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ABSTRACT
We report the results of an investigation of particle acceleration and electron–positron plasma
generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when
the stellar surface is free to emit whatever charges and currents are demanded by the force-
free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical
problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a
determination of the collective electrostatic fluctuations in the plasma, combined with a Monte
Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron–
positron pairs. We assume the electric current flowing through the pair creation zone is fixed by
the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere
models to provide the currents which must be carried by the accelerator. The models are
spatially one dimensional, and designed to explore the physics, although of practical relevance
to young, high-voltage pulsars.

We observe novel behaviour (a) When the current density j is less than the Goldreich–Julian
value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild,
with the full Goldreich–Julian charge density comprising the charge densities of the beam and
a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage
drops are of the order of mc2/e, and pair creation is absent. (b) When the current density
exceeds the Goldreich–Julian value (j/jGJ > 1), the system develops high voltage drops (TV
or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The
bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the
relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c)
In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation.
These discharges are similar to those encountered in previous calculations by Timokhin of pair
creation when the surface has a high work function and cannot freely emit charge. In cases
(b) and (c), the intermittently generated pairs allow the system to simultaneously carry the
magnetospherically prescribed currents and adjust the charge density and average electric field
to force-free conditions. We also elucidate the conditions for pair creating beam flow to be
steady (stationary with small fluctuations in the rotating frame), finding that such steady flows
can occupy only a small fraction of the current density parameter space exhibited by the force-
free magnetospheric model. The generic polar flow dynamics and pair creation are strongly
time dependent. The model has an essential difference from almost all previous quantitative
studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops
are sufficiently large; without, when they are small) as a function of the applied current.
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2 A. N. Timokhin and J. Arons

The 1D results described here characterize the dependence of acceleration and pair creation
on the magnitude and sign of current. The dependence on the spatial distribution of the current
is a multi-dimensional problem, possibly exhibiting more chaotic behaviour. We briefly outline
possible relations of the electric field fluctuations observed in the polar flows (both with and
without pair creation discharges) to direct emission of radio waves, as well as revive the
possible relation of the observed limit cycle behaviour to microstructure in the radio emission.
Actually modelling these effects requires the multi-dimensional treatment, to be reported in a
later paper.

Key words: acceleration of particles – plasmas – stars: magnetic field – stars: neutron –
pulsars: general.

1 IN T RO D U C T I O N

Young pulsar wind nebulae (PWNe) show that rotation-powered
pulsars (RPPs) have dense magnetospheres, at least with regard
to those regions that feed the plasma outflow (e.g. Bucciantini,
Arons & Amato 2011). Electron–positron pair creation in the open
field line region that connects to the external world is the only
known candidate for the origin of such outflows, with acceleration
and convertible gamma-ray emission occurring either at low alti-
tude (Sturrock 1971) or in the outer magnetosphere (Cheng, Ho &
Ruderman 1986). High-density flows that can feed all the open field
lines can exist only in the low-altitude polar cap region (for a general
discussion, see Arons 2009).

Theoretical studies of charged particle flow from the magnetic
polar regions of RPPs began with the observation by Goldreich
& Julian (1969) that an isolated magnetic rotator in vacuum must
have a charged magnetosphere almost corotating with the star. Since
RPPs are strongly gravitationally bound and cool objects (thermal
scale height in any atmosphere orders of magnitude less than the
stellar radius) and have no external source of plasma supply (so far
as we know), the only plasma source is an extraction of charged
particles from the stellar surface, leading to a conjectured magneto-
sphere whose plasma is fully charge separated, in contrast to all other
known astrophysical systems, whose plasmas are charged but quasi-
neutral. Goldreich & Julian (1969) speculated that on polar field
lines – those that extend beyond the light cylinder located at cylin-
drical radius RLC = cP/2π � 48 000 P km, P = rotation period in
seconds – a charge-separated outflow would form. They argued that
the energy/particle in the outflow would be no more than the gravi-
tational escape energy GM∗/R∗ ∼ 0.3mc2(M∗/1.4M�)(10 km/R∗);
M∗ and R∗ are star’s mass and radius correspondingly – the par-
ticles leave at non-relativistic energies in spite of the fact that
the electric potential drop across the polar field lines is equal
to the full potential of an open rotating magnetosphere with a
dipole magnetic field �m = √

WR/c ≈ 10 (Ṗ /10−15)1/2P −3/2 TV,
WR = rotational energy loss rate, with Ṗ = dP/dt . �m vastly
exceeds the rest energy and gravitational energy of the particles,
either electrons or protons (or He or other ions populating the
star’s crust and atmosphere). The super strong magnetic field sup-
presses free acceleration of the particles in the transverse electric
field, whose primary (‘zeroth order’) consequence is the corota-
tion of the field lines with the magnetic field embedded in the
neutron star (NS), with the field line motion measured by the
E × B drift of charged particles across the magnetic field (which
occurs even when the particles have zero Larmor gyration). The
particle loss rate in the conjectured charge-separated scenario is
ṄR = c�m/e ≈ 2 × 1030 (Ṗ /10−15)1/2P −3/2 s−1, orders of magni-
tude less than that inferred from the injection of plasma into the
young PWNe. The electrodynamics of the magnetosphere differ

drastically, depending on whether the particle loss rate falls short
of or exceeds ṄR. For the young PWNe, the particle injection rate
exceeds ṄR (by a lot). In that case, the magnetosphere’s basic state
should be one in which E · B = 0, with no parallel acceleration
sufficient to generate convertible gamma-rays occurring under the
pulsar’s rotational control.

The discovery of gamma-ray pulsars in the 1970s, and their pro-
liferation into a population with more than 100 such stars in the
most recent published Fermi pulsar catalogue (Abdo et al. 2010),
has shown that parallel acceleration to GeV gamma-ray emitting
energies (indeed, multi-hundred GeV, in the Crab pulsar; Aliu et al.
2011) must occur somewhere, with energy efficiency exceeding a
few tenths of a per cent, as measured by Lγ /WR, Lγ = gamma-ray
luminosity. If the acceleration is limited by radiation reaction, as
is true in many models, Lγ is a good proxy for the energy put into
parallel acceleration. Lγ /WR can approach as much as 50 per cent
at smaller spin down luminosities. Just how some fraction of the to-
tal potential drop gets released in acceleration along B, gamma-ray
emission and pair creation has been mysterious since the beginning
of pulsar research, made relevant to the real world by the gamma-ray
discoveries. Since the polar cap source is the only one capable of
feeding the whole (open) magnetosphere, its understanding remains
of central interest to modelling pulsar magnetospheres, even though
the spectral and beaming characteristics of the pulsed gamma-rays
are better modelled by accelerators in the outer magnetosphere.

Free particle outflow from the NS surface is a common assump-
tion in most of the current pulsar models (see Section 2). The polar
cap accelerator problem has been studied under that assumption be-
fore (e.g. Michel 1974; Fawley, Arons & Scharlemann 1977; Mestel
et al. 1985; Shibata 1997; Beloborodov 2008). Michel (1974) and
Fawley et al. (1977) obtained solutions for the non-neutral space
charge limited charged particle flow for the current density almost
equal to the GJ current density. All these models assume strictly
steady flow in the corotating frame on all time-scales. In these
models, the charge density of the current carrying beam supplies
almost all of the charge density needed to short out the parallel
component of the electric field, while leaving a residuum E‖ suffi-
cient to accelerate the beam – relativistic energies in a temporally
steady flow are found if the current density j‖ = −(B/P)cos χ +
small corrections ∼= jGJ; χ = ∠(μ, �), the pulsar inclination angle.
Mestel et al. (1985) showed that the velocity of the beam is mono-
tonically increasing with altitude to relativistic speeds only if the
current density is larger than jGJ. If the current density is smaller than
jGJ the temporally steady velocity of the beam (assumed to have no
momentum dispersion) oscillates spatially, i.e. particles accelerate
and decelerate to a complete halt as they move outwards into the
magnetosphere. Beloborodov (2008) rediscovered Mestel et al.’s
solution and suggested that in the region of the polar cap where
j‖ < jGJ particles will not be accelerated up to high energies as
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Pair cascades over pulsar polar caps 3

the beam velocity oscillates, but along the magnetic field lines with
j‖/jGJ > 0 or j‖/jGJ < 0 particle acceleration will be efficient and will
lead to pair formation. The quantitative model which we describe
in this paper lends some support to Beloborodov’s speculations,
although it does not agree with them in detail.

