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Abstract 
 

The results of numerical simulations aimed at assessing the applicability and 
effectiveness of Generalized Predictive Control (GPC) for active control of dynamic 
systems having rigid-body modes are presented.  GPC is a linear, time-invariant, multi-
input/multi-output predictive control method that uses an AutoRegressive with eXternal 
input (ARX) model to characterize the system and to design the controller.  The equations 
underlying the method are presented and discussed, including system identification, 
calculation of control law matrices, and calculation of the commands applied to the 
control effectors.  Although the method can accommodate both embedded (implicit) and 
explicit feedforward paths for incorporation of disturbance effects, only the case of 
embedded feedforward in which the disturbances acting on the system are assumed to be 
unknown is considered here.  Representative results from numerical simulations using 
mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot 
system and the XV-15 tiltrotor research aircraft operating in the airplane mode of flight 
are presented.  Both regulator (zero target response) and tracking (nonzero target 
response) problems were studied.  Results obtained from these simulations have been 
decidedly positive.  In particular, in the cases calling for zero system response in the 
presence of external disturbances, the closed-loop simulations showed reductions of 
nearly 100% for most of the examples.  In the tracking examples where the system 
is commanded to follow a specified path, the GPC controllers were able to produce 
the desired system responses, even in the presence of external disturbances.    

 
 

Nomenclature 
 

ARX   AutoRegressive with eXternal input 
 
d   disturbance 
 
fs   
 

sampling frequency 

GPC   Generalized Predictive Control 
 

hp, hc
 

   prediction and control horizons 

k   integer denoting discrete time index 
 
    number of time points/samples used for system identification 
 
m   number of outputs 
 
OMP   observer Markov parameters 
 
p   order of ARX model 
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r   number of inputs    
 
rc
 

   number of control inputs 

rd
 

   number of disturbance inputs 

SID   System IDentification 
 
, ,   coefficient matrices in multi-step output prediction equation 
 
uc   control input
 

  

ud   disturbance input
 

  

uc(k)   control input at time index k
 

  

u(k), y(k)   vectors of inputs and outputs at kth

 
 time index 

u(k-j), y(k-j)  vectors of past inputs and outputs at (k-j)th

 
 time index;  j < k 

u(k+j), y(k+j)  vectors of future inputs and outputs at (k+j)th

 
 time index;  j ≥ 0 

Y    matrix of observer Markov parameters 
 
αc, βc, χc

 
  control law gain matrices 

αi, βi    
 

observer Markov parameters/coefficient matrices of ARX equation 

a1, b1

 
   longitudinal and lateral tip-path-plane flapping angles 

β
 
   sideslip angle 

u, v, w   perturbation linear velocities 
 
x, y, z   perturbation linear displacements 
   
p, q, r   perturbation angular velocities    
 
φ, θ, ψ   perturbation angular displacements   
 
∆t   sampling time (1/ fs
 

) 
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Introduction 
 

In 2003, the Aeroelasticity Branch and the Army Research Laboratory’s Vehicle 
Technology Directorate at NASA Langley Research Center, in collaboration with Bell 
Helicopter Textron Inc, completed a series of experimental evaluations of a predictive control 
technique known as Generalized Predictive Control (GPC) (ref. 1) to assess its potential for 
actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in both 
helicopter and airplane modes of flight.  The studies employed a 1/5-scale, semi-span aeroelastic 
model of the V-22 that had been refurbished to serve as a tiltrotor research test bed for use in the 
Langley Transonic Dynamics Tunnel (TDT).  The results of the exploratory experimental 
investigations conducted with this model are reported in references 2-5.  The GPC-based 
algorithm employed was highly effective in increasing the stability of the critical (least stable) 
mode for all of the configurations and conditions tested.  GPC was later employed to evaluate its 
potential for active gust load alleviation of fixed-wing aircraft using conventional wing control 
surfaces.  This investigation used data from a TDT test of a large semi-span wing model of an 
active wing design being studied by Northrop Grumman.  The results of this active gust load 
alleviation investigation are presented in reference 6.  The applications of GPC noted above were 
to systems that contained no rigid-body modes.  However, many systems that might be 
considered likely candidates for GPC-based active control have motions that include rigid-body 
or near rigid-body behavior.  For this reason, it was decided to apply the GPC methodology 
developed in the aforementioned studies to some representative systems exhibiting such modes 
and to evaluate the method’s ability for actively controlling those types of systems. 

  
The purpose of this report is to present the results of some recent numerical simulations 

obtained from an application of the programs developed for the earlier GPC investigations to 
systems with rigid-body and near rigid-body modes.  First, a qualitative description of the basic 
features of GPC is given.  Then, key equations underlying the method as applied in the present 
investigation are presented and discussed, including system identification, formation of the 
multi-step output prediction equation, calculation of control law matrices, and calculation of the 
commands applied to the control effectors.  These discussions are based on the broader treatment 
given in reference 6 but tailored to the requirements of the present application.  Comments on 
selection of control model parameters and treatment of external disturbances are then presented.  
Representative results from two types of numerical simulations of closed-loop behavior are 
presented next.  The first set of simulations was made using a three-degree-of-freedom 
mathematical model of a free-free mass-spring-dashpot system.  The second set of simulations 
was made using a state-space math model of the rigid-body dynamics of the XV-15 tiltrotor 
research aircraft.  Both models were subjected to a variety of user-defined external disturbances 
and user-defined target responses intended to demonstrate the ability of GPC to handle both 
regulation and tracking problems for systems with rigid-body modes and to illustrate the 
robustness of GPC to aggressive changes in simulated operating environment. 

 
 

Basic Features of GPC 
 

Predictive control refers to a strategy wherein the decision for the current control action is 
based on minimization of a quadratic performance index that involves a prediction of the 
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system’s controlled response at some number of time steps into the future.  A variety of 
predictive controllers have been proposed (ref. 7).  Among these, Generalized Predictive Control, 
which was introduced in 1987 (ref. 8), has received considerable attention by the controls 
community.  GPC is a linear, time-invariant, multi-input/multi-output predictive control method 
that uses an AutoRegressive with eXternal input (ARX) model (i.e., a linear difference equation) 
to describe the input-output relationship of a system.  The coefficient matrices of the ARX 
equation are determined by appropriate system identification techniques.  Such a model gives the 
current output as a weighted linear combination of the current input and past inputs and outputs.  
The input-output equation is used to form a multi-step output prediction equation over a finite 
prediction horizon.  An expression for the control to be imposed at the next time step is obtained 
by minimizing the deviation of the predicted controlled system outputs from the desired (or 
target) outputs, subject to a penalty on control effort.  A version of the GPC procedure was 
developed at NASA Langley Research Center in 1997 for both efficient computation and 
treatment of unknown disturbances by Dr. Jer-Nan Juang and his team.  Their work resulted in a 
suite of MATLAB (ref. 9) m-files that were collected into a predictive control toolbox that can 
be used by researchers for GPC studies.  A summary of the salient aspects of the theory 
underlying their development may be found in references 1 and 10-19, among others.   

 
The essential features of the GPC-based control system used in the present studies are 

depicted in figure 1.  The system has rc control inputs uc, m measured outputs y, and is subject to 
external disturbances d.  Measurement noise (not shown) can also be present.  There are two 
fundamental steps involved in GPC: identification of the system; and use of the identified model 
to design the controller.  Any system identification technique that returns an ARX model for the 
system may be used.  System identification is done “on-line” in the presence of the disturbances 
acting on the system.  If the disturbances are unknown, their effects are automatically accounted 
for (at least approximately) and embedded in the ARX model that is identified.  This approach 
leads to a feedback controller with an embedded (or implicit) feedforward path and is the type of 
controller designed and used in the present investigation.  It should be noted, however, that if any 
of the disturbances acting on the system are measurable, that data can be used in an explicit 
feedforward path simultaneously with the feedback data to enhance closed-loop performance, as 
was investigated in reference 6.  In either case, a random excitation uid is applied initially with uc 
equal to zero to identify the open-loop system.  Dither is also added to the closed-loop control 
input uc

 

 if it is necessary to re-identify the open-loop system while operating in the closed-loop 
mode. 

 
Key Equations Underlying Present Application of GPC  

 
 The key equations underlying the implementation of GPC used in the present application 
are summarized and discussed below.  The form of the ARX model that is identified is given 
first.  Then, the system identification procedure that provides the coefficient matrices in the ARX 
equation is summarized.  The manner of extending this (the ARX) one-step output prediction 
equation to obtain the multi-step output prediction equation that is used for designing the 
controller is then described.  Finally, the control law itself is derived. 
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ARX Model 
The relationship between the input and output discrete time histories of a linear, time 

invariant, multi-input/multi-output (MIMO) system subject to unknown or unmeasurable 
disturbances can be described by an ARX model (linear difference equation) that has the form 
 
                     1 2 0 1( ) ( -1) + ( -2 ) + + ( - ) + ( ) + ( -1) + + ( - )p py k y k y k y k p u k u k u k pα α α β β β=            (1) 

 
This equation states that the current output y(k) at time index k is given as a weighted sum of the 
p past sets of output values y(k-1),…, y(k-p) and the current and p past sets of input values u(k), 
u(k-1),…, u(k-p).  The integer p is called the order of the ARX model. The coefficient matrices αi 
and βi

 

 are referred to as observer Markov parameters (OMP) or ARX parameters and are the 
quantities to be determined by the identification algorithm.  Closed-loop performance will be 
enhanced by performing the system identification in the presence of the external disturbances 
acting on the system, thereby ensuring that disturbance information will be incorporated in the 
identified model.  As mentioned earlier, the OMP may be determined by any identification 
technique that returns an ARX model of the system.  The approach used here is described below.  

System Identification Procedure 
 

System identification (SID) deals with the problem of estimating a dynamical math model 
of a system using measured input-output data.  The goal of SID is to determine the OMP of the 
ARX model using the measured input-output data stream.  System identification in the presence 
of the operational disturbances acting on the system is the first of the two major computational 
steps of the GPC method.  The number of inputs is r and the number of outputs is m.  To initiate 
the identification process, the open-loop system is excited with band-limited white noise.  These 
independent random excitations are applied at the r inputs simultaneously and the m responses 
are measured or calculated, as appropriate, at   equally-spaced time points.  The resulting input 
and output time histories u(k) and y(k) are then used to form the data matrices y  and V  in the 
equation 

                                      y Y V=                             (2) 

where    

 

       
(0)  (1)  (2) ( ) ( 1)y y y y y p y

m

 
 
  

= −

×

  



            (3) 

and      
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[ ( ) ]

(0) (1) (2) ( ) ( 1)
(0) (1) ( 1) ( 2)

(0) ( 2) ( 3)

(0) ( 1)
r r m p

u u u u p u
v v v p v

V v v p v

v v p
+ + ×

− 
 − − 
 = − −
 
 
 − − 



  

  

  

   

 

                                  (4) 

Equations 3 and 4 follow from writing the equations for a discrete-time state-space observer 
model of a linear time-invariant system at a sequence of time indices k = 0, 1, 2, …, ( -1) and 
then arranging them into a matrix form (ref. 11).  Equations 3 and 4 are valid under the 
assumption that the system is initially at rest.  For nonzero unknown initial conditions, the first p 
columns of y  and V  must be deleted to eliminate the effect of the initial conditions on the 
measured data (ref. 11).  The vector v(k) appearing in the data matrix V is formed from the 
vectors u(k) and y(k) according to                                                                                                                      

                                                           
( ) 1

( )( )
( )

r m

u kv k
y k

  
 
  
+ ×

=
                                                                (5) 

The order of the ARX model, p, and the number of data points, , used for identification are 
specified by the user.  Some guidelines for their selection are given later.  The sizes of key 
vectors and matrices are noted here and throughout the report as appropriate to facilitate 
computational considerations related to computer implementation.    

