -0.976563 

2 6.634640 -25.585938 -25.781250 1.170814 -0.976563 -0.976563 

3 6.787624 -25.781250 -25.585938 0.804812 -0.195294 -0.976545 

4 6.427955 -25.195276 -26.171839 0.748442 -0.585919 -0.390607 

5 6.427955 -25.195276 -26.171839 0.748442 -0.585919 -0.390607 

6 6.484920 -25.195276 -25.781214 0.642016 -0.195276 -0.585919 

7 6.447919 -25.195276 -25.976527 0.642016 -0.195276 -0.585919 

8 6.447919 -25.195276 -25.976527 0.585960 -0.195283 -0.390607 

______________ Range [0	 25] ____________ ____________ Range (25	 50] ____________ 

______________ Y xl x2 ____________ xl

____________ 

x2 

1 0.204940 3.125000 4.296875 1.674764 25.390625 25.195313 

2 

4

0.134078 

0.067623 

0.118047

9.765625 

6.445313 

9.179688

4.492188 

9.179688 

4.296875

1.674764 

1.31 1425 

1.311425

25.390625 

25.000000 

25.000000

25.195313 

26.953124 

26.953124 

7 0.069626 9.179688 13.085938 1.269845 25.195309 26.367084 

8 0.087676 9.375000 4.687500 1.283780 25.195309 26.757809 

Range[50	 75 __________ __________ Range[75 100 ___________ 

______________ V xl x2

__________ 

____________ xl

__________ 

x2 

1 8.832051 50.585938 52.539063 22.983011 75.000000 75.000000 

2 8.786172 50.000000 52.148387 22.983011 75.000000 75.000000 

3 8.803204 50.195312 52.148434 22.784103 76.953116 75.000000 

4 8.750069 50.195307 52.343750 22.663461 77.343745 75.390433 

5 8.693107 50.000000 53.125000 22.385830 77.929681 75.292873 

6 8.680684 50.000000 52.734371 22.338780 78.125000 75.195312 

7 8.680684 50.000000 52.734371 22.338780 78.125000 75.195312 

8 8.726663 50.000000 53.320303 22.365357 77.929490 75.195312

Griewank Function (2 variables) 



MatLab Method MatLab Algorithm with Gnewank Function (2 variables) 

y = 0.4963	 x = [0.0499 00992]t 

Gradient Method Gradient method (Davidon-Fletcher-Powell Algorithm) with Griewank 
function 

y =	 1.049438	 x	 [3.255481 

Number of 
Generations

Genetic Algorithm Griewank Function 
(2 variables) 

____________ _____________ _____________ 

_______________ ____________ xl x2 

0 1.175222 14.062500 18.750000 

1 1.175222 14.062500 18.750000 

2 0.095894 6.250000 9.375000 

35 0.077939 12.500311 9.375164 

36 0.077915 12.500207 9.375041 

64 0.077064 12.524940 9.375417 

65 0.029676 9.375275 13.281601 

108 0.028621 9.402112 13.282249 

109 0.028448 9.409260 13.306537 

110 0.028531 9.406088 13.281738 

127 0.028494 9.406204 13.288153 

128 0.028520 9.406580 13.281864 

Griewank Function with 7 variables 

Comparisons (7 independent variables) 
Griewank Function 

y xl	 x2 x3	 x4	 x5	 x6 
Genetic 
Algorithm

0.250326 9.656299	 8.437529 11.343793	 11.909241	 6.750028	 8.250042 

Gradient 
Algorithm

1.425241 10.442063	 2.537317 9.198368	 -0.439168	 10.050415	 9.125494 

MatLab 
fminsearch ()

1.715300 0.051500	 0.102400 0.152700	 0.202300	 0.251500	 0.300000

MatLab Method MatLab Algorithm with Griewank function (7 variables) 

y = 1.7153 x - [0.0515 0.1024 0.1527 0.2023 0.2515 0.3000 0.3480 ]t• 

Gradient Method Davidon-Fletcher-Powell Algorithm with Griewank function (7 variables) 
y = 1.425241 
x=[10.442063 2.537317 9.198368 -0.439168 10.050415 9.125494 9.895116]t

x7 
8.062541 

9.895116 

0.348000 



Number of

Genetic Algorithm (Griewank Function with 7 variables) 

Generations Y xl x2 x3 x4 X5 x6 x7 

0 0.979566 10.031250 10.031250 10.031250 10.031250 10.031250 9.000000 10.031250 

1 1.053514 7.031257 7.761250 7.781250 10.312500 7.781250 10.500000 7.781250 

15 0852372 8531280 8.906270 8.906257 11.531265 7.218786 7.031271 9.093758 

58 0.782795 8906308 8.437557 11.156316 10781293 8.343795 7687555 10.781294 

59 0.250326 9.656299 8.437529 11.343793 11.909241 6.750028 8.250042 8.062541 

60 0.749432 8.531307 8.531271 11.812572 11.906310 8.718823 8.343805 9.843824 

128 0.784087 9.187621 9.283004 9.750172 11.906321 9.187594 9.844045 9.468889 

Rosenbrock Function with 8 variables 
Comparisons (8 independent variables) 
Rosenbrock Function 
y	 xl	 x2	 x3	 x4	 x5	 x6	 x7	 X8 

Genetic	
1.227185	 1.015625	 1.015625	 0.953125	 1.015625	 1.015625	 1.015625	 1.015625	 1.015625 Algorithm 

Gradient 
Algorithm	 y =	 NaN 
MatLab	

3.974200	 2.046300 4.190900 0.002300 0.001600 2.247400 5.053500 0.429700 0.182400 
fminsearch() 