In this paper we describe our study of the physics of the polar cap
accelerator in the space charge limited flow regime starting from
first principles – assuming free particle outflow from the surface of a
NS we compute the electric field, particle acceleration, gamma-ray
emission, propagation and pair creation simultaneously. It extends
the study of current flow and pair cascades in NS magnetospheres
using the theoretical formulation and self-consistent numerical tech-
niques introduced in Timokhin (2010).

The plan of the paper is as follows. In Section 2, we review the
properties of the current flow imposed by the magnetosphere, in the
force-free model, pointing out that the current density is the main
parameter which regulates the efficiency of particle acceleration. In
Section 3 we review the properties of stationary solutions for the
charge-separated space charge limited flow problem. In Section 4
we briefly describe our numerical model. In Section 5 we describe
the results of numerical modelling for the case of sub-GJ current
density, the regime when particle acceleration is inefficient and no
pair creation is possible. In Section 6 we consider flow regimes with
efficient pair creation. In Section 6.4 we pay special attention to the
stationary flow regime, which up to now was assumed in (most)
works on pulsar polar cap accelerators, and describe why it has lim-
ited relevance to the force-free model of the pulsar magnetosphere.
We discuss the implications of our results for the physics of RPPs
in Section 7 and summarize our conclusions in Section 8.

2 C U R R E N T D E N S I T Y I N T H E P O L A R C A P

Nebular observations of plasma supply by RPPs suggest the open
field line regions are ‘magnetohydrodynamic (MHD)-like’, i.e. hav-
ing E‖ = 0 except in special zones (such as the polar cap), which
are, in effect, boundary layers. There is essentially no observational
information on the properties of the closed magnetosphere, thus the
simplest hypothesis is to follow Goldreich & Julian (1969) and as-
sume the magnetosphere is (almost everywhere) filled with plasma
that shorts out E‖. The magnetosphere has open and closed magnetic
field line zones. In the open zone plasma flows away into the pulsar
wind; currents and their associated electromagnetic inertia keep the
magnetic field open, so sustaining the flow. The plasma flows all
the way from the base of the open field line zone in the polar cap of
the pulsar where it is either extracted from the NS surface or gener-
ated by electron–positron cascades (or both). The distribution of the
current density across the open field line zone, and therefore across
the polar cap, is determined by the global magnetospheric structure.
Stability of the pulsar mean profiles and sharpness of the peaks in
the spectra of gamma-ray pulsars strongly suggest that on scales
comparable to the light cylinder, the magnetosphere is stationary
in the frame corotating with the NS with smooth and continuous
plasma outflow. However, the stationary corotating magnetosphere
hypothesis demands stationarity only in a statistical sense; fast lo-
cal fluctuations which average to a stationary state (and even more
broadly, global variations) can be included within this picture, so
long as they do not smear the beaming profiles.

The polar cap acceleration and possible pair cascade zone – the
main place where electron–positron plasma that feeds the wind can
be produced – are much smaller than the characteristic scale RLC of
the magnetosphere. Therefore its inductance is negligible compared
with that of the magnetosphere, and the polar current flow within

the polar cap region must have an average equal to that set by the
magnetosphere’s global structure.

In this paper we solve a local problem of how the polar cap
cascade zone adjusts itself to the current density required by the
magnetosphere. On the dynamical time-scales typical for the cas-
cade zone (microseconds) the magnetospherically required current
density is stationary because it could change only on magneto-
spheric time-scales (tens of milliseconds up to several seconds).
The idea that the acceleration zone has a magnetospherically deter-
mined current appears in the electrodynamics through the magnetic
induction equation

∂E‖
∂t

= −4πj‖ + c(∇ × B)‖ ≈ −4π(j‖ − jm), (1)

with

jm = c

4π
(∇ × Bmagnetosphere)‖ (2)

being the current that sustains the twist to the field lines. In this
paper we neglect the induced variations in the magnetic field that
accompany variable E‖ – because of the very strong background
magnetic field (which in the region of interest has ∇ × B = 0),
these have little dynamical effect on the acceleration and cascade
dynamics [see Appendix A for the derivation of equation (1)].

We study the behaviour of the cascade zone under different cur-
rent loads, sampling the range of possibilities illustrated in Fig. 1.
The model has an essential difference from previous studies, in that
we seek the accelerating voltage (with pair creation when the volt-
age drops are sufficiently large, without when they are small) as a
function of the applied current. Previous work has almost entirely
focused on the opposite direction, seeking the current that emerges
from the accelerator when the voltage is fixed, either by the ge-
ometry or by the poisoning of the accelerator by pair creation. In
addition, we allow the system to be fully time dependent. These
generalizations lead to qualitatively different results from what has
appeared before. Our model is one-dimensional, with spatial axis
along magnetic field lines; from here on we drop subscript ‖ from
all quantities.

The characteristic charge density, the Goldreich-Julian charge
density,

ηGJ = −� · B
2πc

(3)

sets the characteristic current density

jGJ = ηGJc . (4)

Following Fawley et al. (1977) and Arons & Scharlemann (1979),
we also assume that if the star lacks an atmosphere, the work func-
tion for charged particles to leave the NS surface is small enough
that any number of charged particles can be extracted from the NS
surface until the extracting electric field is screened. In the classical
pulsar regime, the theory of charged particle binding to the crust
suggests such free emission to be likely (Medin & Lai 2010). More
relevantly, X-ray observations of heated polar caps (Bogdanov,
Rybicki & Grindlay 2007, and references therein) suggest that these
stars have atmospheres overlying the solid and ocean components
of the crust, which guarantees free emission of charges. The op-
posite case, with complete suppression of particle emission from
the surface, was studied in Timokhin (2010), a realization of the
scenario conjectured by Ruderman & Sutherland (1975).

As we will show in the following sections there are three qualita-
tively different plasma flow types in the polar cap of pulsar depend-
ing on the ratio of the current density imposed by the magnetosphere
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4 A. N. Timokhin and J. Arons

Figure 1. Field-aligned current density at the polar cap of the force-free rotator, with j‖ measured in units of the Goldreich–Julian current density jGJ ≡
−� · B/2πc. The black circle is the rim of the polar cap – the footprints of the field lines that pass outside the light cylinder fall with that circle. The
distributed current is shown. The current sheet component coincides with the polar cap boundary. This plot was made by Xuening Bai using results of force-free
magnetosphere simulations presented in Bai & Spitkovsky (2010).

to the GJ current density: (i) jm has the same sign and its absolute
value is smaller than the GJ current density, 0 ≤ jm/jGJ < 1, hereafter
sub-GJ current density; (ii) jm has the same sign and its absolute
value is larger than the GJ current density, jm/jGJ ≥ 1, hereafter
super-GJ current density; (iii) jm has the opposite sign to the GJ
current density, jm/jGJ < 0, hereafter anti-GJ current density.

The advent of quantitative solutions for the structure of the force-
free model (e.g. Contopoulos, Kazanas & Fendt 1999; Timokhin
2006; Spitkovsky 2006; Kalapotharakos & Contopoulos 2009; Bai
& Spitkovsky 2010) has provided, for the first time, a theory of
the current flow expected as a function of pulsar parameters (B,
P, χ , when the magnetic field is a star-centred dipole). Earlier
modelling of polar cap, slot gap and outer gap accelerators adopted
the expectation that the current density is of the order of jGJ, and
expressed the hope that the accelerator and pair creation physics do
not sensitively depend on the precise value and spatial distribution
of j. The results reported here show that the magnitude and sign of
the current flow do lead to drastic differences in the open field line
accelerator’s behaviour in the three regimes (i)–(iii), even though
the order of magnitude of the current is as expected. Fig. 1, showing
j̃ ≡ j/jGJ, reveals that all three flow regimes occur in the force-
free magnetosphere model. While |j̃ | always has numerical values
of the order of unity, it can be negative (return current) as well as
lying in the separate regimes 0 < j̃ < 1 and j̃ > 1. We show these
separate regimes have different dynamical behaviour and different
implications for pair creation.

We also show that once the constraints of the steady flow models
for space charge limited flow are relaxed, the small departures of
the GJ charge density from the simple estimate −�B cos χ/2πc
created by geometric and general relativistic considerations (Arons
& Scharlemann 1979; Muslimov & Tsygan 1992) that play an es-
sential role in the steady flow models1 have little significance when
the flow is fully time dependent. Since we consider only the polar
cap region, with altitudes not exceeding the width of the polar flux
tube rpc = R∗

√
R∗/RLC = 0.145P −1/2 km � R∗ = 10 km, spatial

variation of B is mostly unimportant. If we do not say so explic-
itly otherwise, throughout the paper we assume that the GJ charge
density is constant, independent of the distance along B.