 
In forming the matrices given in equations 4 and 5, it has been assumed that a deadbeat 

observer has been added to the system (ref. 18).  This addition is purely implicit as its action is 
introduced by the assembling and processing of the input/output data in the manner shown 
above.  It is through this expedient that the matrix V is reduced to a size amenable for practical 
numerical computation of its pseudo-inverse.  The system identification process yields observer 
Markov parameters rather than system Markov parameters because of the inclusion of the 
observer.  A complete discussion of these aspects of the development may be found in references 
11 and 18. 

 
 In equation 2, Y  is the matrix of observer Markov parameters that is identified and has 

the form 
 

                                              p0 1 1 2 2 3 3
[ ( ) ]

p

m r r m p

Y β β α β α β α β α 
 
  

× + +

= 

                                      (6) 

 

The solution for Y  is obtained by solving equation 2 for Y  according to  
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                         -1† y y = T TY V V V V=   
               (7)  

where † denotes the pseudo-inverse.  If the product TV V is a well-conditioned matrix of 
reasonable size, the ordinary inverse can be taken as shown.  Otherwise, a pseudo-inverse must 
be used.     
 

Multi-Step Output Prediction Equation 
  
 The one-step output prediction equation given in equation 1 is the starting point for 
deriving the multi-step output prediction equation that is used for designing the GPC controller.  
Using equation 1, the output at time index k+j may be written in the form 

 

       
( ) ( ) ( )
1 2

(1) ( ) ( ) (j) ( )
o 1 2

( ) ( -1) + ( -2) +  + ( - ) 
  + ( ) + ( 1) ( ) + ( -1) + ( 2)   + ( - )

j j j
p

j j j
o o p

y k j y k y k y k p
u k j u k j u k u k u k u k p

α α α

β β β β β β

+ =

+ + − + + − +



 

      (8)    

 
where the coefficient matrices are given by recursive expressions involving the matrices αi and 
βi appearing in the ARX equation (ref. 10).  The system identification process described earlier 
provides the matrices αi and βi.  Equation 8 shows that the output y(k+j) at time index k+j may 
be estimated by using p sets of the previous output and input measurements, y(k-1),…, y(k-p)  
and  u(k-1),…,u(k-p), and the unknown current and future inputs u(k), u(k+1),…,u(k+j).  The 
GPC algorithm is based on system output predictions over a finite horizon hp known as the 
prediction horizon.  To predict future outputs, some assumption needs to be made about future 
control inputs.  In determining the future control inputs for GPC, it is assumed that control is 
applied over a finite horizon hc known as the control horizon that is equal to or less than the 
prediction horizon.  Beyond the control horizon the control input is assumed to be zero.  Letting j 
in equation 8 range over the set of values j = 1, 2, …, hp

 

-1, the resulting equations can be 
assembled into a multi-step output prediction equation having the compact form 

                  
1 111

( ) ( ) ( ) ( )
p c c cp p cc cp

p ch m h r h m pm h m prpm prh rh m
p ph hy k u k y k p u k p

× × ×× ×××

= + − + −                        (9) 

The coefficient matrices , , and  are formed from combinations of the observer Markov 
parameters αi and βi.   The quantity yhp(k) denotes a vector containing hp sets of outputs y(k), 
y(k+1), …, y(k+hp-1), whereas uhc(k) is the vector containing hc sets of control inputs u(k), 
u(k+1), …, u(k+hc-1) yet to be determined.  The quantities up(k-p) and yp(k-p) denote vectors 
containing the previous p sets of control inputs and outputs, respectively.  The expanded form of 
this multi-step output prediction equation for the case in which hc = hp

 
 is shown in equation 10. 
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( ) ( 1) ( 1)
0 1 1 0

(1)

( 1) ( 2)

( ) ( 1) (1)

( 1) ( 2) ( ) ( 1)

( ) ( )
( 1)

( 1)
( )

( 1) p p p p

q q q

o o

q q
o o o

q q
o o o o

h h h q h q
p o o o o o

oy k u k
y k

y k q
y k q

y k h

β β α β

β β

β β β
β β β β

β β β β β

β

− −

− −

−

− − − − −

= +

  
  +   
  
  + − =   

   +
   
   
   + −   

  







     



 

( ) ( 1) ( 1) ( ) ( 1) ( 1)
1 1 1 1 1 1

(1) (1) (1) (1)
1 2 1

( 1) ( 1) ( 1) ( 1)
1 2 1

( ) ( ) (
1 2 1

1 2 1

( 1)

( 1)
( )

( 1)c

q q q q q q
p p p p p p

p p

q q q q
p p

q q q
p

p p

u k

u k q
u k q

u k h

h hc p

α α α α β β α β

α α α α

α α α α
α

α α α α

α α

− − − −
− − − −

−

− − − −
−

−

−

 
 + 
 
 + − 
 +
 
 
 + − 

= + = +

+

=








    





(1) (1) (1) (1)
1 2 1

( 1) ( 1) ( 1) ( 1)
1 2 1

) ( ) ( ) ( ) (
1 2 1

( 1) ( 1) ( 1) ( 1)

1 2

1 1

1

2

( 1)
( 2)

( 1)
( )

p p p p

p p

q q q q
p p

q q q
p p

h h h h
p p

p p

y k
y k

y k p
y k p

β β β β

β β β β
α β β β

α

β β β β

α α α

−

− − −

−

−
−

−

− − − −
−

 
  −  

   −     +  
   − +  

−    
 
 





    







    



) ( )

( 1) ( 1) ( 1) ( 1)
1 2 1

( 1)
( 2)

( 1)
( )

p p p p

q q
p

h h h h
p p

u k
u k

u k p
u k p

β

β β β β− − − −
−

 
  −  

   −    
  
   − +  

−    
 
 



    



 

                                                                                                                                                     (10) 
 

The observer Markov parameters αi and βi resulting from system identification are used to 
form the first block row in each of the coefficient matrices , , and  in equation 9.  These 
terms are colored red in equation 10.  The terms in the remaining block rows are computed using 
the recursive relations indicated in the boxes above the coefficient matrices in equation 10 (ref. 
10).  All terms in equation 10 are known, except for the hc sets of commands and the hp sets of 
predicted responses.  The goal of the GPC control algorithm is to determine the set of commands 
u(k), u(k+1), …, u(k+hc-1) that are required to achieve a predicted response y(k), y(k+1), …, 
y(k+hp-1) that is as near as possible to a desired or target response yT(k), yT(k+1), …, yT(k+hp-
1).  It should be noted that the system Markov parameters, which are commonly used as the basis 
for identifying discrete-time state-space models of linear dynamical systems, form the first block 
column in the matrix  ; the remaining block columns in that matrix are formed from subsets of 
these parameters.  The sequence of system Markov parameters is the pulse response of a system 
and is unique for a given linear system.  Note that equation 10 assumes that hc = hp, in which 
case the matrix   has hp block rows and hp block columns.  However, hc can be less than hp, in 
which case one would retain only the first hc block columns of  .  The matrices  and  both 
have hp
 

 block rows and p block columns. 
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Derivation of Control Law 
  
 The predictive control law is obtained by minimizing the deviation of the predicted 
controlled response (as computed from the multi-step output prediction equation) from a desired 
response over a prediction horizon hp.  To this end, one first defines an error function that is the 
difference between the desired or target response yT (k) and the predicted response yhp 

 
(k): 

                                                
( ) ( )

( ) ( ) ( ) ( )

T

T p

p

c

h

ph

k k

k k k p k p

y y

y u y u

ε = −

= − − − − −  
                                    (11) 

 
A performance index J quadratic in the error and the unknown controls is then formed: 
 
                            

c c
T T

hhJ Q u R uε ε= +            (12) 

Two weighting matrices are included in the performance index: R (symmetric and positive 
definite) is used to weight the control effort and stabilize the closed-loop system; Q (symmetric 
and positive semi-definite) is used to weight the relative importance of the differences between 
the target and predicted responses.  Typically, R and Q are assumed to be diagonal with R having 
the same value wc along its diagonal and Q having the same value wr along its diagonal.  
Minimizing J with respect to uhc(k) and then solving for uhc

 

(k) gives  

               
( ) ( )†

1

( ) ( ) ( ) ( ) ( )

c c c c p

T T
p pTc

hh r
h

r h m
k Q R Q y k y k p u k pu
× ×

= − + − + − + −    
                  (13)  

as the control sequence to be applied to the system over the next hc time steps k, k+1, …, k+hc-1.  
However, only the first rc
 

 values corresponding to the first or current time step k 

                                        
1

( ) ( ) ( ) ( )T p p
c

c c c

r
c k y k y k p u k pu χ α β
×

= − + − + −                              (14) 

 
are applied to the rc control inputs, the remainder are discarded, and a new control sequence is 
calculated at the next time step.  Equation 14 is the desired control law equation.  The target 
response yT (k) is zero for a regulator problem and non-zero for a tracking problem.  The 
coefficient matrices χc, αc, and βc are the control law gain matrices and have sizes rc × mhp,        
rc × pm, and rc × prc, respectively.  The effects of the unknown disturbances are embedded in 
the coefficient matrices  and  (and thus αc and βc

 

) but at the price of increasing the order of 
the ARX model that must be identified.  Note that the matrix   is unaffected by the disturbances 
as it is defined solely in terms of the system’s Markov parameters, which are unique for a given 
linear system. 
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 It should be noted that the quantity ( )†( )T TQ R Q+    in equation 13 has to be 
evaluated only once if the system does not change after the initial identification and the weights 
matrices Q and R are not changed.  Also, the OMP (and thus the matrices  and  and hence αc 
and βc

 

) can be re-identified efficiently at each time step (e.g., via recursive least squares) if 
deemed necessary because of rapidly changing external disturbances, as was demonstrated in the 
studies of reference 6.  The availability of the latter option provides the enabling capability for 
implementing a real-time, fully-adaptive computational procedure for GPC. 

 
Selection of Control Model Parameters 

 
As in most control systems, there are parameters that must be selected to ensure that there 

is a proper balance among controller performance, system stability, controller stability, and 
actuator saturation.  The influential parameters of interest for GPC are: the order of the ARX 
model p, the prediction horizon hp, the control horizon hc, and the control weights w

 
c 

An expression for estimating the order p of the ARX model that is the product of the 
system identification process is given by s dpm n n≥ + , where m is the number of outputs, ns is 
the number of system states, and nd

 

 is the number of disturbance states.  The number of system 
states is typically chosen to be twice the (estimated) number of significant structural modes in 
the system; the number of disturbance states is set to twice the (estimated) number of frequencies 
in the disturbance.  For simulated systems such as those studied herein these parameters are 
easily defined.  However, in practice, the number of system states and disturbance states is often 
either unknown or not known with any certainty.  It turns out that simply choosing p to be about 
five times the estimated number of significant structural modes in a system is a good starting 
point and is often adequate.  Increasing p also alleviates the effects of measurement noise which 
may be present in the data.  Note that the value required for p decreases as m is increased. 

The prediction and control horizons are set according to hp ≥ p and hc ≤ hp.  The control 
horizon can be chosen to be less than the prediction horizon resulting in a more stable (lower 
required control amplitude) but sluggish controller.  However, there is no compelling advantage 
that can be ascribed to such a choice.  Based on experience, setting hc = hp 

 

= p is a good initial 
choice and usually provides satisfactory results. 

As mentioned earlier, weighting matrices R and Q are used to weight the control effort and 
to weight the relative importance of the differences between the target and predicted responses, 
respectively.  With hc = hp = p set as above, the relative values of the weighting matrices play the 
major role in the tuning process.  Therefore, the weighting matrix Q is usually set to an identity 
matrix.  The control weight matrix R then becomes the only one needed to be tuned to produce 
an acceptable solution.  Reducing wc increases controller performance but will increase the 
magnitude of the required control inputs, which may saturate the actuators or drive the control 
system unstable.  Increasing wc

 

 reduces control effort but increases the time required for the 
controller to quell the response or produce the desired maneuver.  A reasonable set of starting 
values is 1.0, which can then be adjusted down or up as required. 