MatLab Method MatLab Algorithm with Rosenbrock function 

x = [2.0463 4.1909 0.0023 0.0016 2.2474 5.0535 0.4297 0.1824]t, y = 3.9742 

Gradient Method Davidon-Fletcher-Powell Algorithm 

x = [-1.144971 0.966277 0.022287 1.140769 -0.822340 1.160610 -0.909875 0.500168]t, 
y=188.628060 
y =	 NaN 
x=	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN 

Numberof

Genetic Algorithm (Rosenbrock Function with 8 variables) 

_________ _________ _________ _________ 
Generations y xl x2 x3

_________ 
x4

_________ 
x5

_________ 
x6

_________ 
x7

_________ 
x8 

0 1.227185 1.015625 1.015625 0.953125 1.015625 1.015625 1.015625 1.015625 1.015625 

1 10.984105 0.437501 0.218750 0.218750 0.218750 0.218750 0.218750 0.218750 0.218750 

2 13.074403 -0.953125 0.953126 0.343750 0.234377 0.343751 0.343750 0.687500 0.343750 

16 18.165923 0.671877 0.453126 0.609375 0.203126 0.484377 0.000002 -0.499998 -0.015621 

124 2.895730 0.281265 0.046887 0.203137 0.031264 0.063491 0.000051 0.140640 0.031267 

128 3.073391 0.173841 0.046888 0.171898 0.016618 0.140635 0.031262 0.046890 0.000010



Run-2 Rosenbrock Function with 8 variables 

Comparisons (8 independent variables) 
Rosenbrock Function 

y	 xl	 x2	 x3	 xd	 x5	 x6	 x7	 X8 

Genetic	 1.636273	 0.437515	 0.203137	 0.312522	 0.125015	 0.515638	 0.281267	 0.421889	 0.218765 Algorithm 
Gradient 
Algorithm	 y =	 NaN 
MatLab	 3.974200 2.046300 4.190900 0.002300 0.001600 2.247400 5.053500 0.429700 0.182400 
fminsearch () 

MatLab Method MatLab Algorithm with Rosenbrock function 

[2.0463 4.1909 0.0023 0.0016 2.2474 5.0535 0.4297 O.l824],y= 3974 

Gradient Method Davidon-Fletcher-Powell Algorithm 

y=1 8 8.628060 
x= [-1.144971 0.966277 0.022287 1.140769 -0.822340 1.160610 -0.909875 0.500168]t, 

	

y=	 NaN 

	

x=	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN	 NaN 

Numberof
Genetic Algorithm (Rosenbrock Function with 8 variables) 

_______ _______ _______ _______ _______ 
Generations _______ xl x2 x3 x4

_______ 
x5

_______ 
x6

_______ 
x7

_______ 
x8 

0 4.589105 -0.015625 -0.015625 -0.015625 -0.015625 -0.015625 0.062500 -0.015625 -0.015625 
1 55.671459 0.828125 1.281250 -0.218749 -0.156250 -0.843750 0.828125 0.718750 0.828125 
2 44.921494 -0.359374 0.328125 0.328125 0.328125 0.390626 0.328125 -1.390625 1.437500 

24 18.908493 0.156250 0.390628 0.796878 0.796877 0.187501 0.109377 0.078128 0.031252 
112 3.239470 0.304698 0.078133 0.343760 0.140636 0.204120 0.140881 0.203136 0.039076 
125 2.621539 0.296886 0.125012 0.265641 0.046881 0.218760 0.078143 0.265637 0.031259 
126 1.636273 0.437515 0.203137 0.312522 0.125015 0.515638 0.281267 0.421889 0.218765 
127 2.505399 0.437509 0.218764 0.234387 0.031504 0.265637 0.093762 0.484388 0.156263 
128 3.563958 0.312506 0.080092 0.109389 0.046886 0.054702 0.015642 0.454124 0.109391



Matlab Programs 

function [1 = genetic_algorithm(function_handle,x,master_range) 

ga_history=[; ]; keep_min_value=[I; 
valriablesize=size(x); 
subinterval_matrix=[}; range=[]; 

createRangeMatrix() 

iterationCounts = inputNumberOflterations; 
sub intervals= 1; 
filename 1 = strcat(ga_data_,num2str(sub_intervals)); 
filename =strcat(filename 1 ,'.dat'); 
fid = fopen(filename,'w'); 
fprintf (fid,' Genetic Algorithm\n'); 
frintf(fid,' Y	 xl	 x2	 ....\n'); 
for sub intervals= 1 :2"valriablesize(2)*2 
range( 1,1) = subinterval_matrix(sub_intervals, 1); 
range( 1,2) = subintervalmatrix(subintervals,2); 
[x y] = ga_minimize(function_handle,x,range,fid,iterationCounts,ga history); 

end 
disp( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *); 

% ga history( 1. .2)= range 
% ga_history(3) = y 
% ga_history(4. .n)=x 
ga_history 
m=min(ga_history,3) 

fclose(fid); 

% utility function 

disp(' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *); 

function iterationCounts = inputNumberOflterations() 
% This function returns number of iterations required. 

iterationCounts =input('How many iterations? '); 
disp(' '); 
igiterationCounts< 1) iterationCounts= 1; end; 

end; 

function [] = createRangeMatrix() 
% Define subintervals based on the number of variables 
% subspaceincrement = (abs(range( I ))+abs(range(2)))/ (K 1 (2)*2K 1(2)); 

subspacerange = (abs(master_range( I ))+ 
abs(master_range(2)))/ (2'valriable_size(2)*2); 

L= master_range( 1); 
for i=1 :2/valriablesize(2)*2 

subinterval_matrix(i,1) = L; 
L=L+ subspacerange;



end 

L= nlaster_range( 1 )+subspacerange; 
for i=i :2tvairiable_size(2)*2 
subintervalmatrix(i,2) = L; 
L= L + subspacerange; 

end 
end 
end % genetic_algorithm(function_handie) 