1 If the GJ charge density were uniform and the beam is everywhere rel-
ativistic and time stationary, the unique model is no acceleration at all
(Tademaru 1973; Fawley et al. 1977), a severe contradiction.

3 TIME-STATIONARY SPACE CHARGE
LIMITED FLOW

Copious pair creation occurs when there is a sufficiently large ac-
celerating potential difference along B when pairs are absent. Such
potential drops, typically � 1012 V (Sturrock 1971), readily exist
in the absence of current flow, that is, in a vacuum. Under pulsar
conditions, if current does flow, pairs appear when the current flow
co-exists with TV potential drops,2 that is the current is a relativistic
beam. Therefore, the starting place is the properties of time station-
ary, space charge limited, charge-separated flow. In this section we
give an overview of these properties while detailed derivation of
the equations used in this section is given in Appendix B together
with some useful asymptotics. These review and extend a variety of
results already in the literature.

For definiteness, we consider pulsars with an acute angle χ be-
tween � and B (‘acute’ pulsars). These objects have ηGJ < 0 at the
polar cap, and require electron emission to supply ηGJ.

Let us consider an electron beam starting with zero velocity at
x = 0 and let the current density jm imposed by the magnetosphere
(equation (2)) be a fraction ξ of the GJ charge density

jm ≡ ξjGJ . (5)

In our case the GJ charge density is negative. In stationary flow the
current density is constant in both space and time and is equal to the
imposed current density j ≡ jm, thus dE/dt = 0 in equation (1). The
stationary electric field Es is then given by Gauss’s law which in
the frame corotating with the NS takes the form (e.g. Fawley et al.
1977, and references therein)

dEs

dx
= 4π(η − ηGJ) . (6)

The magnitude of the electric field increases with distance if the
magnitude of the charge density η is larger than the GJ charge
density and decreases otherwise.

2 TV potential drops are required if curvature radiation from charges ac-
celerated along a locally dipole magnetic field is the emission mechanism
for the gamma-rays that convert to pairs. The required potential drops are
smaller if the emission mechanism is inverse Compton scattering (either res-
onant or non-resonant) of softer photons from the surface (e.g. Hibschman
& Arons 2001, and references therein).
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Pair cascades over pulsar polar caps 5

The charge density at any given point of the flow is

η = j/v = jm

c

√
p2 + 1

p
, (7)

where v is the flow velocity and p ≡ γ v/c is the four-velocity =
momentum in units of mc. p of a charge-separated stationary beam
is given by the solution of the equation (B10)(

dp

ds

)2

= 2
p2 + 1

p2

(
1 + ξp −

√
p2 + 1

)
, (8)

where the distance s is measured in units of the Debye length λD, GJ

of a cold electron plasma with GJ number density

λD,GJ = c

(
4πηGJe

m

)−1/2

� 2 B
−1/2
12 P 1/2 cm . (9)

B12 is the pulsar magnetic field in 1012 G, and P is the pulsar period
in seconds.

The numerical solutions of (8) for different imposed current den-
sities are shown in Figs 2 and 3 for different values of ξ ; these
results confirm the work of Shibata (1997). For 0 < jm/jGJ < 1 the
steady flow oscillates spatially, with particle momenta oscillating
in the interval [0, pmax ], with

pmax = 2ξ

1 − ξ 2
. (10)

dp/ds = 0 at p = pmax and so is the RHS of equation (8). The
value of pmax and the spatial period of oscillations s0 increase with
increasing ξ (see Figs 2 and 3). For ξ ≥ 1 acceleration is monotonic
with p increasing to infinity, with asymptotic behaviour

p =
√

2s + ξ − 1

2
s2 . (11)

See Fig. 3 for ξ = 1, 1.1, 1.5.
The reason for such behaviour is as follows. The flow starts

with zero initial velocity at x = 0 where the electric field is zero.

Figure 2. Phase space trajectories (four-velocity p versus distance normal-
ized to λD, GJ) for stationary space charge limited flow for current densities
jm/jGJ = 0.1, 0.25, 0.5, 0.75, 0.9, 0.95.

Figure 3. Phase space trajectories for stationary space charge limited flow
for current densities jm/jGJ = 0.9, 0.95, 0.99, 1, 1.1, 1.5. Note that in contrast
to Fig. 2 the vertical axis on this plot is logarithmic.

When the particle velocity is small the imposed current density is
produced by high particle density moving slowly. In such places
the absolute value of the beam charge density (cf. equation 7) is
larger than that of the GJ charge density, |η| > |ηGJ| (see Fig. 4
where we plot the ratio η/ηGJ for flows with ξ = 0.5, 1, 1.5). The
charge density is negative and according to equation (6) the electric
field in this region is decreasing towards more negative values, thus
accelerating electrons. If the imposed current density exceeds the
GJ current density, ξ > 1, the absolute value of the beam charge
density – whose maximum value is |jm/c| = ξ |ηGJ| – never becomes

Figure 4. Charge density of stationary space charge limited flow normalized
to the GJ charge density ηGJ as a function of distance x normalized to λD

for current densities jm/jGJ = 0.5, 1.0, 1.5.
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6 A. N. Timokhin and J. Arons

smaller than |ηGJ|, hence, dEs/dx < 0 and acceleration continues up
to infinity – the electric field and potential are monotonic. For ξ < 1,
on the other hand, particles’ velocities increase to values such that
the imposed current density can be sustained by particle number
density smaller than the GJ number density. Then |η| < |ηGJ| (see
the line for jm = 0.5jGJ in Fig. 4), dEs/dx > 0 and the accelerating
electric field weakens, changes sign and decelerates particles – in
cold flow, the particles decelerate to zero velocity, and the cycle
repeats.

The model of space charge limited flow outlined here provides a
physical framework for the expected particle energetics. It is based
on the approximation of one cold fluid and an assumption of com-
plete stationarity of the flow. It can be extended to a two-fluid
model to account for the presence of positrons and pair creation (as
in Arons 1983). However, kinetic effects such as particle trapping
cannot be included in a cold fluid approximation, although certain
aspects can be modelled if momentum dispersion (‘pressure’) is
included, with an assumed equation of state. A kinetic model incor-
porates momentum dispersion in the collisionless medium without
having to make arbitrary assumptions about the equation of state.
As we show in the following sections, particle trapping and pair
creation profoundly affect the plasma dynamics, with momentum
dispersion being essential to the dynamics behind the simultaneous
adjustment of the charge density to the condition of low voltage drop
along B, modelled as E · B = 0 in the force-free global model, and
the adjustment of the field aligned current j to the magnetospheri-
cally imposed jm.

The study of plasma kinetics in a general regime – without relying
on stationarity or perturbation theory – is possible only by means
of numerical simulations. In following sections we describe our
study of plasma, both fully non-neutral and quasi-neutral when pair
cascades form, with the help of a self-consistent hybrid numerical
model incorporating both charged particles and photons.

4 N U M E R I C A L S E T U P

We use the same one-dimensional hybrid Particle-In-Cell/Monte
Carlo hybrid code described in Timokhin (2010) modified for the
space charge limited flow regime. Below we briefly describe the
main equations, notations and numerical algorithms; a detailed de-
scription can be found in Timokhin (2010, sections 2 and 3).

We solve the evolutionary equation for the electric field E

∂E(x, t)

∂t
= −4π (j (x, t) − jm) , (12)

where j(x, t) is the actual current density and jm is the current
density imposed on the cascade zone by the magnetosphere. This
equation is Ampere’s law, equation (1). We are solving an initial
value problem; thus an initial distribution of the electric field E(x,
t = 0) must be supplied. At the start of the simulation we construct
the initial distribution of the electric field by solving the Gauss
equation for the electric potential φ assuming some initial charge
density distribution ηstart

d2φ

dx2
= −4π(ηstart − ηGJ) (13)

E = −dφ

dx
. (14)

We proceed with the time integration of equation (12) using a charge
conserving scheme (e.g. Birdsall & Langdon 1985; Villasenor &
Buneman 1992), so the Gauss equation is satisfied at each successive

time-step up to machine precision. The GJ charge density enters in
equation (13) for the initial configuration of the electric field; this
information is then ‘carried on’ in time by equation (12).