 

 11 
 

The parameters  and ∆t are important signal processing parameters and not control 
parameters per se.  However, they are included here because their values do have a strong 
influence on the design and hence performance of the controller.  The integer   denotes the 
number of data points in the time histories used in the GPC calculations.  Its value is determined 
by the need to have a data record long enough to capture about 5-10 cycles of the lowest 
frequency mode in the measured response time histories used for SID and controller design.  It 
should be noted that the value chosen depends on the sample time ∆t (which is the reciprocal of 
the sampling frequency used to discretize continuous-time data) since the smaller the value of ∆t 
the longer the data record that is needed.  Some guidelines for choosing the sampling frequency 
are given in reference 6. 

 
 

Comment on Treatment of External Disturbances 
 

 In most cases, the external disturbances acting on a system are unknown.  In such 
situations the best that can be done is to identify the system in the presence of the disturbances so 
as to include their effects in the OMP of the identified ARX model.  The control law obtained 
using the OMP with the embedded disturbance information is then used to compute the control 
inputs.  As mentioned earlier, this situation represents the case of feedback with embedded or 
implicit feedforward and is the procedure that was employed successfully in the GPC-based 
active controls testing of the tiltrotor model mentioned earlier.  If any of the external 
disturbances acting on the system can be measured an explicit feedforward loop can be employed 
in combination with the feedback loop to enhance closed-loop performance.  In fact, embedded 
feedforward and explicit feedforward can be used simultaneously if the disturbances acting on a 
system contain a combination of known/measurable and unknown/unmeasurable components.  
This situation was addressed extensively in reference 6.  However, the present study assumes 
that all the external disturbances are unknown and derives a feedback controller with embedded 
feedforward.     

Results and Discussion 
 Results from two types of closed-loop simulations are presented.  The first uses a 
mathematical model of a free-free, three-degree-of-freedom mass-spring-dashpot system subject 
to user-specified disturbance forces and user-specified target response time histories.  The other 
uses a state-space math model of the rigid-body dynamics of the XV-15 tiltrotor research aircraft 
operating in the airplane mode of flight.  The intent of these simulations is to demonstrate the 
effectiveness of a GPC-based active control system to both quell the response to a disturbance 
(the regulator problem) and to produce a desired or target response (the tracking problem) either 
with or without a disturbance. 
 

Comment on Codes Used for Simulations 
 
 Two MATLAB programs were used for the studies that provided the numerical results 
for this report.  One is a version of the three-degree-of-freedom (3-DOF) mass-spring-dashpot 
system that was used to develop the GPC software system for the tiltrotor model testing but 
modified to include the coding needed for calculating the additional terms associated with a non-
zero target response.  This program treats a simple dynamic system with user-defined properties 
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and user-defined external disturbances and target responses and thus lends itself to easy 
modification to explore a variety of what-if questions.  The other program is also a version of the 
aforementioned 3-DOF code but modified to use an existing rigid-body state-space model of the 
XV-15 tiltrotor research aircraft rather than the mass-spring-dashpot system.  Because this model 
was developed for a specific flight condition and cannot be modified by the user, the model was 
used as-received.  However, the model did allow for the imposition of user-defined disturbances 
and target responses. 
 

Numerical Simulations Using 3-DOF Math Model 
 
 The 3-DOF mass-spring-dashpot system used in these simulations is depicted in figure 2 
and the corresponding equations of motion are summarized in Appendix A.  The model has three 
masses, two springs, and two dashpots.  Disturbance forces ud1, ud2, and ud3 and control forces 
uc1, uc2, and uc3 act on masses m1, m2, and m3, respectively.  The degrees of freedom x1, x2, 
and x3 are the absolute displacements of the corresponding masses.  For the simulations, the 
masses were set equal to 1 lb-sec2/in, the spring rates to 1 lb/in, and the damping coefficients to 
0.0 lb/in/sec.  Zero damping was assumed to preclude inherent dissipative forces acting on the 
system, thereby providing a more demanding dynamic environment for the controller.  As 
indicated in table 1, the resulting state matrix yields the following eigenvalues for the system: 
0±0i, 0±1.0i, and 0±1.7321i.  These in turn yield natural frequencies of 0.0, 0.15915, and 
0.27566 Hz and corresponding damping ratios of 0.0, 0.0, and 0.0 for the three natural modes of 
the system.  Disturbances, control forces, and responses (displacements, velocities, or 
accelerations) can be specified and selected in a variety of combinations (see Appendix A).  
However, unless noted otherwise, for the results to be presented here, control forces were applied 
at masses 1, 2, and 3 (rc = 3), disturbances were imposed at masses 1, 2, and 3 (rd 

   

= 3), and 
displacements were measured at masses 1, 2, and 3 (m = 3).  Target responses (both zero and 
non-zero) were specified for all three masses.  Several different types of disturbances and target 
responses were devised and imposed on the system to provide a challenging control task for 
GPC.  

Simulation Conditions and Parameter Settings 
 
 Based on the signal processing guidelines given in reference 6, as well as extensive 
previous experience with the 3-DOF system, the sampling frequency fs



 was set to 20 Hz (so that 
t=0.05 sec) and the number of data points  of input/output data was set to 600, unless noted 
otherwise.  The control horizon hc was set equal to the prediction horizon hp and hp

spm n≥

 was set 
equal to the order of the ARX model p.  The use of feedback with embedded feedforward 
requires p as computed by the disturbance-free relationship  to be increased to provide 
the additional computational degrees of freedom needed to ensure that the effects of the 
unknown disturbances are embedded in the observer Markov parameters that are computed 
during system identification.  To this end, the value of p so-computed was increased to 12.  The 
response weights wr were set to 1.0 and the control weights wc were set to 0.0005.  Previous 
experience with the model indicates that the selected values are all reasonable but not optimal.  
No attempt was made to “optimize” (i.e., tune) the parameters p, hc, hp, and wc to the nuances of 
the system to the different disturbances and target responses to elicit the best possible closed-
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loop behavior.  In the closed-loop simulations, the loop was closed (controller turned on) after 50 
time points (2.5 sec).       
 
 The MATLAB function c2d.m was used to convert the continuous-time state-space 
model of the 3-DOF system (Appendix A) to discrete-time using t = 0.05 as set above.  The 
resulting discrete-time model was then used in the MATLAB function dlsim.m to generate the 
random time histories needed to identify the ARX model and design the controller as described 
earlier in the report.  The function dlsim.m was also used to compute the open-loop time histories 
for those examples in which disturbances act on the system.    
 
 Results are presented below for feedback with embedded feedforward, in which all the 
disturbances acting on the system are assumed to be unknown while performing the SID and 
controller design.  Both regulator and tracking examples are presented.  It should be noted that 
the time index k is used on the time axes of the results figures rather than actual time t.  While 
either variable can be used in plotting time histories because they are related according to t = k 
∆t, k = 0, 1, 2, …., -1, time index is used here.  It should also be noted that the number of 
examples presented is rather large.  This is intentional and is intended to provide a sufficiently 
diverse collection of results from which to better judge the efficacy of GPC in the subject 
application.  
 
Results for Regulation and Tracking of 3-DOF System 
 
 Representative results illustrating the ability of GPC to either suppress disturbance-
induced responses of the 3-DOF system (the regulator problem) or to cause the system to follow 
a desired target response (the tracking problem) are presented in this section.  For convenience of 
discussion below, the disturbances are sometimes denoted as ud1, ud2, and ud3, the control 
inputs by uc1, uc2, and uc3, and the target responses by yt1, yt2, and yt3.      
 
Regulator Examples:  Figures 3 through 11 show comparisons of open- and closed-loop 
displacement responses of the 3-DOF model to a variety of external disturbances.  These 
examples are presented in composite figures consisting of two rows of two figures each.  The 
upper left figure shows the disturbances acting on the system; the upper right shows the open-
loop responses of the system; the lower left shows the control forces applied to the system; and 
the lower right shows the closed-loop responses of the system.   
 
 In figure 3 there are three sinusoidal disturbance forces acting on the system: 
usin1=2cos(2πft) on mass 1, usin2=1sin(2πft) on mass 2, and usin3=3sin(2πft + π/3) on mass 3, 
where f=0.27566 Hz, the third natural frequency of the system.  The open-loop responses are 
diverging oscillations because the excitations are at a natural frequency of the system.  A linear 
drift associated with the rigid-body degree of freedom of the system is also evident in each of the 
responses.  All the control inputs are oscillatory, as expected.  The large amplitude spikes 
appearing in the control force time histories at and slightly after time index 50 always occur 
when turning on the controller abruptly as done in the present simulations.  It should be pointed 
out that the accommodation of such spikes by MATLAB when plotting the results oftentimes 
compresses the remainder of those time histories to a level that makes them difficult to 
distinguish and to read their values on the vertical axis.  For this reason, those control time 
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histories that have been judged remiss in this regard have been preemptively hand adjusted 
before inclusion in this report.  While figure 3 shows both the unadjusted and adjusted control 
subplots, all subsequent figures will show only the most appropriate subplot but not both.  As can 
be seen, the open-loop responses are essentially suppressed immediately after closing the loop.   
 
 The disturbances in figure 4 consist of both sinusoidal and constant forces.  A one-pound 
sinusoidal force usin2=1sin(2πft), with f=0.27566 Hz, acts on mass 2 and constant forces of two 
and three pounds act on masses 1 and 3, respectively (Note that constant forces may be viewed 
as zero-frequency cosine forces, which provide excitation at the zero natural frequency of the 
system).  Because the rigid-body displacements induced by the two constant forces acting on the 
system dominate its response, the overall open-loop motion is seen to be primarily exponentially 
diverging with negligible oscillatory behavior.  The control forces consist of a combination of 
oscillatory and constant forces consistent with the character of the disturbances.  Again, the 
open-loop responses are essentially driven to zero immediately after closing the loop. 
 
 Constant forces act on all three masses of the system in figure 5: two pounds on mass 1, 
one pound on mass 2, and three pounds on mass 3.  The resulting open-loop responses are 
exponentially diverging motions of the masses.  The computed control forces are all constant in 
this case, as should be expected for a system disturbed solely by constant forces.  Again, the 
open-loop responses are driven to zero almost instantly after closing the loop. 
 
 In figure 6 all three masses are subjected to random excitations.  Rigid-body motion 
dominates the open-loop responses, which are driven to negligibly small values promptly after 
imposition of control. 
 
 Figure 7 has the same sinusoidal disturbances as in figure 3 but with frequencies different 
from the natural frequencies of the system.  The force usin1 with f=0.1 Hz acts on mass 1, usin2 
with f=0.2 Hz acts on mass 2, and usin3 with f=0.3 Hz acts on mass 3.  The open-loop oscillatory 
responses again all have a linear drift, as they did in figure 3.  Suppression of the open-loop 
responses occurs almost instantly after engaging the controller. 
 
 In figure 8 ud1 is a one-minus-cosine function (1-cosine) over the entire time interval, 
ud2=usin2 with f=0.27566 Hz, and ud3 is a single “saw-tooth” pulse (a narrow trapezoid) in an 
otherwise zero time history.  The open-loop response is primarily a linearly diverging 
displacement beyond a time index of about 300.  Here, the closed-loop responses are small but 
not zero. 
 
 The disturbances in figure 9 are all 1-cosine functions.  The disturbance acting on mass 2 
extends over the entire time interval while the disturbances acting on masses 1 and 3 extend over 
different sub time intervals.  Note that the open-loop responses diverge exponentially very 
rapidly in this case but are easily suppressed by the controller. 
 