% 
% Dr. Sen and Gholam Au Shaykhian 
% Procedure: 
% Step-i Randomly select n chromosomes 
% Step-2 Calculate the fitness function for each chromosome 
% Step-3 Prepare the mating pool: 
%	 Sort the fitness functions, replace the weak 12.5% chromosomes 
%	 with the strong 12.5% chromosome. 
% Step-4 Perform Crossover: 
%	 (a) Randomly select a number between 1 to size(chromosome) 
%	 (b) Perform crossover, chromosome-i is crossovered with 
%	 chromosome-n-i, chromosome-2 is crossovered with chromosome-n-2, 
%	 chromosome-3 is crossovered with chromosome-n-3, and ..... 
% Step-S Calculate the fitness function 
% Step-6 Randomly select a chromosome, then rondomly mutate one bit in that 
%	 chromosome, (if the random bit is '1' change to '0', and vice versa. 
% Step-7 Increment generation count (iterationCounts) 
% Step-8 Is iterationCounts equal to number of generations, then goto 
%	 Step-9 else goto Step-2 
% Step-9 Show report 
% 
function [x y] = ga_minimize(function_handle, 

x, 
intervaiRange, 
fid, 
iterationCounts, 
ga_history) 

% 
% Genetic Algorithm, the first required task is to code the parameter 
% set. The coding is generated from a string of l's and 0's; the string is 
% to represent the independent variables [xl ,x2, x3, ..., xn]. 
% The values of the variable xl, x2, x3.....are represented as a 
% binary vector; a chromosome. The length of the vector depends on the 
% required precision. 
% In this example, we use six places after the decimal point. The domain 
% of the variable xi is determined by evaluating the parameter 
% intervalRange. For example, ifxl has a length of 15.1 (-3,12.1); the 
% coding uses the range by dividing 15.1 into at least 15.1 * 1000000 equal 
% sizes. This means that 24 bits are required for each binary vector 
% (chromosome) in population: 
%	 8388608 =2"23<15l00000<=2"24=16777216.



% 
% initialize vector and matrix and scalar variables 
temp_history[; 1; crossOverMatrix=[ ; ]; 
131 =getRequiredPrecisionO; 
K1=size(x); chromosomeCount =0; row history=1; 

createCrossOverMatrixO; 
keepHistory(1); % keep initial best fit 

for CNT=1 :iterationCounts % multiple generations 
row history= 1; % rest the index of temp history 
CrossOver; 
keepHistory(CNT+ 1) 

end 
y=min(temp_history( 1,:)); 
disp('* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * f); 

disp(sprintf'\n\n\t\t\t\t\t\t DONE !! ! !')); 
% 
% 
% 
%	 Utility functions 
% 
%====	 -=====----------	 =====---

function [1 = keepHistory(history_index) 
% 

% keep the minimum of each generation 
% Finds the indices of the minimum values of temphistoryO, and returns 
% them in output vector I. If there are several identical minimum values, 
% the index of the first one found is returned. 
% 

[C,I] = rnin(temphistory(:,1)); 
R=r[]; 
R( 1 )=intervalRange( 1,1); 
R(2)=intervalRange( 1,2); 
R(3)= C; 

trn=2; 
for km=4:K1(2)+3 % number of variables 

R(km)=temphistory(I,tm); 
tm = tin + 1; 

end 
gahistory(historyindex,:)= R; 
sR=size(R); 
sR 
R 
for iR=1 :sR(2) 

fi rintf( fid,' % 1 2.6f,R(iR)); 
end 
frintffid,'\n'); 

end 

function [1 = CrossOver() 
% 
% Cross over and reproduction-Individual strings are copied according to



% their objective function. Survival of fittest-The greater fitness an 
% element has, the greater is its chance of being used for reproduction. We 
% will duplicate 12.5% of strong chromosomes for reproduction. The weak 
% 12.5% of chromosomes are replaced with the strongest chromosomes before 
% crossover operations. 
% Crossover: For each pair of chromosomes, a random number between 1 to 
% the size of chromosome is selected. Let n to be the size of the 
% chromosome, and d to be the random number selected. All 
% genes from d to n are swapped (crossover). The chromosome i is 
% paired with chromosome population-i. 
% 

crossOverMatrix = sortrows(crossOverMatrix); 
performCrossOverO; 

% Select a chromosome at random for mutation 
p = randperm(chromosomeCount); d2=p( 1); 
performMutation(d2) 

% recalculate the best fit after cross over 

for i=1 :chromosomeCount 
paramX=crossOverMatrix(i,:); 
% calculate the initial fitness values 
crossOverMatrix(i, 1 )= calculateBestFits(paramX); 

end 
end 

function [J = performCrossOver() 
% 
% Mating pool--The mating pooi is constructed by replacing the lowest 12.5% 
% fitness values (xl, x2, x3,...,xn) with the population strong 12.5% 
% values. After replacement, all chromosome are randomly shuffled. 
%

count=chromosomeCount/8; % crossover 12.5% 
mm=chromosomeCount; 
binaryValuel= dec2bin(0, Bl); 
binaryValue2= dec2bin(0, B 1); 
binaryValue3= dec2bin(0, Bl); 
binaryValue4= dec2bin(0, Bl); 
n=B1-6; %crossover at least 6 bits 
p = randperm(n); 
d=p(l); 

nn=size(binaryValue 1); 

for i1:count 
for j2:K1(2)+l 
binaryValue 1 convertValueToBinary(crossOverMatrix(i,j)); 
binaryValue2 = convertValueToBinary(crossOverMatrix(mm.j)); 

binaryValue3= strcat(binaryValue 1(1 :d),binaryValue2(d+ 1 :nn(2))); 
% binaryValue4= strcat(binaryValue 1(11 :nn(2)),binaryValue2( 1:10)); 
% change the weak chromosome 
crossOverMatrix(mm,j ) convertChromosomeToDecimal(binaryValue3);