To model the space charge limited flow at every time-step we
inject electrons and protons just outside the numerical domain used
for the electric field calculation and let the system pull the necessary
amount of particles into that domain. We do not set E(x = 0, t) to
zero as a boundary condition but rather allow the plasma in the
system to enforce this condition as part of the simulated physics.
A detailed description of our algorithm for reproducing the space
charge limited flow condition at the NS surface is given in Appendix
C. When pair creation cascades occur, we take into account only
curvature radiation as the gamma-ray emission mechanism; pairs
are created by single photon absorption in the strong magnetic field
(e.g. Erber 1966).

We performed many numerical experiments starting from differ-
ent initial conditions: (i) computational domain filled by plasma
with charge density equal, less and higher than the GJ charge den-
sity as well as starting with vacuum; (ii) different initial potential
drop over the domain; (iii) different length of the computation do-
main. In all cases without exception after initial relaxation on the
time-scale of the order of the fly-by time of the domain the system
settled down to a configuration which depends only on the imposed
current density jm.

5 LOW E N E R G Y C H A R G E S E PA R AT E D ,
SUB-GJ FLOW: 0 < jm/jGJ < 1

As it turns out, there is no pair formation for 0 < jm/jGJ < 1
and the only characteristic spatial scale of the flow is the Debye
length λD, GJ. In this section we will discuss the properties of such
flow using simulations in domains with the length L up to several
hundreds of λD, GJ, which is much less than the width of the polar
cap. Using such a small domain we well resolve the characteristic
spatial scale; increasing the domain length does not change the
results.

According to the stationary solution from Section 3 there is no
relativistic particle acceleration when 0 < jm/jGJ < 1. The flow is
spatially oscillatory and the maximum momentum of particles pmax

is by far too small for emission of pair producing photons. It is
unlikely that such oscillatory cold flow can exist – near the stagna-
tion points it may be a subject to ‘instability’ with characteristics
of the wave breaking to which non-linear waves in cold fluids with
velocity stagnation are subject, which could destroy the spatial os-
cillation and create an effective resistor, across which a substantial
fraction of the perpendicular (to B) voltage drop might appear. The
available voltage drop across B is huge and in principle it might
happen that the system ends up in a state with highly oscillatory
electric field and bursts of pair formation as predicted in the two-
fluid plasma model of Levinson et al. (2005). On the other hand,
finite amplitude electrostatic waves containing similar stagnation
points show wave breaking, with alteration of cold to hot flow with
momentum dispersion no more than comparable to the flow veloci-
ties found in the originally constructed cold oscillation (Akhiezer &
Polovin 1956; Tajima & Dawson 1979). That would create a warm
but non-relativistic or mildly relativistic charge-separated outflow.

We find that in the sub-GJ regime, the non-neutral flow is indeed
low-energetic, with particle energies orders of magnitude below
the energy/particle required for pair production. However, the final
state differs drastically from the oscillatory flow from the stationary
solution shown in Figs 2 and 3. Even if at the beginning of the
simulations particles follow trajectories of the stationary solution,
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Pair cascades over pulsar polar caps 7

Figure 5. Development of ‘trapped particle’ flow when the space charge limited flow which starts into vacuum. Phase space portrait of particles are shown for
16 moments of time indicated in small boxes on the top of each plot. The current density jm = 0.5jGJ. The distance x is measured in units of the Debye length.
Red dashed lines show the analytical solution for stationary flow. Particle momenta p− are normalized to mec. The total length of the computational domain
L = 50λD, GJ, only part of it (x < 50λD, GJ) is shown here. Time is measured in fly-by time (L/c) of the whole domain. Snapshots in the same row have the
same time interval between them, but these time intervals are different for different rows; they increase towards the bottom row.

the standing non-linear wave structure breaks quickly – particles at
the velocity zeros of the cold flow go both up and down.

A good example of this inherent instability is shown in Fig. 5.
We start from a vacuum configuration – when there are no particles
in the domain – and let the system evolve. In Fig. 5 we show
snapshots of the phase space portraits of the flow with jm = 0.5jGJ;
the distance from the NS, normalized to λD, GJ, is along x-axis, and
particle momenta, normalized to mec, are along y-axis. The whole
domain has the length L = 50λD, GJ and we show only a part of
it here. Time t is measured in fly-by time of the whole domain
L/c. With the dashed red line we show phase space trajectories of
particles from stationary solution. Particles coming from the surface
at first follow the trajectories of the stationary solution. However,
after coming to the first stagnation points some of the particles are
turned back and the flow starts to randomize. After several tens of
plasma periods λD, GJ/c the flow reaches its final configuration.

Examples of final configurations for space charge limited flow
with different current densities are shown in Fig. 6, where we plot
phase space portrait of particles in the whole computation domain.
The flow has two components: a warm beam of particles with high-
est momentum which produce the required current density and a
cloud of charged particles circulating in the domain – these com-
pose an electrically trapped, ‘thermal’ component. In the cloud
component there is roughly equal number of particles moving in
opposite directions; these particles do not contribute to the current

but contribute ηGJ − jm/c to the charge density keeping ηtotal equal
to the GJ charge density. The distinction between these components
is not absolute as some particles from the beam go into the cloud and
vice versa, although the fraction of mixing particles is small. Some
of the particles in the cloud have very low momenta and so they can
adjust to any given charge density. Hence, in sub-GJ space charge
limited flow, 0 ≤ jm/jGJ < 1, the electric field is not sensitive to vari-
ation in the GJ charge density3 – in contrast to the large importance
of variation in the GJ charge density for relativistic acceleration of
space charge limited cold beams in the polar cap cascade models of
Arons & Scharlemann (1979) and Muslimov & Tsygan (1992).

Plasma flow in the sub-GJ regime can be described as a beam of
mildly relativistic particles propagating through a cloud of trapped
particles with near-thermal distribution. In Fig. 7 we plot particle
distribution functions. The beam component is visible as a bump
on the distribution function at the high momentum side. The cloud
component has a near-thermal (Maxwell–Juttner) momentum dis-
tribution (at least in its low-energy part) ∂n/∂p ∝ const – such
quasi-thermalization is a common consequence of the phase mix-
ing between the particles and fields built into the wave breaking
process.

3 We performed simulations for jm/jGJ < 1 with variable GJ charge density,
and, as expected, saw the electric field to be just as screened as in the uniform
GJ density case.
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8 A. N. Timokhin and J. Arons

Figure 6. Phase space portraits of well-developed space charge limited flows for six different current densities: jm/jGJ = 0.1, 0.25, 0.5, 0.75, 0.9, 0.95. Current
density jm is indicated in the left upper part on each plot. Distance is measured in units of λD, and particle momenta p− are normalized to mec. Note that the
lengths of the computation domain differ between these plots.

Figure 7. Particle distribution functions p (∂n/∂p) for well-developed space charge limited flows from Fig. 6. Distribution functions of particles with positive
momenta (moving towards the magnetosphere) are shown by solid lines, and distribution functions of particles with negative momenta (moving towards the
NS) by dashed lines.

When particles leave the NS they are non-relativistic and their
charge density η = jm/v = ξ jGJ/v is larger than the GJ charge
density and so they form a charge sheet near the surface generating
accelerating electric field, just as in the idealized stationary case (see
Fig. 4). When particles reach the velocity such that |jm|/v < |ηGJ|
the electric field derivative dE/ds changes sign and after some dis-
tance the electric field can start decelerating particles. At the point
where E = 0 particles reach their maximum momentum. Above the
gap particles from the cloud component add additional charge and
so the change density there is equal to ηGJ and the electric field is
screened. The length of this gap is of the order of smax = s0/2 (half
the spatial period of cold flow oscillations) and so the maximum
momentum particles gain in this gap is comparable to pmax (both

smax and pmax depend on jm). In Fig. 9 we plot momenta of particles
in the beam component as functions of ξ = jm/jGJ superimposed
on the theoretical dependence of pmax given by equation (10); the
agreement is pretty good. The current density in the final configu-
ration is close to jm throughout the domain, with small fluctuations
around this value δj � jm.