 Figure 10 has ud1=usin1 with f=0.27566 Hz, ud2=u1step (a step function with a single 
step), and ud3=usin2.*usin3 (.* is MATLAB notation denoting an element-by-element product 
of usin2 and usin3).  The control input at mass 2 has a small overshoot in amplitude at time index 
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225 where the up step occurs in disturbance ud2.  Closed-loop responses are quite small but not 
zero. 
 
 In figure 11 ud1=usin1, ud2=usin2+u1step, and ud3=usin3+2(1-cosine), with f=0.27566 
Hz.  The open-loop responses of the masses are again dominated by the rigid-body freedom of 
the system but the calculated control input time histories are able to subdue the disturbance-
induced responses. 
 
Tracking Examples: Figures 12 through 22 show comparisons of target and achieved 
displacement responses of the 3-DOF system for a variety of imposed target responses with no 
disturbances acting on the system.  Figures 23 through 26 provide comparisons of target and 
achieved responses to several sets of target responses while the system is subjected to a variety 
of disturbances. 
 
 The results for the tracking simulations without disturbances acting on the system are 
presented in composite figures consisting of two rows of two figures each.  The upper left figure 
shows the control forces applied to the system; the upper right figure shows a comparison of the 
target and achieved responses for mass 1; the lower left figure shows a comparison of the target 
and achieved responses for mass 2; and the lower right figure shows a comparison of the target 
and achieved responses for mass 3.   
 
 In the example shown in figure 12 a sinusoidal target response is assigned to each mass: 
yt1=2sin(2πft) with f=0.1 Hz, yt2=1cos(2πft) with f=0.2 Hz, and yt3=5sin(2πft+π/4) with f=0.3 
Hz.  Closed-loop responses (achieved responses) are basically identical to the specified target 
responses.  
 
 In figure 13 the target response yt1 for mass 1 is a single saw-tooth wave (a narrow 
trapezoid) in an otherwise null time history while yt2 and yt3 are the same mass 2 and mass 3 
targets as in figure 12.  The required control inputs (particularly of mass 1) are more active in the 
vicinity of time index 200 here than in figure 12 to accommodate the pulse-like character of the 
saw-tooth target.  Closed-loop (achieved) responses are in excellent agreement with the target 
responses. 
 
 In figure 14 yt1 is a single-step step function, yt2 is a one-minus-cosine function, and yt3 
is a random function.  As might be expected, the required control inputs here are very active 
because of the random tracking requirement for mass 3.  Tracking is very good except for some 
very minor differences at the corners of the step target and at some of the peaks and troughs of 
the random target. It should be noted that the control input for mass 1 contains two spikes 
centered at time index 225 where the response jumps in value from 0 to +5.  These are simply a 
nuance of the manner in which the tracking input data are introduced and processed in the 
present implementation when a vertical (infinite slope) step discontinuity is encountered.  These 
may or may not be as evident as seen here depending on the magnitude of the discontinuity.     
 
 The spiking of control inputs to satisfy tracking requirements as exhibited in figure 14 
can be eliminated or at least reduced if problematic target shapes containing vertical step-
function portions are passed through a moving-average filter to provide smooth non-vertical 
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transitions between any jumps appearing in those shapes.  The resulting shapes also more closely 
represent  realizable target inputs.  To illustrate this, the step target of mass 1 was passed through 
a 20-point moving average filter (using MATLAB function filtfilt.m).  The resulting filtered 
target is compared to the original unfiltered target in figure 15.  Note that the averaging action of 
the filter has resulted in a narrow, smoothly varying, non-vertical transition between the two 
horizontal portions of the step function.  The example of figure 14 was then rerun using the 
filtered step target of figure 15 giving the results shown in figure 16.  The large-amplitude spikes 
in the uc1 control input are now much reduced and are no larger than the other control inputs.  
Tracking is now excellent. 
 
 Figure 17 has yt1=a 0.5 Hz sinusoid with exponentially increasing amplitude, yt2=a 0.5 
Hz sinusoid with exponentially decreasing amplitude, and yt3=a three-step step function.  Note 
that large control inputs are required to enforce the diverging target of mass 1 and that there are 
only small spikes in the controls associated with the vertical discontinuities in the target response 
of mass 3.  Tracking is very good. 
 
 Figure 18 has yt1=a two-step step function, yt2=a shifted 0.5 Hz sinusoid with 
exponentially decreasing amplitude, and yt3=a random function.  Tracking is excellent but the 
required control inputs for masses 2 and 3 are quite large.  The spiking in uc1 due to the vertical 
discontinuities in the target for mass 1 is not remarkable here as the spikes are no larger than the 
other control inputs. 
 
 In figure 19 yt1= sum of an exponentially diverging sinusoid with increasing frequency 
and a single-step step function, yt2=sum of a 1-cosine function and an up-down-up sequence of a 
three-toothed saw-tooth waveform, and yt3=sum of an exponentially converging sinusoid with 
increasing frequency, a random function, and a negative saw-tooth function.  Spiking of uc1 
occurs at time index 225 where there is a vertical step change in the target response.  Tracking is 
excellent but requires some rather large control inputs. 
 
 The examples in figures 20-22 are for an extended data stream of 1500 time points.  Each 
1500-point target response is composed of three consecutive but different 500-point segments.  
Large amplitude spikes occur in the control inputs at times where there are sizable vertical step 
changes in the target response time histories.  The spikes can, however, be reduced considerably 
if the target responses are filtered before being imposed on the system (recall the discussion of 
figures 14-16).  The tracking in figures 20-22 is excellent. 
 
 The results for the tracking simulations with disturbances acting on the system are 
presented in composite figures consisting of three rows of two figures each.  The upper left 
figure shows the disturbances acting on the system; the upper right figure shows the open-loop 
responses of the system; the center left figure shows the control forces applied to the masses of 
the system; the center right figure shows a comparison of the target and achieved responses for 
mass 1; the lower left figure shows a comparison of the target and achieved responses for mass 
2; and the lower right figure shows a comparison of the target and achieved responses for mass 3. 
 
 Figure 23 has the same disturbances as the regulator example in figure 10 and the same 
targets as the tracking-without-disturbances example in figure 14.  The spike in the magnitude of 
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uc1 at time index 225 occurs because of the up step in the target response of mass 1 at that time 
index.  Tracking of masses 1 and 3 is very good but that of mass 2 is fair at best.  Note that the 
control inputs in figure 23 are different both in character and amplitude than those in figures 10 
and 14 because of the need to simultaneously quell disturbances and enforce target responses in 
the present case. 
 
 In the example of figure 24 spikes in uc3 occur at time indices corresponding to the up 
and down steps in the mass 3 target at time indices of 300 and 482, respectively.  Tracking of the 
targets for masses 1 and 3 is excellent but the enforcement of the random target for mass 2 is 
only fair. 
 
 The targets in figure 25 are 0.27566 Hz sinusoids with amplitudes of 2, 1, and 5, 
respectively.  The calculated control inputs are all primarily sinusoidal with only hints of the 1-
cosine and saw-tooth disturbances reflected in them.  Tracking is excellent.  Comparing the 
present control time histories with those of the regulator example of figure 8 with the same 
disturbances suggests that the amplitudes of the required control inputs is dictated primarily by 
the presence of non-zero targets.   
 
 Figure 26 has the same disturbances as figure 24.  The small spike in uc1 at time index 
225 is due to the up step in the mass 1 target.  There is also a small spike in uc2 at time index 
300 arising from the down step in the ud2 disturbance at that time index.  Tracking of masses 1 
and 3 is good but the 1-cosine achieved response of mass 2 is only fair because of the 
disturbance down step in ud2 at time index 300. 
 
Summary of Observations: Taken as a whole, the 3-DOF simulations indicate that the GPC-
based controllers functioned well whether they were employed as regulators or trackers.  When 
used in the regulation mode, they (the GPC controllers) were able to significantly reduce or quell 
system open-loop responses under a variety of imposed disturbance conditions and to do so 
immediately after closing the loop.  The maximum values of the disturbance forces imposed on 
all but one of the 3-DOF system examples in figures 3-11 varied from one to ten pounds.  For 
these examples the maximum values of the computed control forces also varied from about one 
to ten pounds.  In the one example in which the disturbance was 50 pounds, the maximum 
control force was also 50 pounds.  These results suggest that in regulation problems where both 
the control inputs and the imposed disturbances are forces, the computed control forces are of the 
same order of magnitude as the disturbances.   
 
 When used to meet a tracking requirement, the GPC controllers were able to produce the 
commanded responses, even in the presence of disturbances acting on the system, and to do so 
promptly after closing the loop.  Based on the results presented in figures 12-26, the tracking 
problem is much more demanding than the regulator problem.  That is, the control inputs 
required for satisfactory tracking are typically larger than those needed for adequate regulation.  
Also, large amplitude spikes can occur in the calculated control inputs when the target response 
time histories have vertical step discontinuities or offsets within them.  However, such control 
spikes can be precluded or at least significantly reduced simply by filtering problematic targets to 
smooth out any such discontinuities.  The spiking notwithstanding, the values calculated for the 
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control forces in the tracking examples are all reasonable when considered from the perspective 
of the magnitude and complexity of the imposed target responses. 
 

Numerical Simulations Using State-Space Model of XV-15 Tiltrotor Aircraft  
 
 The XV-15 tiltrotor aircraft used in this simulation is shown flying in the airplane mode 
in figure 27.  An existing linearized state-space model defining the rigid-body flight dynamics of 
the XV-15 flying at 150 knots in level flight at sea level altitude was used for the present studies.  
The coordinate system and sign convention for the 12 state variables used to describe the state-
space model are depicted in figure 28.  The formation of this model is summarized in Appendix 
B.  It should be noted that the mass, damping, and stiffness matrices defining the model are not 
diagonal, indicating that there is coupling between the longitudinal and lateral/directional 
equations of motion. 
 
 The dynamic characteristics of the XV-15 math model are summarized in table 2.  The 
state matrix of the aircraft yields the following eigenvalues for the longitudinal and 
lateral/directional modes of the system: -1.4173 ± 2.9364i (short-period mode), -0.44913 ± 
1.6058i (Dutch-roll mode), -0.019449 ± 0.18404i (phugoid mode), -0.73883 + 0.0i (roll 
convergence mode), and -0.15843 + 0.0i (spiral convergence mode).  The damped natural 
frequencies of the oscillatory short-period, Dutch-roll, and phugoid modes are 0.46734 Hz, 
0.25556 Hz, and 0.029291 Hz, respectively.  The non-oscillatory roll convergence and spiral 
convergence modes have zero frequency.  Damping ratios of the three oscillatory modes are: 
0.43469, 0.26936, and 0.10509, respectively.  Damping ratios of the non-oscillatory (aperiodic) 
modes are unity.  The modes are thus well damped, indicating that the system is stable. 
 
 As mentioned earlier, because this model was developed for a specific flight condition 
and not amenable to change by the user, the model was used as-received.  Thus, for the results to 
be presented here, there are four pilot control inputs (rotor collective pitch, rotor longitudinal 
cyclic pitch, rotor lateral cyclic pitch, and pedals) and four measured responses (the perturbation 
values of aircraft forward velocity, pitch angle, roll angle, and sideslip angle). However, 
disturbances and target responses can be imposed on the model by the user.  There are from one 
to six possible disturbances that can be imposed (either singly or in combinations up to six) 
consistent with the six rigid-body degrees of freedom of the aircraft and four target responses 
consistent with the four measured responses.  Thus, rc = 4, m = 4, and rd 

 

can be varied from 1 to 
6. 

Simulation Conditions and Parameter Settings 
 
 Based on the signal processing guidelines given in reference 6, as well as some limited 
previous experience with the XV-15 model, the sampling frequency fs



 was set to 40 Hz 
(t=0.025 sec) and the number of time points  of input/output data was set to 600.  The control 
horizon hc was set equal to the prediction horizon hp, hp was set equal to the order of the ARX 
model p, and p was set to 15.  The response weights wr were set to 1.0 and the control weights 
wc were set to 0.0005.  Again, no attempt was made to “optimize” (i.e., tune) the parameters p, 
hc, hp, and wc to the idiosyncrasies of the system to elicit the best possible closed-loop 
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responses.  In the simulations, the loop was closed (controller turned on) after 40 time points (1.0 
sec).       
 