flhlfl mm- 1; 
end 

end 
shuffleCrossOverMatrixO; 

end 

function [J = performMutation(d2) 
% 
% Conduct mutation at random selection for each generation 
% A gene within a chromosome is mutated at random position 
% 

gene = randperm(Bl); 
genePositiongene(l); % gene position to mutate 

for j=2:K1(2)+l 
mbinaryValue = convertValueToBinary(crossOverMatrix(d2j)); 
if mbinaryValue( :,genePosition) ==O' 

mbinaryValue(:,genePosition)=' 1'; 
else 

mbinaryValue(:,genePosition)='O'; 
end 
crossOverMatrix(d2,j )= convertChromosomeToDecimal(mbinaryValue); 

end 
end 

function [1 = createCrossOverMatrix() 
% 
% Set up the initial population 
%

rangeValue=intervalRange( 1); 
chromosomeCount = getNumberOfChromosomeO; 
incrementValue = (abs(intervalRange( 1 ))+ 

abs(intervalRange(2)))/ chromosomeCount; 

for i=l :chromosomeCount 
for j=2:K 1 (2)+ 1 %number of variables 
crossOverMatrix(i,j)=rangeValue; 

end 
paramX= crossOverMatrix(i,:); 
% calculate the initial fits 

crossOverMatrix(i, 1 )= calculateBestFits(paraniX); 
rangeValue=rangeValue+incrementValue; 

end 
shuffleCrossOverMatrixO; 

end 

function [] = shuffleCrossOverMatrix() 
% 
% shuffle the chromosomes in population randomly 
%

p = randperm(chromosomeCount); 
for i=l :chromosomeCount 
I =crossOverMatrix(i,:);



crossOverMatrix(i,:) = crossOverMatrix(p( I ,i),:); 
crossOverMatrix(p( 1 ,i),:)=T; 

end 
end 

function y = calculateBestFits(paramX) 
% 
% The function handle provides a means of calling a function indirectly. 
% The function handle is created by the calling program and is passed to 
% ga_mimmize() as parameter. 
%

pos=Kl(2)+l; 
y=flinction_handle(paramX(2:pos)); 
paramX( 1,1 )=y; 

% for varCNTl :pos 
% fprinttfid,' % 12.41' ,paramX( 1 ,varCNT)); 
% end 
% fprintf(fid,'\n'); 

temp_history(row_history, :)=paramX; 
row_history= row_history+ 1; 

end 

function bmaryValue = convertValueToBinary(val) 
clear binaryValue; 
% 
% Genetic algorithm coding: The first required task is to code the 
% parameter set (xl, x2, x3, ...xn). The coding is generated from a string 
% of l's and 0's; the string is to represent the parameter xi. 
% The values of each variable xi is represented as a binary vector; a 
% chromosome. The length of the vector depends on the required precision. 
% This example uses six places after the decimal point precision. The 
% domain of the variable xi is used to calculate the length of xi; for 
% example, if the low intervalRange is -3, and high intervalRange is 12.1, 
% the length is computed as 15.1; range [-3..12.1]; the same procedure is 
% applied to all xi. 
% The mapping from real value to binary value is as follow: 
% (1) Determine the required precision 
% (2) Let B1= number of bits needed for required precision 
% (3) let intervalRange(1) and intervalRange(2) represent the domain of xi 
% (4) Let rValue = real value of a chromosome 
% (5) Convert rValue to chromosome (binary string) 
% 

g =getRequiredPrecisionO; 
Nl=2"g; 
rValue = (intervalRange( 1 )val)*N 1 /(intervalRange( 1 )-intervalRange(2)); 
binaryValue = dec2bin(rValue, g); 

end 

function precision = getRequiredPrecision() 

% The precision requirement of six digits implies that each xi is divided 
% into at least 15.1* 1000000 equal size ranges. To determine the string size 
% (chromosome-number of genes), 8388608 =2t23<1 51 00000< r=2 t'24= 16777216, 
% means that 24 bits are required, a binary vector for each chromosome is 
% constructed.



% 
percision = 0; 
requiredPrecision=dec2bin( 1 000000*(abs(intervalRange( 1 ))+ 

abs(intervalRange(2)))); 
pL = size(requiredPrecision); 
precision = pL(1,2); 

end 

function realValue = convertChromosomeToDecimal(chromosome) 
% 
% For a 24 bits binary string (<b23b22 ..bO>), the mapping from binary to real value is as follow: 
% (1) Convert the 24-bit-binary to real value 
% (2) Let intervalRange( 1) and intervalRange(2) to be the low and high value of the range of xi respectively 
% (3) Let Bl = the number of bits (genes) in each chromosome 
% (4) Let Nl = convert the binary string (chromosome) to decimal 
% (5) Compute real value correspond to a chromosome use the equation: 
%	 realValue = intervalRange( 1 )+N 1 *(inter,,alRange(2) intervalRange( 1 ))/((2"(B 1 (2))-intervalRange( 1) 
%

Nl = bin2dec(chromosome); 
realValue = intervalRange( 1 )+N 1 *(intei.valRange(2). 

intervalRange( 1 ))/((2"(B 1 )-intervalRange( 1))); 
end 

function chromosomeCount = getNumberORThromosome() 
% 
% This function returns the population size. 

if(Kl(2)>5) 
chromosomeCount = 256; 

else 
chromosomeCount = 128; 

end; 
end 

end % gaminimize(function_handle,x,intervalRange) 

function [y, grad] = rosenbrock2(x) 
% 
% Rosenbrock banana function 
% 
% Initialize vector variables 
% 
grad=[]; xxl[]; xx2=[]; xxl= x(l); xx2x(2); 