In Fig. 8 we plot the electric field in the calculation domain at the
same moments of time as the phase space portraits shown in Fig. 6.
The electric field at any given point fluctuates, but the relative fluc-
tuation at the beginning and at the end of the domain (accelerating
and decelerating regions; see below) are much smaller than those in
the centre of the domain (the region of the charge cloud). The elec-
tric field in the gap near the NS launches the beam component. The
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Pair cascades over pulsar polar caps 9

Figure 8. Snapshots of the electric field E for well-developed space charge limited flows taken at the same moment as the phase space portraits from Fig. 6.
E is normalized to πηGJλD, GJ.

Figure 9. Momenta of the current currying particle beam. The widths of
the peaks at Fig. 7 as the function of ξ = jm/jGJ are shown by the blue bars.
The solid red line is the maximum achieved momentum for the stationary
SCLF solution.

electric field at the other end of the computation domain supports
the cloud components by reversing the momenta of most of the par-
ticles in the cloud moving away from the NS, sending them back.
This electric field is not strong enough to reflect most of the beam
particles. The mixing between the beam and cloud components is
the strongest here. This electric field appears self-consistently when
the flow reaches its steady configuration,4 because it is needed to
sustain the cloud component necessary to match both the charge and
the current density in the domain. In our small-scale 1D simulations
we impose the current density on the domain, which finally gives
rise to the electric field at the right end of the domain. In reality, it
is the magnetosphere which sets the current density by twisting the
magnetic field lines and generating electric field reversing some of
the particles. This second region with an unscreened electric field
at the magnetosphere end of the domain in our model may be a

4 The formation of the cloud component is not linked to the appearance of
the electric field at the end of the domain (see e.g. Fig. 5).

‘compressed’ version of some parts of the outer magnetosphere.
For example, on field lines that pass through the null surface where
� · B = 0, the plasma cloud and beam, composed of only one sign
of charge, cannot freely enter the outer magnetosphere (Scharle-
mann, Arons & Fawley 1978) in the absence of other sources of elec-
tric field in other parts of the magnetosphere (Goldreich & Julian’s
‘hanging charge clouds’), offering the possibility of opening a vac-
uum gap within the otherwise force-free structure. On the other
hand, on polar field lines that never cross the null surface – most of
them, in the aligned rotator – the charge-separated beam and cloud
can extend outwards ‘forever’, in principle. Multi-dimensional par-
ticle simulations, analogous to those of Spitkovsky & Arons (2002),
are required to see if indeed this speculation is true (as well as de-
termine how this essentially 1D model might fit together with the
other, more ‘lively’ aspects of the polar flow outlined in Section 6).

In Fig. 10 we show power spectra of the fluctuating electric field
in the central parts of the calculation domain, outside of the accel-
eration zones. Ik = |Ek|2, where Ek is the spatial Fourier amplitude
of the electric field and the wave vector k is normalized to the λ−1

D,GJ.
These spectra can be fitted with the power law Ik ∝ k−α with α

between 2 and 3 for all current densities.
Thus, along magnetic field lines where the current density is sub-

GJ there is no pair formation, so long as strong electric fields in
neighbouring, more active flow zones do not leak into the cloud. In
an aligned rotator, for example, no pairs are forming above most of
the polar cap area. Plasma flowing along such magnetic field lines is
mildly relativistic, consists of particles of only one sign (electrons)
and its density is low, equal to the GJ number density. However,
observational evidence for ongoing pair formation in pulsars is very
strong and, hence, there must be regions in the pulsar magnetosphere
where electron–positron plasma is created.

6 PL A S M A F L OW W I T H PA I R F O R M AT I O N –
S U P E R - G J A N D R E T U R N C U R R E N T R E G I O N S

Let us now consider what happens along magnetic field lines where
the current density has either (i) the opposite sign to the GJ current
density, j/jGJ < 0, anti-GJ flow, or (ii) the same sign and absolute
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10 A. N. Timokhin and J. Arons

Figure 10. Power spectra of the electric field Ik = |Ek|2 for well developed space charge limited flows from Fig. 6. k is normalized to the corresponding
1/λD, GJ.

value larger than the GJ current density, j/jGJ > 1, super-GJ flow.
Case (i) includes the regions of return current, including the current
sheet, while case (ii) is relevant for most of the magnetic field lines
in a nearly orthogonal rotator. As we show in this section, in both of
these cases a strong accelerating electric field is generated. When
the resulting potential drop is sufficient to accelerate particles up to
the energies such that they can emit photons that convert to pairs
within the accelerator, the plasma flow will be highly non-stationary
with intermittent pair creation.

In a real pulsar the magnetic field strength falls with the distance
(∝ r−3 for a dipole field) and pair creation is possible only at
sufficiently low altitude (if gamma-ray interaction with thermal low
energy photons is neglected). In order to imitate the effect of pair
creation attenuation with the distance we set the magnetic field
strength to zero starting at distance xB from the NS – the magnetic
field is given by

B(x) =
{

B0, if x ≤ xB

0, if x > xB.
(15)

If the charge density were formed from steadily flowing rela-
tivistic beams, it would vary with the height as η(x) ∝ B(x). The GJ
charge density changes in a slightly different way, η(x) ∝ B(x) f (x)
due to inertial frame dragging (Muslimov & Tsygan 1992; Beskin
1990) or/and field line curvature (Scharlemann et al. 1978). If one
neglects the latter effects, scaling ∝ B(x) can be incorporated into
the spatial (for equation 13) or temporal (for equation 12) coordi-
nates. The electrodynamics of the cascade zone can be modelled in
a 1D problem with constant GJ charge density; the only effect of the
GJ charge density variation will be in changing the spatial (and tem-
poral) scales. The same scaled 1D model can also be used to study
the effects on the electrodynamics of the cascade zone of deviation
of the GJ charge density scaling from being ∝ B(x) by consider-
ing a problem where ηGJ depends on the distance; the variation of
the GJ charge density will be given by f (x) as the dependence on
B(x) is already incorporated in the model. First, in Sections 6.1 and
6.2, we consider the case when the GJ charge density is constant,
i.e. this case corresponds to a model where variation of ηGJ/B is

neglected. Then in Section 6.3 we address the influence of the GJ
charge density variation on the physics of the cascade zone.

While simulations of space charge limited flow with sub-GJ cur-
rent densities described in Section 5 can be considered as directly
related to more complete pulsar models – the distance over which
wave breaking and trapping control the flow is much smaller than
the width of the polar cap, and the 1D approximation is well mo-
tivated – the pair creation models presented in this section can be
considered only as illustrative of the physics but not fully applica-
ble to pulsars. The spatial scales over which pair creating photons
are absorbed, even when they are emitted at very low altitude (e.g.
the attenuation length of the magnetic field), are much larger than
the width of the polar cap, making transverse structure essential for
modelling the pulsar environment – such effects are necessary for
a full evaluation of the pair yield, since much of the pair creation
occurs in regions beyond the acceleration zone. Nevertheless, from
our 1D models we obtain insight into the basic cascades physics
in a regime never modelled previously. Multi-dimensional models
will be considered elsewhere.

Within the context of the 1D model, the domain length, L, and
the value of xB (the height above which the magnetic field is too
weak to support pair creation) are the parameters having the largest
departure from what would appear in multi-dimensional context.
These lengths in our simulations are much smaller than in real
pulsars, but that choice allowed us to construct models utilizing
reasonable amounts of CPU time and to explore a broad parameter
space. L and xB were chosen in such a way that the minimum size
of the accelerating region necessary to start pair creation is at least
two to three times less than xB.

We performed numerous simulations for different initial con-
ditions and physical parameters in order to study the qualitative
behaviour of cascades. We performed simulations with different
values of the numerical parameters (spatial resolution, time-steps,
particle injection rate, number of particles per cell) in order to
check the numerical convergence. In all physical cases presented
in this section plasma flow is quasi-periodic, and this behaviour
does not depend on initial conditions – after a short relaxation time,
comparable to the fly-by time of a relativistic particle through the
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Pair cascades over pulsar polar caps 11

computational domain, the system settles down to a limit cycle
sort of behaviour. We describe here a particular set of simulations
which is representative of all other models. Simulations described
in Sections 6.1 and 6.2 have the following physical parameters:
the length of the domain L = 2.4 × 104 cm, the potential drop
in vacuum across the domain �V = 1014 V,5 the radius of curva-
ture of the magnetic field lines with respect to a photon orbit ρc =
106 cm ∼ the stellar radius (small compared to the pure star cen-
tred dipole value

√
R∗RLC ∼ 107.8P 1/2 cm but easily attained in

offset dipole geometry (Arons 1998; Harding & Muslimov 2011;
Arons, in preparation); magnetic field strength B0 = 1012 G. The
distance xB marking the transition to the outer magnetosphere with
a small magnetic field is set to xB = 0.7L. The particular simulations
described in these two sections differ only in the imposed current
density jm.