 The MATLAB function c2d.m was used to convert the continuous-time state-space 
model of the XV-15 tiltrotor aircraft (Appendix B) to discrete time using t =0.025 as set above.  
The resulting discrete-time state-space model was then used in the MATLAB function dlsim.m to 
generate the random time histories needed to identify the ARX model and design the controller 
as described earlier in the report.  The function dlsim.m was also used to compute the open-loop 
time histories for those examples in which disturbances are present. 
 
 Results are presented below for feedback with embedded feedforward, in which all the 
disturbances acting on the system are assumed to be unknown while performing the SID and 
controller design.  Several different types of disturbances and target responses were devised and 
imposed on the system to provide a challenging control task for GPC.  Both regulator and 
tracking examples are presented.  It should be noted that actual time t rather than time index k is 
used on the time axes of the results figures here in contrast to the presentation of the 3-DOF 
results.  This change was motivated by the fact that the XV-15 is a real aircraft with well-
documented physical characteristics, many of which involve physical time units.  Also, as was 
done for the 3-DOF system, the number of examples presented for the XV-15 system is also 
intentionally rather large to better illustrate the robustness of GPC in the subject application.   
 
Results for Regulation and Tracking of XV-15 
 
 Representative results illustrating the ability of GPC to either quell disturbance-induced 
responses of the XV-15 (the regulator problem) or to cause the system to follow a desired target 
response (the tracking problem) are presented in this section.  For convenience of discussion 
below, the (perturbation) force and moment disturbances imposed on the system are denoted by 
X, Y, Z, RM, PM, and YM and the target responses are denoted by yt1, yt2, yt3, and yt4.  X is an 
axial force (+ forward), Y is a side force (+ right), Z is a vertical force (+ down), RM is a rolling 
moment (+ right wing down), PM is a pitching moment (+ nose up), and YM is a yawing 
moment (+ nose right), yt1=forward velocity, yt2=pitch angle, yt3=roll angle, and yt4=sideslip 
angle.  It should be mentioned that no attempt was made at defining disturbances and target 
responses for the simulations that are consistent with the design operating limits of the subject 
aircraft.  This means that the character and magnitude of some of the imposed disturbances and 
target responses may be outside the permissible operating environment of the aircraft.  
 
Regulator Examples:  Figures 29 through 46 show comparisons of open- and closed-loop 
responses of the XV-15 to a variety of external disturbances.  These results are presented in 
composite figures consisting of two rows of two figures each.  The upper left figure shows the 
disturbances acting on the system; the upper right figure shows the open-loop responses of the 
system; the lower left figure shows the control forces applied to the system; and the lower right 
figure shows the closed-loop responses of the system. 
 
 Figures 29-34 display results for a sequence of six cases which differ only in the direction 
of a single sinusoidal force or moment disturbance imposed on the system at the damped natural 
frequency of the short-period mode (0.46734 Hz).  The disturbances are applied to the aircraft at 
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its CG in the order X, Z, PM, Y, RM, and YM.  Because the subject aircraft is a stable (damped) 
system there is no divergence of the open-loop responses during oscillatory excitation at a 
natural frequency as there was for the 3-DOF system.  It should be noted that longitudinal 
disturbances (X, Z, and PM) produce primarily longitudinal responses (forward velocity and 
pitch angle, u and θ) and lateral disturbances (Y, RM, and YM) produce primarily lateral 
responses (roll angle and sideslip angle, φ and β).  This is so because although there is 
considerable aerodynamic coupling of the longitudinal and lateral motions in the damping matrix 
of the XV-15 state-space matrix, there is little coupling in the mass and stiffness matrices. The 
open-loop responses are suppressed immediately after closing the loop using appropriate control 
inputs that are well within the control limits of the aircraft.  The large amplitude spikes appearing 
in the control force time histories in the vicinity of one second are a consequence of turning on 
the controller abruptly in the simulations. 
 
 An indication of the response of the system to short-burst excitations is provided in 
figures 35-36.  Figure 35 shows the response to a short sinusoidal disturbance of 2000 lb in the 
axial (X) direction.  The disturbance was formed from a 2400 point (60 sec) time history of a 
0.46734 Hz sine wave with the last 2200 points set to zero resulting in a five second disturbance 
at the short-period mode frequency.  The open-loop time history is plotted for 12,000 points (300 
sec) to provide a record long enough to allow estimation of the system frequency and damping 
from the decaying time history.  This yields a damped natural frequency of 0.028 Hz and a 
damping ratio of 0.11, which are characteristic of the low-damped phugoid mode.  Open-loop 
responses are suppressed promptly after engaging the controller.  (NOTE: Because the short-
period mode is heavily damped compared to the phugoid mode, its response is very short-lived 
with a duration of only about five seconds and appears as the broad spike at very small time.  
Thus, only the response of the lightly-damped phugoid mode is prominent in the open-loop 
response.)  In figure 36 the disturbance is a 5000 lb 200 point (5 sec) pulse in the X direction.  
The data stream used in this case is 24,000 points long (600 sec) for all subplots.  Open-loop 
response time histories yield a damped natural frequency of 0.028 Hz and a damping ratio of 
0.11, again indicating excitation of the low-damped phugoid mode.  There is immediate quelling 
of the open-loop responses after closing the loop. 
 
 In figure 37 the disturbances are Z, PM, and Y and are given by usin1=2000cos(2πft) 
with f=0.46734 Hz (the short period frequency), usin2=1000sin(2πft) with f=0.25556 Hz (Dutch 
roll), and usin3=1500sin(2πft+π/3) with f=0.029291 Hz (phugoid), respectively.  Very little 
control input is required (less than 0.2 inches) in this case.  Suppression of the responses occurs 
immediately after loop closure. 
 
 The three disturbances in figure 38 are Z=usin1 with f=0.46734 Hz, PM=usin2 with 
f=0.25556 Hz, and Y=u1step (a one-step step function).  Spiking occurs both in the pedal input 
and the closed-loop sideslip response angle time histories at the step location of the Y 
disturbance.  Aside from the spiking in the pedal input, all control inputs are again very small 
(less than 0.2 inches).  Of the four closed-loop responses, only sideslip is not fully suppressed. 
 
 Figure 39 has the same Z and PM disturbances as figure 38 but the Y disturbance is now 
u2step, a two-step step function.  Spiking occurs in the pedal control input at times 
corresponding to the steps in the Y disturbance.  Again, of the four closed-loop responses only 
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sideslip is not reduced to zero.  The sideslip angle also has a small spike at the location of each 
of the steps in the Y disturbance. 
 
 In figure 40 the disturbances are Z=usin1, PM=usin2, and Y=a random function.  Note 
that the random motion of the pedal dominates the required control inputs, all of which are rather 
small.  The resulting closed-loop responses are all considerably reduced.   
 
 Figure 41 represents the case of full longitudinal excitation wherein X, Z, and PM 
disturbances act on the system.  Here, X=usin1, Z=usin2, and PM=u1step.  Complete 
suppression of the open-loop responses occurs immediately after loop closure.   
 
 Figure 42 represents the case of full lateral excitation wherein Y, RM, and YM 
disturbances act on the system.  Here, Y=usin1, RM=usin2, and YM=u1step.  Again, there is 
immediate suppression of the open-loop response upon closing the loop. 
 
 In figure 43 there is a single disturbance given by PM=usin2+usawtooth2 (a multi-
toothed saw-tooth wave) acting on the system.  There are three small spikes evident in the 
longitudinal cyclic control input at locations corresponding to the vertical discontinuities in the 
pitching moment disturbance.  Quelling of the open-loop responses is again seen to occur 
directly after imposing the controls. 
 
 Figure 44 is another example of full longitudinal excitation of the system but with X, Z, 
and PM now being an upward-pointing pyramid, a downward-pointing pyramid, and usawtooth2, 
respectively.  Slight spiking occurs in the longitudinal cyclic control input at the locations of the 
three vertical discontinuities in the pitching moment disturbance.  Suppression is again 
immediate. 
 
 The example of figure 45 employs a full set of six disturbances (X, Y, Z, RM, PM, and 
YM).  The random control input of the pedal dominates the set of control inputs to quell the 
random excitation force in the Y direction.  Suppression of the open-loop response occurs 
promptly after closing the loop. 
 
 Lateral excitations Y, RM, and YM are imposed in figure 46, where 
Y=usin1=2000cos(2πft) with f=0.46734 Hz, RM=usin2=1000sin(2πft) with f=0.25556 Hz, and 
YM=usin3=1500sin(2πft+π/3) with f=0.029291 Hz.  There is immediate quelling of the open-
loop response. 
 
Tracking Examples:  Figures 47 through 55 show comparisons of closed-loop (achieved) 
responses of the XV-15 to a variety of imposed target responses with no disturbances acting on 
the system.  Figures 56 through 68 show comparisons of closed-loop responses of the aircraft to 
several sets of target responses while being subjected to a variety of disturbances.   
 
 The results for the tracking simulations without disturbances are presented in composite 
figures consisting of three rows.  The first row contains one figure which shows a time history of 
the four control inputs applied to the system; the second row contains two figures which show 
comparisons of the target and achieved responses for the forward velocity and pitch angle, 
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respectively; and the third row contains two figures which show comparisons of the target and 
achieved responses for roll angle and sideslip angle, respectively.   
 
 The target responses in figure 47 are all sinusoids: yt1=psin1=20cos(2πft), with f=0.1 Hz, 
yt2=psin2=10sin(2πft), with f=0.2 Hz, yt3=psin3=15cos(2πft), with f=0.3 Hz, and 
yt4=psin4=25sin(2πft), with f=0.4 Hz.  The required control inputs are all sinusoidal, as 
expected, and provide excellent tracking of the target responses. 
 
 Figures 48-50 compare the performance of the controller for cases in which problematic 
targets (those having step-type discontinuities in their waveforms) are unfiltered and filtered.  In 
figure 48, yt1 is the product of psin1 and a converging exponential (psin1*expc), yt2 is the 
product of psin2 and a diverging exponential (psin2*expd), yt3 is a product of a nonuniformly-
toothed saw-tooth wave and a converging exponential (psaw*expc), and yt4 is the product of a 
random function and a diverging exponential (prandom*expd).  The three spikes evident in the 
calculated lateral cyclic control input occur at the time locations of the three vertical offsets 
(steps) in the roll target time history.  The tracking is excellent.  Figure 49 is a repeat of figure 48 
but with the roll target response yt3 filtered by a 20-point moving average filter (MATLAB 
function filtfilt.m).  The three roll control spikes are now gone.  Tracking remains excellent.  
Figure 50 is a repeat of figure 49 but with the sideslip target also filtered.  The time histories of 
the required control inputs are now both considerably smoother as well as slightly smaller. 
 
 Figures 51-52 are another comparison of filtered and unfiltered tracking responses but for 
a different set of target responses.  In figure 51 yt1=psin1, yt2=psin1+p2step, yt3=prandom, and 
yt4=psin4.  Large spikes appear in the calculated pedal control inputs at t=1.45 sec and t=6.25 
sec due to the vertical steps in the pitch target response.  The tracking is very good.  Figure 52 is 
a repeat of figure 51 but with the pitch target response filtered by a 20-point moving average 
filter.  There are now no spikes in the pedal control input.  Tracking is excellent. 
 