% declare symbolic variables- The symbolic variables are used by Jacobian 
% return the gradient functions this is done by setting a variable equal 
% to a symbolic expression, and then apply the syrns command to the variable 
% 
syms xl x2



% fitness function 
y =lOO*(x2x1 S2)r'2+( 1 -xl)t'2; 

% The gradient function is computed using the function jacobian in 
% conjucction with symbols representing the independent variables in the 
% fitness function. The jacobian takes two parameters; namely variable y 
% and a vector whose components are the variables of the function y. 
% 
gradf =jacobian(y,[xl,x2]); 

% The inline constructs an inline function object corresponding to 
% gradient; the vectorize vectorizes the formula for the gradient function. 
% 
gfl = inline(vectorize(gradfI 1))); gf2 = inline(vectorize(gradf(2))); 

grad(l,1) = gfl(xxl,xx2); grad(1,2) = gf2(xxl,xx2); 

y =1OO*(x(2)_x(1)\2)A2+(1_x(l)Y2; 
end 

function [y, gradi = rosenbrock8(x) 
% 
% Rosenbrock banana function 
% 
% Initialize vector variables 
% 
grad=[I; xxl[I; xx2[]; 
xxl= x(l); xx2=x(2); xx3= x(3); xx4=x(4); 
xx5= x(5); xx6=x(6); xx7= x(7); xx8x(8); 
% declare symbolic variables- The symbolic variables are used by Jacobian 
% return the gradient functions this is done by setting a variable equal 
% to a symbolic expression, and then apply the syms command to the variable 
% 
syms xl x2 x3 x4 x5 x6 x7 x8 

% fitness function 
y = lOO*(x2xl A2)/\2+(1xl)f 2 + 

lOO*(x4x3 t 2)f 2+(1x3)I'2 + 
+ 

1 OO*(x8x7t'2)2+( 1 -x7)"2; 
% 
% The gradient function is computed using the function jacobian in 
% conjucction with symbols representing the independent variables in the 
% fitness function. The jacobian takes two parameters; namely variable y 
% and a vector whose components are the variables of the function y. 
% 
% 
% gradient = 

..400*(x2.xlA2)*xl..2+2*xl, 
%	 2OO*x22OO*xlf2, 
%	 4OO*(x4xY2)*x32+2*x3,



%	 2OO*x42OO*xY2, 
%	 .400*(x6..x5A2)*x5..2+2*x5, 
%	 2O0*x6200*xYS2, 
%	 ..400*(x8..x7A2)*x7..2+2*x7, 
%	 200*x820O*x7S21 
% 

gradf =jacobian(y,[xl ,x2,x3,x4,x5 ,x6,x7,x8]); 

% The inline constructs an inline function object corresponding to 
% gradient; the vectorize vectorizes the formula for the gradient function. 
% 
gfl = inline(vectorize(gradgl))); gf2 = inhine(vectorize(gradg2))); 
gf3 = inline(vectorize(gradf3))); gf4 = inline(vectorize(gradf(4))); 
gf5 = inhine(vectorize(gradg5))); gf6 = in1ine(vectorize(gradtl6))); 
gf7 = inline(vectorize(gradg7))); gtE = inhine(vectorize(gradf(8))); 

grad(l,l) = gfl(xxl,xx2); grad(l,2) = gf2(xxl,xx2); grad(l,3) = gt3(xx3,xx4); grad(l,4) = gf4(xx3,xx4); 
grad(l,5) = gf5(xx5,xx6); grad(1,6) = gf6(xx5,xx6); grad(l,7) = gf7(xx7,xx8); grad(l,8) = gf8(xx7,xx8); 

y = 100*(x(2)x(1y2) \2+(1x(l)) rS2 + 
l00*(x(4)x(3yS 2)fs2+(lx(3))f 2 + 
100*(x(6)x(5y2)\2+(1x(5)) A2 + 
1 00*(x(8)x(7)r2)\2+( 1 —x(7))"2; 

end 

% Davidon-Iletcher-Powell Gradient Algorithm (7 variables fuiictioii) 
% Dr. Sen / Gholam Au Shaykhian 
% March 2007 
function [x y history] = df_minimize (function_handle,lambda_handle, x_init,fid) 
0/ 

% Gradient Descent parameters 
0/ 

max_iteration = 100; epsilon = 0.01; 
lambda=0; x = x_init; K 1 =size(x); 
history = 
% keep data points for history and possible graphs (if dimensions allowed) 
keepX=zeros(max_iteration,size(x, 1)); 
keepY=zeros(max_iteration, 1); 

0/ 

% Step-i: set dk=-Hkgk as the search direction from the current point xk, 
% where gk=gradient(gxk), HO I and xO is given at the start, viz k=O 
0/ 

Hk = eye(stze(x,1)); 
% sl=size(x) s2=size(Hk) 

valO = lambda; 
history = [history; x];



for mK= 1 :max iteration 
% Evaluate y = fix) 
[y, grad] = function_handle(x); 

fprintffid,'y = %12.6f x =',y); 
for i= 1 :K 1(2), frintf1: fid,' % 1 2.6f,x( 1 ,i)); end; frintgfid,'\n'); 

d=Hk*gradI ; lambda = lambda_handle(x,d,vaIO); 
0/ 

% Step-2 Perform a linear search to find lambda (>0), where lambda is 
% the value that minimizes gx+lambda*dk) 

% Step-3 Set Sk=lambda * dk 
Sk = lambda * 

if(max(abs(Sk)) <epsilon) 
break; 

end; 

% Step-4 Set X(k+1)= X(k) =Sk 
x=x+Sk'; 

% Step-5 Evaluate gx(k+l)) and g(k+l) 
% Evaluate y = f(x) 
[y, current grad] = function_handle(x); 
% Step-6 Ck= g(k+ I)- g(k) 
Ck= (current_grad - grad)'; 