We illustrate the flow dynamics with a series of snapshots for
different physical quantities shown in Figs 11–16 and 20–22. In
these figures, each column gives detailed information about physical
conditions in the computation domain at a given moment of time: the
number densities of electrons and positrons n± (shown as charge
densities of electrons and positrons η±, n± = |η±|), total charge
density η, current density j, the accelerating electric field E, phase
portraits of electrons, positrons and pair producing photons, and,
in Figs 14–16, protons. Particles with positive values of the four-
velocity p are those which move away from the NS (towards higher
altitude), and particles with negative p move towards the NS. These
plots are similar to ones in Timokhin (2010), with the only difference
that now we use semi-logarithmic scale for particle momenta (linear
for −5 < p < 5 and logarithmic everywhere else) on phase space
portraits that show dynamics of high and low energy particles on
the same plot.

The number density, charge density and the current density are
normalized to the corresponding GJ values: η± and η are normal-
ized to |η0

GJ|, j to |η0
GJ|c, where η0

GJ is the GJ charge density at the
NS surface (the distinction between ηGJ and η0

GJ will be important
for models described in Sections 6.3 and 6.4). The electric field
is normalized to E0 ≡ |η0

GJ|πL. The distance x on these plots is
normalized to L, much larger than the Debye length λD, GJ. The
time t is normalized to the relativistic fly-by time of the computa-
tional domain L/c = 0.8 μs for the chosen parameters. The time
is counted from the start of a particular simulation, so only time
intervals between the snapshots have a physical meaning.

In all cases, plasma flow and pair formation have limit cycle
behaviour. In each case we illustrate this behaviour by three series
of snapshots taken within one typical cycle. These three series show
three phases of plasma flow: cascade ignition (Figs 11, 14 and 20),
development of the cascade (Figs 12, 15 and 21) and filling the
domain with dense pair plasma (Figs 13, 16 and 22). In each figure
time intervals between snapshots are equal, but these intervals are
different in different figures.

5 Such vacuum potential drops over the domains of this size are realistic
in young, high magnetospheric voltage pulsars, �m > 1015 V. This choice
allows studying pair formation over distances smaller compared to the polar
flux time diameter. In more common pulsars with �m < 1013 V, pair for-
mation happens over (much) larger distances. However, as we mentioned
before, our simulations represent a toy model addressing the general be-
haviour of the polar cap acceleration zone and our choice of parameters is
motivated by convenience of simulations, rather than by attempt to model a
real pulsar.

6.1 Flow with jm/jGJ < 0

In this section we describe cascade development for two cases when
the imposed current density is anti-GJ (i.e. has the opposite sign to
the GJ current density), for jm = −0.5jGJ and jm = −1.5jGJ. To sup-
port such current electrons on average must move towards smaller
x, down towards the NS, positrons towards larger x, up into the mag-
netosphere. Electrons could be freely emitted from the NS surface,
but because the imposed current causes the growing electric field
to point away from the surface, electrons at the surface are acceler-
ated downwards and none is extracted from the star.6 This situation
resembles the case of the Ruderman & Sutherland (1975) cascades
studied in Timokhin (2010) in the sense that all the particles are
produced during the burst of pair formation. Hence, the physics of
pair cascades with anti-GJ imposed current density discussed in this
section are also applicable to Ruderman & Sutherland cascades as
well.

Particles leave the domain and some time after the burst of pair
formation the domain becomes depleted of electrons. This process
starts at the right end of the domain – at the ‘magnetosphere’ end
– as electrons are moving down towards the NS. In the region
depleted of electrons, the positrons support the current density j <

jm with charge density η > ηGJ. This gives rise to the electric field
which accelerates positrons towards the magnetosphere – see the
phase portraits of positrons in Figs 11 and 14. The electric field
in this region at any given point is growing with time and the size
of the region with unscreened electric field is getting bigger as the
remaining electrons are moving towards the NS. The electric field
grows linearly with the distance because positrons are relativistic
and so their charge density remains constant (see plots for E in Figs
11 and 14).

As the region with the unscreened electric field grows, positrons
are being accelerated up to higher and higher energies and begin
emitting pair producing gamma-rays. Positrons remaining from the
previous burst of pair formation are the particles which ignite the
next burst. As positrons are moving up (and so do the first pair pro-
ducing photons), the first pairs are produced at the largest distance
from the NS where pair formation is still possible, in our case near
x = xB = 0.7L. The injected pairs are picked up by a very strong
electric field and are accelerated to high energies in less time than
the first generation positrons. They emit pair-producing capable
gamma-rays, but now both secondary electrons and positrons are
emitting pairs. As electrons and positrons move in opposite direc-
tions so do the gamma-rays – see snapshots for gamma-rays phase
space at t > 8.100 in Fig. 11 and t > 6.390 in Fig. 14.

Secondary electrons and positrons are moving in opposite di-
rections and the plasma gets polarized – see plots for η± and η

at t = 8.260 in Fig. 11 and at t = 6.430 in Fig. 14. When their
number density becomes comparable to the GJ number density,
these particles start screening the electric field (see plots for E at
t = 8.260 and 8.270 in Figs 11 and 12 and at t = 6.430 and 6.440
in Figs 14 and 15). The screening starts in the region where the first
pairs were injected because pairs have been injected here for the
longest time and their number density is larger.

The rate at which particles left from the previous burst of pair
formation are leaving the domain depends on the imposed current
density. The average bulk motion of electrons for jm = −0.5jGJ is

6 Due to numerical noise the electric field fluctuates and sometimes elec-
trons ‘from the NS surface’ enter the domain; however, the number of such
electrons is well below the fluctuation of electron number density due to
numerical noise.
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12 A. N. Timokhin and J. Arons

Figure 11. Ignition of pair formation in anti-GJ flow with jm = −0.5jGJ. Several physical quantities are shown as functions of the distance x from the NS;
x is normalized to the domain size L. Plots in each column (for the same time t) are aligned – they share the same values of x. The following quantities are
plotted: first row: η± – charge density of electrons (negative values, blue line) and positrons (positive values, red line); η± is normalized to the absolute value
of the Goldreich–Julian charge density |ηGJ|. Second row: the total charge density η normalized to the absolute value of the Goldreich–Julian charge density
|ηGJ|. Third row: current density j normalized to the absolute value of the Goldreich–Julian current density |jGJ| ≡ |ηGJc|. Fourth row: accelerating electric
field E normalized to the ‘vacuum’ electric field E0 ≡ |ηGJ|πL. Fifth row: phase space portrait of positrons (horizontal axis – positron position x, vertical axis
– positron momentum p+ normalized to mec). The vertical axis is logarithmic except for the region around zero momentum (−5 < p+ < 5), where the scale is
linear. Sixth row: phase space portrait of electrons (horizontal axis – electron position x, vertical axis – electron momentum p− normalized to mec). Seventh
row: phase space portrait of pair-producing photons (horizontal axis – photon position x, vertical axis – photon momentum pγ normalized to mec).

less than 0.5c, while for jm = −1.5jGJ it is close to c,7 and the size
of the electron-depleted region grows slower in the first case than in
the second one. Second generation electrons, which mark the upper
boundary of the gap, move with ultrarelativistic velocity towards
the NS. Because of this in the case of jm = −0.5jGJ the gap with the
accelerating electric field quickly disappears – at t = 8.430 in Fig. 12

7 Note that the time intervals between the snapshots in Fig. 11 is two times
larger than that in Fig. 14.

secondary particles have already caught up with the particles from
the previous burst of pair formation and the electric field is screened
everywhere where pair formation is possible. In the case of jm =
−1.5jGJ the gap moves towards the NS approximately retaining its
size (see Figs 15 and 16). This behaviour is generic. Namely, for
imposed current densities with less-than-GJ absolute values, |jm| <

|jGJ|, the average bulk motion of particles from the previous burst
of pair formation is non-relativistic, which leads to quick closure
of the accelerating gap. If the absolute value of the imposed current
density is larger-than-GJ, |jm| > |jGJ|, the average bulk motion of
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Pair cascades over pulsar polar caps 13

Figure 12. Screening of the electric field in anti-GJ flow with jm = −0.5jGJ. The same quantities are plotted as in Fig. 11.

particles from the previous burst of pair formation is relativistic and
the gap propagates in the direction of this bulk motion. The same
behaviour was observed also in the case of Ruderman–Sutherland
cascades studied in Timokhin (2010).