 Figures 53-55 are the final set of comparisons of filtered and unfiltered tracking 
responses for the case of no disturbances.  In figure 53 yt1=p1step-psaw, yt2=(psin1+p2step)/5, 
yt3=psaw, and yt4=p2step+p1mc, where p1mc is a (1-cosine) function.  Large spikes appear in 
the lateral cyclic and pedal control inputs due to the various infinite-slope vertical steps in all 
four target responses.  Tracking is very good.  Figure 54 compares the filtered and unfiltered 
targets of figure 53.  Figure 55 is a repeat of figure 53 but using the filtered targets of figure 54.  
The control input time history is now smoothly varying with no large amplitude spikes as before.  
Tracking is now excellent. 
 
 The results for the tracking simulations with disturbances acting on the system are 
presented in composite figures consisting of four rows.  The first row has two figures: the first 
shows the disturbances acting on the system while the second shows the open-loop responses of 
the system The second row contains one figure which shows a time history of the four control 
inputs applied to the system; the third  row contains two figures which show comparisons of the 
target and achieved responses for the forward velocity and pitch angle, respectively; and the 
fourth row contains two figures which show comparisons of the target and achieved responses 
for roll angle and sideslip angle, respectively.   
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 Figures 56-59 have longitudinal disturbances X=usin1, Z=usin2, and PM=u2step acting 
on the system.  In figure 56 the target responses are yt1=psin1*expc, yt2=psin2*expd, 
yt3=psaw*expc, and yt4=prandom*expd, the same as in figure 48.  The control inputs look the 
same as those in the no-disturbance case of figure 48 but they are not identical numerically.  The 
small differences are just enough to quell the disturbances in figure 56.  Spikes on the lateral 
cyclic input are due to the three vertical steps in the roll target.  There is, however, very good 
tracking.  Figure 57 is a repeat of figure 56 but with a filtered roll target.  No spikes are now 
present in the control inputs.  Tracking is excellent.  Figure 58 is a repeat of figure 57 but with 
the sideslip target also filtered.  All the control inputs are now both smoothly varying and 
reduced in magnitude.  Tracking remains excellent.  Figure 59 is a repeat of figure 58 but with 
the disturbances increased by a factor of 20.  All control inputs are now larger by a factor of 
about two to accommodate the twenty-fold increase in magnitude of the disturbances.  Tracking 
is still excellent. 
 
 Figures 60-62 have lateral disturbances Y, RM, and YM which are identical to those used 
for X, Z, and PM in figure 56.  However, the set of target responses is different.  In figure 60 the 
target responses are yt1=p1step–psaw, yt2=psin1+p2step, yt3=psaw, and yt4=p2step+p1mc.  
There are large amplitude spikes in the lateral cyclic and pedal control inputs due to the vertical 
steps in all four target responses.  Tracking is very good.  Figure 61 shows a comparison of 
filtered and unfiltered targets for figure 60.  Figure 62 is a repeat of figure 60 but with filtered 
targets.  Controls now vary smoothly with time and the spikes no longer appear.  Tracking is 
now excellent. 
 
 Figures 63-64 show a comparison of filtered and unfiltered tracking responses for the 
case in which the six disturbances of figure 45 act on the system.  Figure 63 has the same set of 
targets as in figure 56.  Spikes occur in the lateral cyclic control input at the time locations of the 
vertical steps in the roll target yt3.  Tracking is very good.  The control inputs are much larger 
(even without considering the spikes) than in figure 45 because of the tracking requirement 
imposed in figure 63.  Figure 64 is a repeat of figure 63 but with filtered roll and sideslip targets.  
Controls vary smoothly with time now and have slightly smaller values.  Tracking is excellent.  
 
 Figure 65 has the same pitch disturbance as in figure 43 and the same filtered targets as in 
figure 50.  Note that all the calculated control inputs are considerably different from those in the 
regulator example of figure 43 because of the additional tracking requirements imposed in figure 
65.  However, the present control inputs are very nearly those of the zero-disturbance tracking 
example in figure 50.  Tracking is excellent. 
 
 Figure 66 has the same X, Z, and PM disturbances as in figure 44 and the same filtered 
targets as in figures 50 and 65.  Control inputs here are larger than those in figure 44 because of 
the additional tracking requirements imposed in figure 66 but are essentially the same as those in 
figures 50 and 65 because the targets are the same (recall earlier 3-DOF system comment that 
targets tend to drive the character and magnitude of the required control inputs).  Tracking is 
excellent.  
 
 Figure 67 has a full complement of six disturbances (same as those in figure 45).  The 
target responses are each composed of various combinations of the simpler target responses used 
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above in figures 47-66) .  Control inputs here are much larger than in figure 45 because of the 
additional target response requirements.  Tracking is excellent.   
 
 Figure 68 has sinusoidal lateral excitations Y, RM, and YM as in figure 46.  The target 
responses are again each composed of various combinations of simpler target responses used 
earlier.  Much larger control inputs are needed here than in figure 46 to enforce the additional 
tracking requirements.  Tracking is excellent. 
 
Summary of Observations: Viewed as a whole, the XV-15 simulations indicate that the GPC 
controllers functioned well whether they were employed as regulators to suppress disturbance-
induced system responses or as trackers to cause the system to follow a prescribed response.  
When used in the regulation mode, they were able to either significantly reduce or quell open-
loop responses of the system under a variety of imposed disturbance conditions and did so 
immediately after closing the loop.  The control displacements required to achieve these 
reductions were all about an inch or less in value and well within the control operating ranges of 
the subject aircraft.  
 
 When used to meet a tracking requirement, the GPC controllers were able to produce the 
commanded responses, even in the presence of disturbances acting on the system, and to do so 
promptly after closing the loop.  Based on the results presented in figures 29-68, the tracking 
problem is much more demanding than the regulator problem.  That is, the control inputs 
required for satisfactory tracking are typically (much) larger than those needed for regulation.  It 
was also observed that large amplitude spikes can occur in the calculated control inputs (as they 
did for the 3-DOF system) when the target response time histories have vertical (infinite-slope) 
step discontinuities.  However, such spikes can be averted simply by filtering suspect 
problematic targets to reduce the slope of such abrupt transitions.  The spiking notwithstanding, 
the values calculated for the control inputs in the tracking examples, although substantially larger 
than those required in the regulation examples, appear reasonable considering the complexity 
and magnitude of most of the prescribed maneuvers.  However, because the XV-15 was not 
designed for aggressive active-control-induced maneuvers, many of those values exceed the 
operating limits of the controls on the aircraft.  
 
  

Concluding Remarks  
 

The results of numerical simulations aimed at assessing and evaluating the effectiveness of 
a predictive control method known as Generalized Predictive Control (GPC) for active control of 
systems dominated by rigid-body behavior have been summarized.  GPC is a linear, time-
invariant, multi-input/multi-output predictive control method that uses an AutoRegressive with 
eXternal input (ARX) model to describe the input-output relationship of the system.  The 
coefficient matrices of the ARX equation are determined using system identification techniques.  
The input-output equation is used to form a multi-step output prediction equation over a finite 
prediction horizon.  The control to be imposed at the next time step is determined by minimizing 
the deviation of the predicted controlled plant responses from the desired (or target) responses, 
subject to a penalty on control effort.  Following a qualitative discussion of the essential features 
of GPC, the equations underlying the method as applied during the present investigation were 
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presented and discussed, including system identification, calculation of control law matrices, and 
calculation of the commands applied to the control effectors.  

 
 Representative results from two types of simulations were presented.  The first used a 
three-degree-of-freedom mathematical model of an unrestrained (free-free) mass-spring-dashpot 
system.  The second used a state-space math model of the rigid-body dynamics of the XV-15 
tiltrotor research aircraft cruising at 150 knots in the airplane mode of flight.  Both models were 
subjected to a variety of user-defined external disturbances and user-defined target responses 
intended to demonstrate the robustness of GPC to changing disturbances and target motions.  
Results obtained from these simulations have been decidedly positive.  In particular, in the 
regulator examples calling for a quelling of the response in the presence of external disturbances, 
the closed-loop simulations showed reductions of nearly 100% for most of the examples.  
Furthermore, the control inputs required to achieve these reductions were all small.  For 
example, the rotor and pedal control displacements required to achieve these reductions for the 
XV-15 were about an inch or less in amplitude and well within the control operating ranges of 
the aircraft.  In the tracking examples wherein the system is commanded to follow a specified 
path, the GPC controllers were able to produce the desired responses, even in the presence of 
external disturbances.  The control inputs needed to produce the target trajectories were notably 
larger than those required for regulation but reasonable when viewed from the perspective of the 
level of complexity and magnitude of the commanded maneuvers.  

   
Based on the results of these studies, it has been demonstrated that GPC is an excellent 

approach for active control of the rigid-body behavior of dynamic systems.  
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Appendix A 
 

State-Space Model for 3-DOF Mass-Spring-Dashpot System∗

 
 

  
 The second-order matrix equations of motion for the free-free, 3-degree-of-freedom, 
mass-spring-dashpot system shown in figure 2 are given by 
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(A1) 

 
where the external forces acting on the system are divided into disturbance forces udi and control 
forces uci for convenience in controls work.  Note that three disturbance forces and three control 
forces are assumed in equation A1.  The matrix [B2

 

] is an input influence matrix indicating the 
locations of the input forces {u}.  Equation A1 can be written compactly as 

                                  [ ]{ } [ ]{ } [ ]{ } { } [ ]{ }2M x C x K x f B u+ + = =                                         (A2) 
 
For controls work, equation A2 is usually recast into a set of first-order differential equations 
known as state equations having the form 
 
                                                     { } [ ]{ } [ ]{ }c cX A X B u= +                                                   (A3) 
 
where the usual reformulation leads to the state matrix [Ac], input influence matrix [Bc

 

], and 
state vector {X} given by 
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∗  This is a corrected version of the formulation presented in Appendix B of reference 6.   
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 In control problems, the first-order equations of motion given by equation A3 are 
augmented with a set of equations relating the outputs or measured quantities {y} to the state 
variables {X} and the inputs {u} according to 
 
                                                      { } [ ]{ } [ ]{ }c cy C X D u= +                                                   (A5) 
 
For mechanical systems, outputs are typically related to the dynamic variables of the problem 
such as{ } { },x x , and { }x  by equations of the form  
 
                            { } { } { } { } { } { }, ,d d v v a ay C x y C x y C x     = = =                                  (A6)   
         
where dC , vC , and aC  are output influence matrices for displacement, velocity, and 
acceleration, respectively, and for the subject three-degree-of-freedom system (assuming 3 
displacements, 3 velocities, and 3 accelerations are measured) have the diagonal forms 
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          (A7) 

 
The matrices dC , vC , and aC  in equation A6 describe the relationship between the units of the 
dynamic variables in the vectors { } { } { }, ,x x x  and the units of the measured quantities in the 
vectors {yd}, {yv}, and {ya

 

}, respectively.  If the measurement quantity has units of 
displacement, velocity, or acceleration the corresponding diagonal term is unity; otherwise the 
diagonal term is a conversion factor from the units of the dynamic variable (e.g., acceleration) to 
the units of the measured quantity (e.g., volts).   