% Step-7 Set Hk+l = Hk+Ak+Bk 
Ak = (Sk * Sk)/(Sk'*Ck); 

Bk= (Hk*Ck*Ck')/(Ck'*Hk*Ck); 

HkHk+Ak+Bk; 
history = [history; x] 

end
% Evaluate y = gx) 
[y, grad] = function_handle(x); 

fii,rintf(' finished at iteration # %d\n', mK); 
for dim l:size(x,l), 

1riritf( gx%d) = %d\n', dim,x(dim)); % display each dimension of final_xValues vector 
end 

end 

function lambda = rosenbrockLambda2(x,d,valO) 
% Perform a linear search to find lambda, where lamda is the value which 
% minimizes the function. 
% y 
f=@(L)l00*((x(2)+d(2)*L)(x(l)+d(l)*LY2)A2 +(1(x(l)+d(1)*L)y2;



% fminbnd finds the minimum of a function of one variable within a fixed 
% interval. 
lambda=frninbnd(f,valO,valO+2); 

end 

function lambda = rosenbrockLambda8(x,d,valO) 
% Perform a linear search to find lambda, where lamda is the value which 
% minimizes the function. 

% y	 + 
%	 I OO*(x(4)x(3)/'2)I'2+( 1 -x(3))'2 + 
%	 I OO*(x(6)x(5)P2)t'2+( 1 _x(5))"2 + 
%	 1 OO*(x(8)x(7)"2)"2+( 1 -x(7))"2 

f=@(L) I OO*((x(2)+d(2)*L)(x( 1 )+d( 1 )*L)\2)2 +( 1 -(x( 1 )+d( 1 )*L))2; 
% fminbnd finds the minimum of a function of one variable within a fixed 
% interval. 

f=@( L) 1 OO*((x(2)+d(2)*L)(x( 1 )+d( l)*L)\2)2 + (1 -(x( 1 )+d( 1 )*L))2 + 
I OO*((x(4)+d(4)*L)(x(3)+d(3)*L)t2)t2 + (1 (x(3)+d(3)*L))t2 + 
I OO*((x(6)+d(6)*L)(x(5)+d(5)*L)'2)f2 + (1 (x(5)+d(5)*L))t2 + 
1 OO*((x(8)+d(8)*L)(x(7)+d(7)*L)I2)t2 + (1 (x(7)+d(7)*L))t2; 

lambda=fminbnd(f,valO,valO+2); 
end 

function lambda = griewankLambda2(x,d,valO) 
% Perform a linear search to find lambda, where lamda is the value which 
% minimizes the function. 

% fminbnd finds the minimum of a function of one variable within a fixed 
% interval. 
% Griewank's Function 
% 
% g) = ( 1 /4OO)*sum(Xi 1 o)A2.product(cos(xi/sqn( i)))+ 1 for i: 1 :n 
% let i1:7 
% y (1 /400)*((x( 1)- 1 O)A2+(x(2) I O)A2+(x(3) I O)A2+(x(4) 1 O)A2+ 
% (x(5)- 1 O)A2+(x(6) 1 O)A(x(7) I O)A2) 
% (cos(x( 1)11 O.5)*cos(x(2)/2tO.5)*cos(x(3)!3/\O.5)*... 
% cos(x(4)/4'O.5 )*cos(x(5)/5 A0 5)*cos(x(6)/6A05 )*cos(x(7)/7A0 5))+ 1; 

f@(L)( 11400)*((x( 1 )+d( I )*L 1 O)"2+(x(2)+d( 1 )*L 1 O2 - 
cos(x( I )+d( 1 )*LI 1 AO 5)*cos(x(2)+d( 1 )*L/2A05)); 

lambdafminbnd(f,valO,valO+2); 
end



function lambda = griewankLamdda7(x,d,valO) 
% Perform a linear search to find lambda, where lamda is the value which 
% minimizes the function. 

% fminbnd finds the minimum of a function of one variable within a fixed 
% interval. 
% Griewank's Function 
% 
% g) = ( l/4OO)*sum(XilO)ts2product(cos(XiIsqrt(i)))+l for i:l:n 
% let i1:7 
% y= (11400)*((x( 1)-i O)A2+(x(2) 1 O)''2+(x(3)_ 1 Ø)A(,(4) 1 Q)A 

% (x(5)- 1 O)A2+(x(6) 1 O)"2+(x(7)- I Q)A) 
% 
%	 1; 

f=@(L)( 1 /400)*((x( 1 )+d( I )*L 1 O)''2+(x(2)+d( I )*[. 1 O)'2+(x(3)+... 
d( 1 )*L 1 O)"2+(x(4)+d( 1 )*L 1 O)"2+(x(5)+d( 1 )*L 1 O)"2+(x(6)+... 
d(l)*LlOYS2+(x(7)+d(l)*LlOy'S2)cos(x(l)+d(l)*L/ltO.5)*... 
cos(x(2)+d( 1 )*L/2\O.5)*cos(x(3)+d( 1 )*LI3O.5)*cos(x(4)+... 
d( 1 )*L/4A0.5)*cos(x(5)+d( 1 )*L/5O.5)*cos(x(6)+d( 1 )*L!6O.5)*... 
cos(x(7)+d( 1 )*L/7O.5)+ 1; 

lambda=fminbnd(f,valO,valO+2); 
end 

/0 

% Griewanks Function 
% lower boundary <=Xi<=upper boundary 
% 
% g) = ( 1 /4OO)*sum(Xi 1 O)"2-product(cos(Xilsqrt(i)))+ 1 for i: I :n 
% 
function [y, grad] griewank2(x) 

% Initialize vector variables 
% 
grad=[]; xxl=[]; xx2[}; 
xxl x(1); xx2=x(2); 