In the case of jm = −0.5jGJ the gap with the accelerating electric
field closes and particles in the region where pair formation is possi-
ble are not accelerated anymore. The pair formation continues only
due to particles being accelerated before the gap disappeared. There
are comparable numbers of particles accelerated in both directions,
but electrons moving towards the NS propagate in the region where
pair formation is possible and so after screening of the electric field
most of the pairs are created with the initial momenta directed to-
wards the NS (see phase portraits for pair producing gamma-rays
for t > 8.180 in Figs 11–13 and particle distribution functions in
Fig. 17). In the case of jm = −1.5jGJ the gap propagates down
to the NS surface. While the gap is moving, positrons left from
the previous bursts of pair formation, which are still present at
the NS side of the domain, enter the gap, are picked up by the

electric field, and emit pair producing gamma-rays. In this case
the pair production is sustained not only by electrons accelerated
in the initial screening event but also by positrons continuously
accelerated in the moving gap towards the magnetosphere. Phase
portraits of gamma-rays in Figs 14–16 clearly show the presence of
gamma-rays moving towards the magnetosphere during all stages
of cascade development (see also the plot for particle distribution
functions in Fig. 18). Gamma-rays with positive momenta occupy a
larger fraction of the space over time, as the gap propagates towards
the NS.

Regions far from the NS surface experience charge starvation
first. The pair formation is possible only in the regions with a strong
magnetic field and until the starved region extends into the strong
field domain the electric field remains unscreened. After the start of
pair formation, the dense plasma propagates also in the direction of
the magnetosphere screening the accelerating electric field there. In
our simulations the region with x > 0.7L represents the rest of the
magnetosphere, and in snapshots with t = 8.430–8.990, in Figs 12
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14 A. N. Timokhin and J. Arons

Figure 13. Filling of computation domain with dense pair plasma in anti-GJ flow with jm = −0.5jGJ. The same quantities are plotted as in Fig. 11.

and 13, and t = 6.560–6.930, in Figs 15 and 16, one can clearly
see how the dense pair plasma fills the domain with x > 0.7L.
Filling of that domain with plasma is forced by a small electric field
induced in the dense pair plasma by the imposed current. The rate
at which these regions are filled with the dense plasma depends on
the imposed current – in the case of jm = −0.5jGJ the average bulk
motion of the pair plasma is about 0.5c, while for jm = −1.5jGJ it is
relativistic.

The accelerating electric field is very strong in the domain where
pairs cannot be produced until electrons generated in the discharge
arrive, and positrons (either primary or secondary ones) entering this
domain before electron arrival are accelerated up to high energies.
In our model pairs are created only by single photon absorption in a
strong magnetic field, which automatically restricts pair formation
to the polar cap region. However, electron–positron creation via
γ –γ absorption can be possible at much higher distances from the
polar cap, similar to the outer gap scenario (Cheng et al. 1986).

In our model between the bursts of polar cap pair formation in
the magnetospheric region above the low-altitude pair producing
zone, at x > xB, particles can be accelerated up to radiation-reaction
limited energies and emit very high energy gamma-rays. In a more
realistic model, when γ –γ absorption is taken into account, this
should give rise to cascades in the outer magnetosphere resembling
to some extent the outer gap scenario, except that the accelerating
zone would not be limited to the region around the null surface,
where the GJ charge density changes sign. Due to the intermittency
of plasma flow in the return current region both polar cap and the
outer gaps like cascades might exist along the same magnetic field
lines. However, without higher dimensional simulations it is not
clear how the interaction between two such cascade zones would
play out.

Screening of the accelerating electric field during each burst of
pair formation gives rise to a superluminal electrostatic wave. In
Fig. 19 we show screening of the electric field in the gap for the
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Pair cascades over pulsar polar caps 15

Figure 14. Ignition of pair formation in anti-GJ flow with jm = −1.5jGJ. The same quantities are plotted as in Fig. 11 with the addition of the phase space
portraits for protons in eighth row: (horizontal axis – proton position x, vertical axis – proton momentum pp normalized to mpc).

flow with jm = −0.5jGJ, for flow with jm = −1.5jGJ the situation is
very similar. Plots in Fig. 19 show in more detail than in Fig. 12 how
the accelerating electric field is being screened by newly created pair
plasma about t = 8.350. Screening of the electric field starts in the
middle of the blob of newly created plasma and spreads to its edges.
This spreading occurs in the form of an electrostatic wave the phase
velocity of which is larger than c. This process is almost identical
to what was observed for cascades described in Timokhin (2010)
where more detailed discussion of the screening process can be
found in section 4.2 [cf. our Fig. 19 with fig. 5 in Timokhin (2010)].

As in the simulations described in Timokhin (2010), second gen-
eration particle momentum distributions are very broad, extending

towards non-relativistic energies. At least one of the reasons for
momentum broadening of the particle spectra is trapping of parti-
cles in the strong electrostatic wave excited at the beginning of each
burst of pair formation. The dynamics of these discharges are very
similar to what is seen in simulations of the Ruderman & Suther-
land cascade; more details on momentum spreading can be found in
section 4.3 of Timokhin (2010). The appearance of the low energy
component in the pair plasma is visible in the electron and positron
phase portraits – initially at distances where pairs are injected, there
are no particles in the phase space with low momenta, but later
particles fill in the low momentum regions (see plots at t ≥ 8.350 in
Figs 12 and 13 and for t ≥ 6.500 in Figs 15 and 16). In Figs 17 and
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16 A. N. Timokhin and J. Arons

Figure 15. Screening of the electric field in anti-GJ flow with jm = −1.5jGJ. The same quantities are plotted as in Fig. 14.

18 we plot the particle momentum distribution p (∂n/∂p) for three
different moments of time. In the upper panel we plot the momen-
tum distribution of particles moving towards the magnetosphere, p
is positive; in the lower panel – the momentum distribution of par-
ticles moving towards the NS, p is negative. These distributions are
averages for regions where the electric field at the magnetosphere
end is screened. On these plots one can see that the low energy
plasma component is present at all stages of cascade development.

There is a physical effect specific to cascades along field lines
carrying return current – positive ions (in our model protons) can
be pulled from the NS. Both electrons and protons can be extracted
from the NS surface, and in our simulations we allow injection
of both species. The imposed current density requires positively

charged particles to move towards the magnetosphere, i.e. protons
could be pulled from the NS. However, for less-than-GJ current den-
sities (|jm| < |jGJ|) there are always electrons and positrons near the
NS surface left from the previous burst of pair formation. The gap’s
accelerating electric field disappears before it reaches the NS, while
pair plasma appears after every burst of pair formation keeping the
electric field near NS screened. In our simulations of cascades with
less-than-GJ current densities we did not see injection of protons.
In the case of larger-than-GJ current density (|jm| > |jGJ|) protons
are indeed pulled from the NS, at least at some stage of cascade de-
velopment, and this cannot be attributed only to numerical effects.
In this case we see some protons pulled from the NS at any time,
even if pair plasma is present near the NS. The number density of
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Pair cascades over pulsar polar caps 17

Figure 16. Filling of computation domain with dense pair plasma in anti-GJ flow with jm = −1.5jGJ. The same quantities are plotted as in Fig. 14.

these protons never exceeds ∼0.2nGJ, at least 10 times less than the
number density of electrons and positrons; protons do not play a
substantial role in the electrodynamics of discharges. The number
density of protons pulled from the NS while electrons and positrons
are still present near the NS surface depends on the numerical res-
olution and, hence, our simulations are inconclusive about whether
this effect is real. However, there is a stage in cascade development
when the region near the NS gets depleted of pair plasma; at those
times proton extraction from the NS is certainly a real effect. The
number of particles left from the previous burst of pair formation
near the NS is not enough to support the imposed current density
and screen the electric field until the new portion of the pair plasma
arrives. A gap with the electric field appears at the NS surface – see
snapshots at t = 6.730, 6.830 in Fig. 16. This gap is best visible on

phase portraits of positrons as a second region (the one close to the
NS) depleted of those particles. The electric field in the gap starts
accelerating protons from the NS surface, as is clearly visible in
phase space portrait for protons in Fig. 16. In our simulations this
second gap does not become large enough to accelerate electrons
to energies sufficient to start another burst of pair formation near
the NS surface, but we cannot exclude this possibility in all cases.
Finally, the main gap reaches the star and pulls out protons as well
– see snapshot at t = 6.930 in Fig. 16.