If accelerations are measured, the acceleration output equations (the third set of equations 
given by A6) must be rewritten in terms of the state variables { }x and{ }x .  This is done by 

solving equation A2 for { }x  and substituting the result into the third of equations A6.  The 

resulting equations can then be written solely in terms of the state variables { }x and { }x  as  
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{ } { }

{ } { }

{ } { }

{ } { }

1 1 1
2

1 1 1
2

0 0

0 0

d d d

v v v

a a a a

a a a

x
y C C X

x
x

y C C X
x

x
y C M K C M C C M B u

x

C M K C M C X C M B u

− − −

− − −

 
   = =    

 
 

   = =    
 

    = − − +     
   = − − +   







                 (A8) 

 
The output equation (A5) for the general case in which all the displacements, velocities, and 
accelerations comprise the vector of measured quantities has the form 
 

                            { }
{ }
{ }
{ }

{ } { }
1 1 1

2

0 0
0 0

d d

v v

a a a a

y C
y y C X u

y C M K C M C C M B− − −

    
     = = +     
     − −     

                    (A9) 

 
which can be written compactly as 
 
                                                    { } [ ]{ } [ ]{ }c cy C X D u= +                                                   (A10) 
 
where  [ ]cC  and  [ ]cD are the output and direct transmission matrices and are given by 
 

                                                   

[ ]

[ ]
[ ]
[ ]

1 1

1
2

0
0

0
0

d

c v

a a

c

a

C
C C

C M K C M C

D

C M B

− −

−

 
 =  
 − − 

 
 

=  
     

                                        (A11) 

 
 The output matrix [Cc] depends on the number, type, and location of the sensors used to 
measure the outputs of interest.  The direct transmission matrix [Dc

[ ]0aC  = 

] is zero if accelerations are 
not included in the output measurements (in which case ), or if the accelerations are 
measured at locations where there are no disturbances or control forces (in which case the 
corresponding diagonal elements of both Iud and Iuc will be zero, the corresponding rows of [B2

1
2aC M B−  

] 
will be null, and the product  will be zero). 
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 Special cases of the general equations given above are easily obtained.  For example, the 
number, type, and combination of input and output quantities can be varied by deleting 
appropriate rows of the output equation and/or zeroing appropriate diagonal elements in Iud, Iuc

dC
, 

, vC , and aC . 
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Appendix B 
 

State-Space Model for XV-15 Tiltrotor Research Aircraft 
 
 Figure 27 shows the Bell XV-15 tiltrotor research aircraft flying in airplane mode.  This 
aircraft was designed and built by Bell Helicopter Company during the mid-1970s under a joint 
NASA/Army contract with the objective of initially serving as a tiltrotor technology 
demonstrator and then later as a tiltrotor technology research aircraft (ref. 20).  The aircraft has a 
design gross weight of 13,000 lb, carries a crew of two, and has a maximum speed of 300 knots 
when operating in the airplane mode of flight.    
 
 An existing state-space model defining the rigid-body flight dynamics of the XV-15 was 
used for the present studies.  The model was obtained from Bell Helicopter Textron in the 1990s 
as part of some collaborative studies then underway between Bell and the Aeroelasticity Branch 
at NASA Langley.  When the present GPC investigation was initiated it was with the intention of 
only using the three-degree-of-freedom math model described in Appendix A.  However, it was 
realized that the subject XV-15 model (which was still in-hand) would be an excellent additional 
model for the investigation and so it was included as one of the study systems.  
 
 Some comments related to manner of obtaining the mass, damping, stiffness, and control 
effectivity matrices needed for forming the A and B matrices of the XV-15 state-space equations 
are in order.  These matrices were obtained using a Bell rotorcraft flight simulation program 
called C81 (ref. 21).  The program first seeks the equilibrium or trim solution for a specified 
flight condition (symmetric level flight at 150 knots in the airplane mode of fight at sea level 
altitude was used in this instance).  This calculation involves numerically solving the nonlinear 
algebraic equations governing the trim solution of the aircraft for the specified flight condition.  
The trim solution yields the aircraft’s attitude (yaw, pitch, and roll) in space, the longitudinal 
(fore/aft) and lateral rigid-body flapping angles of the tip-path-plane for each of the two rotors, 
and the positions of the four pilot controls (rotor collective pitch, rotor longitudinal cyclic pitch, 
rotor lateral cyclic pitch, and pedals). 
 
 There are 11 independent variables that define the trimmed flight condition (three 
fuselage angles (yaw, pitch, and roll), four pilot controls (collective, longitudinal cyclic, lateral 
cyclic, and pedals), and the longitudinal and lateral tip-path-plane flapping angles for each of the 
two rotors).  These 11 independent variables must satisfy 10 static equilibrium equations (3 
forces and 3 moments at the c.g. of the aircraft and the longitudinal and lateral flapping moments 
for each of the two rotors.   The trim solution is initiated by assuming a fixed value for one of the 
independent variables (usually fuselage yaw or roll angle); this leads to a set of 10 nonlinear 
algebraic equations in 10 unknowns.  One then makes reasonable guesses for the values of the 10 
remaining independent variables and the program iterates on them until all 10 static equilibrium 
equations are satisfied. 
 
 With the trim solution known, the program then obtains the mass, damping, stiffness, and 
control effectivity matrices that underlie the linear perturbation equations governing the rigid-
body behavior of the aircraft about the trim flight condition.  This step involves calculating 
changes in the fuselage and rotor trim forces and moments due to small perturbations in the flight 



 

 31 
 

variables (displacements, velocities, and control inputs).  Perturbing (with stick fixed) all the 
displacement and velocity degrees of freedom in turn leads to the elements of the rigid-body 
stiffness and damping matrices.  Perturbing the linear and angular displacements yields the 
stiffness matrix.  Perturbing the linear and angular velocities gives the damping matrix.  The 
rigid-body mass matrix is formed directly from the known inertial properties of the aircraft.  The 
resulting mass, damping, and stiffness matrices are each of size 10×10.  
   
 The control effectivity matrix, which is essentially a partial derivative matrix giving the 
changes in the forces and moments that act on the airframe and rotors due to perturbation 
changes in the four pilot controls, is also computed after calculating the trim solution.  This 
computation involves perturbing each of the control inputs in turn, calculating the relevant force 
or moment, subtracting the trim value of that force or moment, and then dividing by the value of 
the perturbation.  The control effectivity matrix is of size 10×4.     
 
           A rigid-body simulation will have 10 rigid-body degrees of freedom (6 from the airframe 
(x, y, z, θ, ψ, φ) and 4 from the rotors (longitudinal and lateral tip-path-plane flapping (a1 and 
b1

 

) of each of the two rotors).  Because the time constants for the rotor flapping responses are 
much smaller than the time constants for the rigid-body responses of the airframe, rotor flapping 
equilibration subsequent to a motion of the airframe can be viewed as essentially instantaneous.  
Thus, one can assume that tip-path-plane flapping is not an independent state and eliminate the 
tip-path-plane flapping degrees of freedom from the linear math model by deleting all the rows 
and columns involving the rotor flapping degrees of freedom in the four governing matrices.  
This elimination produces 6×6 mass, damping, and stiffness matrices, and a 6×4 control 
effectivity matrix.      

 The vector of state variables employed in the state-space model of the XV-15 tiltrotor 
research aircraft used in the present investigation is given by  
 

    { } TX x z y u w q v p rθ φ ψ 
 =                             (B1) 

 
The first six state variables are the perturbation displacements and rotations.  The last six state 
variables are the corresponding perturbation linear and angular velocities.  The sign convention 
for these state variables is depicted in figure 28.  Note that the rotor longitudinal and lateral tip-
path-plane flapping angles a1 and b1

 

 and their first time derivatives are not included in the state 
vector.  This is consistent with the deletion of the rotor flapping equations of motion and all 
columns dealing with rotor flapping from the full set of linearized equations obtained from C81.      

 The partial derivative matrix/control effectivity matrix giving the changes in the total 
forces and moments acting on the aircraft due to perturbation changes in pilot control inputs is 
given by 
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Collective Long Cyclic Lat Cyclic Pedal
6335. 75.01 40.04 101.0
199.2 439.6 0.7031 12.47

0.1232 05 0.1011 05 60.41 57.13
0.0000 00 0.0000 00 22.73 565.0
0.9399 02 0.0000 00 8135. 1953.
0.1958 03 0.0000 00 4028

E E
pdm

E E
E E
E E

− −
− − −

− + − +
=

+ +
− +
− +

Change in X force (+ fwd)
 Change in Z force (+down)

  Change in pitching moment 
 Change in Y force (+ right)
Change in rolling moment 

. 0.1323 05  Change in yawing moment E

 
 
 
 
 
 
 
 

+    

(B2) 

 
where the meaning of the rows is indicated at the right of the matrix and that of the columns at 
the top of the matrix.  The three rotor controls are defined in terms of inches of stick 
displacement and the pedal control as inches of pedal displacement.  The forces and moments 
have units of lb and ft-lb, respectively.  The sign convention for the stick and pedal movements 
is as follows: Up collective stick is positive and increases forward thrust.  Longitudinal cyclic 
stick is positive for stick forward and produces a nose-down pitch of the aircraft.  Lateral cyclic 
stick is positive for stick right and produces a right roll.  Positive pedal is right pedal forward and 
produces a nose-right rotation (yaw) of the aircraft. 
 
 The structural mass matrix, which is formed directly from the known inertial properties 
of the aircraft, is   
 

   

                       u                  w                   q                      v                     p                       r 
422.4 0.00 00 0.0000 00 0.00 00 0.0000 00 0.0000 00

0.00
E E E E E

E

mass

+ + + + +

=

    

00 424.0 0.0000 00 0.00 00 0.0000 00 0.0000 00
0.00 00 36.72 0.1791 05 0.00 00 0.0000 00 0.0000 00
0.00 00 0.00 00 0.0000 00 422.4 0.0000 00 0.0000 00
0.00 00 0.00 00 0.0000 00 0.00 00 0.4867 05 1234.
0.

E E E E
E E E E E
E E E E E
E E E E E

+ + + + +
+ + + + +
+ + + + +
+ + + + + −

  
  
  
  
  

00 00 0.00 00 0.0000 00 0.00 00 1234. 0.6025 05   E E E E E

 
 
 
 
 
 
 
 

+ + + + − + 

    (B3) 

 
where the meaning of the columns is indicated at the top of the matrix and the meaning of the 
rows is the same as in equation B2.   
 
 Perturbing the linear and angular velocity variables as described above yields the 
damping matrix 
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                        u                    w                      q                          v                           p                         r
12.57 68.98 0.1272 05 0.0000 00 37.39 0.9300E E E

damp

− + + − −

=

02
75.24 298.2 0.1040 06 0.0000 00 103.4 0.0000 00
119.0 679.6 0.2933 05 0.1502 02 1285. 0.9390 02

0.00 00 0.5869 05 0.0000 00 81.32 0.1294 05 0.1042 06
0.00 00 0.0000 00 0.0000 00 404.4 0.2685 05 6932.
0.

E E E
E E E

E E E E E
E E E E

− + + − +
− + − − −

+ − + − + +
+ + + +

  
  
  
  
  

00 00 0.0000 00 0.1479 646.3 0.1368 05 0.6277 05   E E E E

 
 
 
 
 
 
 
 

+ + − − + + 

      

(B4) 
 
while perturbing the linear and angular displacement variables leads to the stiffness matrix  
 

     

                    x                   z                                           y                                            
0.00 00 0.00 00 0.1349 05 0.00 00 0.0000 00 0.00 00
0.00 00 0.

E E E E E E
E

stiff

θ φ ψ
+ + + + + +
+

=

00 00 1665. 0.00 00 0.9292 04 0.00 00
0.00 00 0.00 00 0.0000 00 0.00 00 0.0000 00 0.00 00
0.00 00 0.00 00 0.1147 04 0.00 00 0.1349 05 0.00 00
0.00 00 0.00 00 0.0000 00 0.00 00 0.0000 00 0.00 00
0.00

E E E E
E E E E E E
E E E E E E
E E E E E E

+ + − − +
+ + + + + +
+ + − − + − + +
+ + + + + +

00 0.00 00 0.0000 00 0.00 00 0.0000 00 0.00 00E E E E E E

 
 
 
 
 
 
 
 

+ + + + + + 

       (B5) 

 
 
Again, the meaning of the columns is indicated at the top of the matrices and the meaning of the 
rows is the same as in equation B2.   
 