% declare symbolic variables- The symbolic variables are used by Jacobian 
% return the gradient functions this is done by setting a variable equal 
% to a symbolic expression, and then apply the syms command to the variable 
% 
syms xl x2 

% fitness function 
y = (l/400)*(x 1-1 O)"2+( 1 /4OO)*(x2 1 O)"2--cos(x 1 )*cos(x2/2tO.5)+ 1; 

% The gradient function is computed using the function jacobian in 
% conjucction with symbols representing the independent variables in the 
% fitness function. The jacobian takes two parameters; namely variable y



% and a vector whose components are the variables of the function y. 
% 
gradf =jacobian(y,[xl ,x2]); 

% The inline constructs an inline function object corresponding to 
% gradient; the vectorize vectorizes the formula for the gradient function. 
% 
gfl = inline(vectorize(gradfll))); 
gf2 = inline(vectorize(gradg2))); 

grad(1,l) = gfl(xxl,xx2); 
grad(1,2) = gf2(xxl,xx2); 

y = (11400)*(x( 1)- 1 0)A2+( l/40O)*(x(2) 1 Ø)A cos(x( 1 ))*cos(x(2)/2A05 )+ 1; 

end 

% Gnewank's Function 
% f(x) (1 /400)*sum(Xi_ 1 0)'2-product(cos(XiIsqrt(i)))+ 1 for i: 1 :n 
% 
function [y, grad = griewank7(x) 
%%leti=1:7 
% y= (l/400)*((x( I)- 1 O)A2+(x(2) 1 0)"2+(x(3)- 1 0)"2+(x(4)- 1 Ø)A 

% (x(5)-10)'2+(x(6)-10)"2+(x(7)-10'2)-... 
% (cos(x(l)/1fO.5)*cos(x(2)/2I0.5)*cos(x(3)/Y0.5)*... 
%	 1; 
% 
% Initialize vector variables 
% Gradient = 
% 1/200 1'xl - 1/20+sin(xl )*cos( l/2*x2*2'( l/2))*cos( l/3*x3*3( l/2))* 
% cos( l/2*x4)*cos( 1/5*x5*5( l/2))*cos( l/6*x6*6/'( 112))* 
% cos(l/7x7'7t'( 1/2)), 
% 1/200x2- 1/20+ l/2*cos(xl )sin( l/2*x2*2/'( 1I2))*2"( 112)*cos( 113*x3* 
% 3A( l/2))*cos( l/2*x4)*cos( I /5*x5*5 A( l/2))*cos( l/6*x6*6"( l/2))* 
% cos(l/7*x7*7\(l/2)), 
% l/200x3- 1/20+ l/3*cos(xl )*cos( 1/2*x2*2( l/2))*sin( 1/3*x3* 
% 3'( 1/2))*3( l/2)*cos( l/2*x4)*cos( l/5*x5*5\( 1/2))*cos( 1/6*x6*6( l/2))* 
% cos(I/7*x7*7i(l/2)), 
% l/2O0x4- 1/20+ l/2*cos(xl )*cos( 1/2*x2*2( l/2))*cos( l/3*x3* 
% 3A( 1/2))*sin( l/2*x4)*cos( 1/5*x5*5( 1/2))*cos( l/6*x6*6( 1/2))* 
% cos(l/7*x7*7"(1/2)), 
% l/200x5- 1/20+ l/5*cos(xl )*cos( 1/2*x2*2"( 1/2))*cos( 1/3*x3* 
% 3"( 1/2))*cos( 1/2*x4)*sin( 1/5*x5*5( 1/2))*5\( l/2)*cos( 1/6* 
% x6*6t(l/2))*cos(1/7*x7*7I(1/2)), 
% 1/200*x6 1/20+ 1/6*cos(xl )*cos( 1/2*x2*2 1'( 1/2))*cos( 1/3*x3* 
% 3A( I/2))*cos( 1/2*x4)*cos( 1/5*x5*5t( l/2))*sin( 1/6*x6*6( 1/2))*6( 1/2)* 
% * cos(l/7*x7*7(1/2)), 
% 1/200*x7 1/20+ l/7*cos(xl )*cos( l/2*x2*2( 1/2))*cos( l/3*x3* 
% 3A( 1/2))*cos( 1/2*x4)*cos( 1 /5*x5*5 A( 1/2))*cos( l/6*x6*6( 1/2))*



% sin(l/7*x7*71s(l/2))*7tS(l/2)] 

grad=[]; xxl=[]; xx2=[]; xx3={}; xx4=[]; xx5[]; xx6[]; xx7=[j; 
xxl= x(l); xx2=x(2); xx3 x(3); xx4=x(4); xx5= x(5); xx6=x(6); xx7=x(7); 

% declare symbolic variables- The symbolic variables are used by Jacobian 
% return the gradient functions this is done by setting a variable equal 
% to a symbolic expression, and then apply the syms command to the variable 
% 
symsxlx2x3x4x5x6x7 

% fitness function 
y =lOO*(x2x12yS2+(lxl)'\2; 

y (11400)*((x 1-1 O)"2+(x2- 1 O) t'2+(x3- 1 O)"2+(x4- 1 Oy'2+... 
(x5- I O)"2+(x6- 1 O)"2+(x7- 1 O)"2)-... 
(cos(xl/l AO5)*cos(,a/2A05)*cos(x3/3A05)*

1; 

% The gradient function is computed using the function jacobian in 
% conjucction with symbols representing the independent variables in the 
% fitness function. The jacobian takes two parameters; namely variable y 
% and a vector whose components are the variables of the function y. 
% 
gradf =jacobian(y,[x 1 ,x2,x3,x4,x5,x6,x7]); 