 Consistent with the development in Appendix A, the continuous-time state matrix is 
given by 
 

                                     
[ ] [ ]

[ ] [ ] [ ] [ ]1 1

0
c

I
A

mass stiff mass damp− −

 
=  

− −  
                                        (B6) 

 
and the continuous-time input influence matrix Bc is composed of a disturbance part Bdisturbance 
and a control part B
 

control 

 
                                                     [ ]c disturbance controlB B B=                                                        (B7) 
 
 
where the control portion of Bc 
 

is 

                                                   
[ ]

[ ] [ ]1

0
controlB

mass pdm−

 
=  
  

                                                       (B8) 
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and the disturbance portion of Bc
 

 is 

                                                  
[ ]

[ ] [ ]1

0
disturbance

ud

B
mass I−

 
=  
  

                                                      (B9) 

 
 The matrix Cc

 

 appearing in the output equation portion of the state-space equations is 
given by 

     
0 0 0 0 0 0 1 0 0 0 0 0
0 0 57.3 0 0 0 0 0 0 0 0 0
0 0 0 0 57.3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 57.3 / (150*1.689) 0 0

c

x z y u w q v p r
u

C

θ φ ψ

θ
φ
β

 
 
 =
 
 
 

                  (B10) 

                                                                                                          
The four output variables are indicated at the right of the matrix Cc.  The identity of the columns 
of Cc

 

 is indicated above the matrix and corresponds to the sequence of state variables shown in 
equation B1.  Note that the sideslip angle β has replaced the perturbation velocity v as the output 
variable in the fourth equation by virtue of the division of that equation by (150*1.689), the 
forward flight velocity in ft/sec.   

 Because none of the desired output variables are accelerations, the matrix Dc appearing in 
the output equation is a null matrix.
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Table 1.- Dynamic Characteristics of  3-DOF Math Model 

 

Eigenvalues of State Matrix Natural Frequencies (Hz) 

0.0 ± 0.0i 

0.0 ± 1.0i 

0.0 ± 1.7321i 

0.0 

0.15915 

0.27566 
 
 
 
 
 

Table 2.- Dynamic Characteristics of XV-15 Math Model 
 

Mode Eigenvalues of State 
Matrix 

Damped Natural 
Frequencies (Hz) 

Damping Ratios 
(Fraction of critical) 

Short period 

Dutch roll 

Phugoid 

Roll convergence 

Spiral convergence 

-1.4173±2.9364i 

-0.44913±1.6058i 

-0.019449±0.18404i 

-0.73883±0.0i 

-0.15843±0.0i 

0.46734 

0.25556 

0.029291 

0 

0 

0.43469 

0.26936 

0.10509 

1 

1 
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Figure 1.- Block diagram of GPC identification and control procedure. 
 
 
 
 
 
 

 
 

Figure 2.- Unrestrained three-degree-of-freedom mass-spring-dashpot system 
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Figure 3.- Regulation of 3-DOF system subjected to three sinusoidal disturbances oscillating at 
0.27566 Hz, a system natural frequency. 

 

Expanded scale for control input axis 
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Figure 4.- Regulation of 3-DOF system subjected to a 0.27566 Hz sinusoidal disturbance acting 

on mass 2 and constant (zero frequency) disturbances acting on masses 1 and 3. 
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Figure 5.- Regulation of 3-DOF system subjected to a constant disturbance acting on each mass. 
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Figure 6.- Regulation of 3-DOF system subjected to a random disturbance acting on each mass. 
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Figure 7.- Regulation of 3-DOF system subjected to sinusoidal disturbances at  

0.1, 0.2, and 0.3 Hz. 
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Figure 8.- Regulation of 3-DOF system with disturbances ud1 = a 1-cosine function, ud2 = a 
0.27566 Hz sinusoid, and ud3 = a trapezoidal pulse. 

 



 

 45 
 

 
Figure 9.- Regulation of 3-DOF system subjected to 1-cosine function disturbances. 
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Figure 10.- Regulation of 3-DOF system with ud1 = a 0.27566 Hz sinusoid, ud2 = a step 

function, and ud3 = an element-by-element product of two 0.27566 Hz sine waves. 
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Figure 11.- Regulation of 3-DOF system subjected to three 0.27566 Hz sinusoidal disturbances, 

two of which are superimposed on 1-cosine and step waveforms. 
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Figure 12.- Tracking of undisturbed 3-DOF system with sinusoidal target responses having 

frequencies of 0.1, 0.2, and 0.3 Hz. 
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Figure 13.- Tracking of undisturbed 3-DOF system with target responses yt1 = a trapezoidal 

pulse, yt2 = a 0.2 Hz sinusoid, and yt3 = a 0.3 Hz sinusoid.  
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Figure 14.- Tracking of undisturbed 3-DOF system with target responses yt1 = a one-step step 

function, yt2 = a 1-cosine function, and yt3 = a random function.  
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Figure 15.- Comparison of filtered and unfiltered step function targets for mass 1  

of undisturbed 3-DOF system. 
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Figure 16.- Tracking of undisturbed 3-DOF system of figure 14 but using the filtered target of 

figure 15 for mass 1. 
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Figure 17.- Tracking of undisturbed 3-DOF system with yt1 = an exponentially diverging 0.5 Hz 

sinusoid, yt2 = an exponentially converging 0.5 Hz sinusoid, and yt3 = a multi-step  
step function. 
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Figure 18.- Tracking of undisturbed 3-DOF system with yt1 = a two-step step function, yt2 = a 

delayed exponentially converging 0.5 Hz sinusoid, and yt3 = a random function. 
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Figure 19.- Tracking of undisturbed 3-DOF system with yt1 = a diverging increasing-frequency 

sinusoid with a small offset, yt2 = a multi-toothed 1-cosine waveform, and yt3 = a random 
waveform contaminated by two other waveforms. 
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Figure 20.- Tracking of undisturbed 3-DOF system with 1500-point target time histories 

composed of three 500-point segments having different waveforms. 
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Figure 21.- Tracking of undisturbed 3-DOF system with 1500-point target time histories  

composed of three 500-point segments having different waveforms. 
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Figure 22.- Tracking of undisturbed 3-DOF system with 1500-point target time histories 

composed of three 500-point segments having different waveforms. 
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Figure 23.- Tracking of disturbed 3-DOF system wherein a variety of waveforms are used for the 

disturbances and targets. 
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Figure 24.- Tracking of disturbed 3-DOF system in which a variety of waveforms are used for 

the disturbances and targets. 
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Figure 25.- Tracking of disturbed 3-DOF system where ud1 = a 1-cosine function, ud2 = a 
0.27566 Hz sinusoid, ud3 =a trapezoidal pulse, and the targets are 0.27566 Hz sinusoids. 
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Figure 26.- Tracking of disturbed 3-DOF system in which a variety of waveforms are used for 

the disturbances and targets. 
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Figure 27.- XV-15 tiltrotor research aircraft in airplane mode of flight. 
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Figure 28.- Perturbation displacements (x, y, z), rotations (θ, φ, ψ), and velocities (u, v, w, p, q, 

r) comprising the state variables used to form the rigid-body state-space equations of the XV-15. 
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Figure 29.- Regulation of XV-15 subjected to a sinusoidal axial force disturbance  

at 0.46734 Hz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 66 
 

 

 
Figure 30.- Regulation of XV-15 subjected to a sinusoidal vertical force disturbance  

at 0.46734 Hz. 
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Figure 31.- Regulation of XV-15 subjected to a sinusoidal pitching moment disturbance 

 at 0.46734 Hz. 
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Figure 32.- Regulation of XV-15 subjected to a sinusoidal side force disturbance at 0.46734 Hz. 
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Figure 33.- Regulation of XV-15 subjected to a sinusoidal rolling moment disturbance  

at 0.46734 Hz. 
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Figure 34.- Regulation of XV-15 subjected to a sinusoidal yawing moment disturbance 

 at 0.46734 Hz. 
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Figure 35.- Regulation of XV-15 subjected to a 2¼-cycle sine-pulse axial force disturbance. 

 



 

 72 
 

 
 

Figure 36.- Regulation of XV-15 subjected to a 5-sec rectangular pulse axial disturbance. 
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Figure 37.- Regulation of XV-15 subjected to Z, PM, and Y sinusoidal disturbances at 

frequencies of the short period (0.46734 Hz), Dutch roll (0.25556 Hz), and phugoid (0.029291 
Hz) modes, respectively. 
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Figure 38.- Regulation of XV-15 subjected to disturbances Z = a 0.46734 Hz sinusoid,  

PM = a 0.25556 Hz sinusoid, and Y = a step function. 
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Figure 39.- Regulation of XV-15 with disturbances Z = a 0.46734 Hz sinusoid, PM = a 0.25556 

Hz sinusoid, and Y = a 2-step step function. 
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Figure 40.- Regulation of XV-15 where disturbances X, PM, and Y are all random functions. 
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Figure 41.- Regulation of XV-15 subjected to longitudinal disturbances X = a 0.46734 Hz 

sinusoid, Z = a 0.25556 Hz sinusoid, and PM = a one-step step function. 
 



 

 78 
 

 
Figure 42.- Regulation of XV-15 subjected to lateral disturbances Y = a 0.46734 Hz sinusoid, 

RM = a 0.25556 Hz sinusoid, and YM = a one-step step function. 
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Figure 43.- Regulation of XV-15 subjected to a convoluted pitch disturbance. 
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Figure 44.- Regulation of XV-15 subjected to X, Z, and PM disturbances formed  

from triangular waveforms. 
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Figure 45.- Regulation of XV-15 subjected to a full complement of different disturbances. 
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Figure 46.- Regulation of XV-15 subjected to disturbances Y = a 0.46734 Hz sinusoid,  

RM = a 0.25556 Hz sinusoid, and YM = a 0.029291 sinusoid. 
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Figure 47.- Tracking of undisturbed XV-15 with targets yt1 = a 0.1 Hz sinusoid, yt2 = a 0.2 Hz 
sinusoid, yt3 = a 0.3 Hz sinusoid, and yt4 = a 0.4 Hz sinusoid. 
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Figure 48.- Tracking of undisturbed XV-15 with targets yt1 = an exponentially decreasing 

sinusoid, yt2 =an exponentially increasing sinusoid, yt3 = a non-uniform saw-tooth-type wave, 
and yt4 = an exponentially diverging random function. 

 



 

 85 
 

 

 
Figure 49.- Repeat of figure 48 but with a filtered roll target. 



 

 86 
 

 
 

 
 

Figure 50.- Repeat of figure 48 but with filtered roll and sideslip targets. 
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Figure 51.- Tracking of undisturbed XV-15 using a variety of target waveforms. 
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Figure 52.- Repeat of figure 51 but with filtered pitch target. 
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Figure 53.- Tracking of undisturbed XV-15 using a variety of target waveforms. 
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Figure 54.- Comparison of filtered and unfiltered targets for figure 53 
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Figure 55.- Repeat of figure 53 but with all targets filtered. 
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Figure 56.- Tracking of disturbed XV-15 using the same targets as in figure 48. 
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Figure 57.- Repeat of figure 56 but with filtered roll target. 
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Figure 58.- Repeat of figure 56 but with filtered roll and sideslip targets. 
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Figure 59.- Repeat of figure 58 but with disturbances that are a factor of 20 larger. 
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Figure 60.- Tracking of disturbed XV-15 subjected to various target responses. 
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Figure 61.- Comparison of filtered and unfiltered targets for figure 60. 
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Figure 62.- Repeat of figure 60 but with filtered targets. 
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Figure 63.- Tracking of XV-15 subjected to a full complement of disturbances and using the 

same unfiltered targets as in figure 56. 
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Figure 64.- Repeat of figure 63 but with filtered roll and sideslip targets. 
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Figure 65.- Tracking of XV-15 subjected to a convoluted pitching moment disturbance and using 

 the same targets as in figure 64.  
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Figure 66.- Tracking of XV-15  subjected to triangular longitudinal disturbances and using  

the same targets as in figure 65. 
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Figure 67.- Tracking of XV-15 subjected to the same full set of disturbances used  in figure 64 

and a variety of filtered targets. 
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Figure 68.- Tracking of XV-15 subjected to lateral sinusoidal disturbances and using the same  

targets as in figure 67. 
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