% The inline constructs an inline function object corresponding to 
% gradient; the vectorize vectorizes the formula for the gradient function. 
% 
gfl = inline(vectorize(gradg 1))); gf2 = inline(vectorize(gradg2))); 
gO = inline(vectorize(gradg3))); gf4 = inline(vectorize(gradg4))); 
gf5 = inline(vectorize(gradgs))); gf6 = inline(vectorize(gradf(6))); 
gf7 = inline(vectorize(gradg7))); 

grad( 1,1) = gfl (xx 1 ,xx2,xx3,xx4,xx5,xx6,xx7); grad( 1,2) = gf2(xx 1 ,xx2,xx3,xx4,xxs,xx6,xx7); 
grad( 1,3) = gf3(xx 1 ,xx2,xx3,xx4,xx5,xx6,xx7); grad( 1,4) = gf4(xx 1 ,xx2,xx3,xx4,xxs,xx6,xx7); 
grad( 1,5) = gf5(xx 1 ,xx2,xx3,xx4,xx5,xx6,xx7); grad( 1,6) = gf6(xx 1 ,xx2,xx3,xx4,xx5,xx6,xx7); 
grad(l,7) = gf7(xxl,xx2,xx3,xx4,xxs,xx6,xx7); 

y (11400)*((x( 1)-i O)A2+(x(2) 1 O)'2+(x(3)- 1 O)A2+(x(4) 1 O)A2+ 
(x(5)- 1 O)A2+(x(6) 1 O)A2+(x(7) 1 Ø)A) 
(cos(x( 1)/i A05)*cos(x(2)/2A05)*cos(x(3)/3A05)* 

end 

% [x y historyl rninirnizeTest( function haiidle,x mit) 
% The minimize test function receives as input parameter a function handle 
% which will point to a user define function, and initial values for vector 
% x. This function returns the final values for vector x, y value and a



% history matrix which includes calculated points along the path of 
% searching for minimum value. 
% 
% The MatLab fminsearch() standard function minimizes a function of several 
% variables. The input parameters to this function is a user define 
% function; specified at run time, by its function handle, initial value of 
% vector x and data structure options- MatLab uses default values (when 
% user values are not specified) for the parameter options- The data value 
% for the options data structure is defined by using optimset() function, 
% as follow: 
% 
% options = optimset('paraml ',value 1 ,'param2',value2,...) 
% MatLab set any unspecified parameters to [], indicating their 
% corresponding default values. Fields that can be set by optimset() and is 
% used by fminsearch() are as follow: 
% 
% Display Level of display. 'off displays no output; 'iter' displays 
%	 output at each iteration; 'final' displays just the final 
%	 output; 'notify' (default) dislays output only if the function 
%	 does not converge. 
% Followings are exteracted from MatLab user guide to clarify the usage of 
% fminsearch() standard function. 
% FunVaiCheck Check whether objective function values are valid. 'on' 
%	 displays a warning when the objective function returns a 
%	 value that is complex, Inf or NaN. 'off (the default) 
%	 displays no warning. 
% MaxFunEvals Maximum number of function evaluations allowed 
% Maxlter	 Maximum number of iterations allowed 
% OutputFcn Specify a user-defined function that the optimization 
%	 function calls at each iteration. 
% TolFun	 Termination tolerance on the function value 
% ToIX	 Termination tolerance on x 
% 

function 
history = [I; 
options = optimset('OutputFcn', @myoutput); 
[x yl = fminsearch(function_handle, x_init,options); 
function 

stop = [ 1; 
if state == 'iter' 
history = [history; xl; 

end 
end 

end 

4. Conclusions 

Increasing dominance of genetic/other randomized algorithms over gradient/other deterministic 
algorithms We have attempted to provide a glimpse of increasing importance of randomized 
algorithms (such as the genetic algorithms/evolutionary approaches) over the deterministic



methods (such as the gradient algorithms) with the steadily increasing capability of computing 
resources such as the processing speed, band width, and storage space. Today (2007) a situation 
where a processing speed of over a billion FLOPS are widely available on a desk top computer 
has cropped up where randomized algorithms are more attractive than the deterministic ones for 
large real-world optimization problems both in terms of accuracy (quality of result) as well as 
inherent simplicity (ease of human comprehension). With further improvement in the capability, 
these algorithms will have more dominance over the deterministic ones which in past decades 
(before 1980s) were practically the only means to tackle small not-so-involved function 
optimization problems. It can be seen that if the computing power would have remained static (of 
the order of 10000 FLOPS) during the past four decades, then definitely randomized algorithms 
could not have gained so much of importance as these have today. So far as the 
time/computational complexity (cost of computation) is concerned, it is often not a serious issue 
with most real-world problems since all randomized algorithms as well as all deterministic ones 
for function optimization are polynomial-time [9, 11]. The function optimization problem is 
inherently polynomial-time (not NP-hard). However, when the search hyperspace is large (say, 7 
or over 7 variables) and the function involving, say some combination of transcendental/special 
functions, is computationally large, then to track down the global optimal solution could involve 
significant computation though not often a major complexity issue. In such problems, the error 
involved in gradient algorithms that usually need some kind of knowledge of the derivative of 
the function could be significant to affect the global optimum value considerably. A genetic 
algorithm, or for that matter any randomized algorithm, that usually involves only the function 
computation will, on the other hand, tend to produce more accurate global minimum. Our 
numerical experiments with various typical problems in section 3 depict this fact both 
numerically as well as visually. 

Genetic/other randomized algorithms are the only ways for NP-hard problems such as TSPs A 
traveling salesman problem (TSP) has immense importance in numerous practical applications. 
Although our subject matter is not connected to an NP-hard problem such as a TSP, we like to 
stress that no deterministic algorithms are usable because of intractability [9, 11]. The only 
alternatives are the randomized algorithms, viz., genetic, ant, and other evolutionary approaches. 
These algorithms are always polynomial-time and hence are always tractable. 
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