6.2 Flow with jm/jGJ > 1

In this section we describe cascade development for the case when
the imposed current density is super-GJ. As an example of such
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18 A. N. Timokhin and J. Arons

Figure 17. Momentum distributions of particles at three moments of time for cascade with anti-GJ current density jm = −0.5jGJ. Positron distributions are
shown by solid blue lines, electron distributions by dashed red lines, distribution of pair producing photons by dotted black lines. Plots in the top row show
distributions for particles moving towards the magnetosphere (p > 0) and plots in the bottom row show the distributions for particles moving towards the NS
(p < 0). Each column corresponds to the same moment of time shown above the plots. Plots in each columns are aligned and share the same values of |p|. The
following spacial regions were used for plotting the average distribution functions: x ∈ [0, 0.7] for t = 8.350, x ∈ [0, 0.75] for t = 8.510 and x ∈ [0, 0.85] for
t = 8.710.

Figure 18. Momentum distributions of particles at three moments of time for cascade with anti-GJ current density jm = −1.5jGJ. Notations are the same as in
Fig. 17. The following spacial regions were used for plotting the average distribution functions: x ∈ [0, 0.75] for t = 6.560, x ∈ [0, 0.88] for t = 6.730 and x ∈
[0, 1] for t = 6.930.

flow we consider the case with jm = 1.5jGJ. To support this current
density electrons must move up, towards the magnetosphere, and
positrons down, towards the NS. There is a continuous source of
electrons at the surface of the NS, x = 0. Positrons appear during
the bursts of pair formation and there is no source of positrons
during the quiet phase, between successive bursts of pair forma-

tion. To keep the electric field screened there must be both elec-
trons and positrons present at each point – electrons with larger-
than-GJ number density moving up and positrons moving down.
Positrons compensate for the larger-than-GJ number density of
electrons keeping the total charge density equal to the GJ charge
density.
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Pair cascades over pulsar polar caps 19

Figure 19. Screening of the electric field and formation of superluminal electrostatic wave for cascade with jm = −0.5jGJ. There are six snapshots for the
electric field E, the total change density η and the charge density of electrons (negative values, blue line) and positrons (positive values, red line) η±. All
quantities are plotted as functions of distance x for the part of the calculation domain with intense pair formation. Snapshots are taken at equally separated time
intervals. Plots in each column are aligned and share the same values of x. The same normalizations for physical quantities are used as in Fig. 11. The three
thin red vertical lines in each plot mark fiducial points moving with the speed of light towards the magnetosphere.

Positrons are leaving the domain and as there is no source of
positrons, some time after the burst of pair formation the domain
becomes depleted of positrons. This depletion starts at the upper
end of the domain – at the ‘magnetosphere’ – as positrons are
moving towards the NS. In the region depleted of positrons electrons
produce current density |j| < |jm| and the charge density |η| > |ηGJ|,
because their number density is set at regions closer to the NS where
positrons are still present. This gives rise to the accelerating electric
field which grows as the remaining positrons are moving towards
the NS (see Fig. 20). For time shots at t = 9.380–9.500 on the plots
for the charge density η and the current density j there are small
jumps in both η and j at the point where the number density of
positrons drops to zero. The electron number density remains the
same, but positrons are leaving, enlarging the region depleted of
positive charges.

As the gap grows, electrons are accelerated up to higher and
higher energies and start emitting pair producing gamma-rays. In
this case, electrons extracted from the NS surface, with the number

density of the order of |jm|/e, are the particles which ignite the next
burst of pair creation. As electrons are moving up (as do the first
pair producing photons), the first pairs are produced at the farthest
distance where pair formation starts to be possible, near x = xB =
0.7L in our example. The injected pairs are picked up by the very
strong electric field and are accelerated to high energies in less time
than the primary electrons. Soon they start emitting pair producing
capable gamma-rays which decay into pairs, see snapshots for t ≥
9.420 in Fig. 20. Electrons and positrons are moving in opposite di-
rections; the pair plasma becomes polarized and starts screening the
electric field, see plots for η±, η and E at t = 9.500, 9.520 in Figs 20
and 21.

The screening of the electric field proceeds similarly to that in
the case of anti-GJ flow with jm = −1.5jGJ described in Section 6.1.
The electric field is being screened first near x = xB; this creates
a finite size gap with accelerating electric field which moves to-
wards the NS. The bulk motion of positrons left from the previous
burst of pair formation is relativistic and the newly created pairs are
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20 A. N. Timokhin and J. Arons

Figure 20. Ignition of pair formation in super-GJ flow with jm = 1.5jGJ. The same quantities are plotted as in Fig. 11.

relativistic too, so the boundaries of the regions where the electric
field is screened are moving in the same direction (towards the NS)
with the same speed. The region in between with a non-screened
field – the gap – is therefore also moving, retaining its size. Elec-
trons are continuously extracted from the NS to sustain the imposed
current density. They enter the gap, are accelerated and emit pair
producing gamma-rays. Pairs are produced by (i) primary electrons
extracted from the NS surface accelerated by the moving gap and
(ii) secondary positrons moving towards the NS accelerated in the
initial screening event. The beam of primary electrons accelerated in
the gap is clearly seen on plots for particle momentum distribution
(Fig. 23) as a spike in the electron distribution function for positive
values of p (the upper plots in Fig. 23). In contrast to the case with
jm = −1.5jGJ, where the number of particles which were continu-
ously accelerated in the gap was small and most of the pair were
produced with momenta directed towards the NS, here more pairs
are injected with momenta directed towards the magnetosphere –
see Fig. 23 and plots for particle number density η± at t > 9.640 in

Figs 21 and 22. As in the case of anti-GJ flow secondary particles
have broad momentum spectra – the low energy plasma components
are present at all stages of cascade development (Fig. 23).

The pair creation ends when the down flow component of the
pairs reaches the stellar surface – the gap closes and the accelerat-
ing electric field is poisoned throughout the strong magnetic field
region, while the beam component that emits the primary pair creat-
ing photons and its daughter pairs move up at the speed of light, into
the magnetosphere, as can be seen in the e+ and e− phase portraits
with advancing time in Figs 21 and 22. Positrons’ bulk motion is
towards the NS and some time after the plasma burst leaves – the
wake of the departing burst being the source of positrons – the upper
regions become deplete of positrons and the cycle starts again.

Both in the case of super-GJ flow with constant GJ charge den-
sity described here and in anti-GJ flow described in Section 6.1,
the cascade starts at the upper boundary of the strong field region
when the upper regions become depleted of positrons or electrons
correspondingly, as the latter move down. The rate at which these
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Pair cascades over pulsar polar caps 21

Figure 21. Screening of the electric field in super-GJ flow with jm = 1.5jGJ. The same quantities are plotted as in Fig. 11.

regions become charge depleted depends on the imposed current
density; the higher the absolute value of jm the faster is the bulk
motion of the charge component moving towards the NS. For |jm|
comparable or larger than |jGJ| this bulk velocity is close to c. Thus
the limit cycle period is larger than the relativistic fly-by time over
the length of the strong field region. In our simulations, that region
has size 0.7L = 168 m, with fly by time 0.56 μs. However, in a
real pulsar, the optical depth for pair creation by curvature photons
emitted by the beam exceeds unity all the way out to heights com-
parable to the stellar radius. Then the fly-by and recurrence times
might be as long ∼30 μs, with the intermittent plasma starved re-
gions taking the form of long filaments. Assessing these structures
and accounting for competition between neighbouring filamentary
gaps are intrinsically 2D issues, and will be treated elsewhere.

Because the cascade starts far from the NS, at the largest dis-
tance where pair formation becomes possible, in our simulations
the accelerating electric field is unscreened between bursts of pair
formation above the pair formation zone. In this regard in the case

of constant GJ charge density super-GJ flow is similar to the anti-
GJ flow. Namely another cascade zone in the outer magnetosphere
might coexist with the polar cap accelerating zone. However, as we
will show in the next section variation of the GJ charge density with
the distance can significantly change the behaviour of cascades in
the super-GJ flow.

6.3 Effects of spatially varying Goldreich–Julian
charge density

In this section we address the effect of the mismatch between the
charge density of the space charge limited beam component and
the local GJ charge density on the cascade development. In the
widely adopted steady flow model of polar cap cascades (Arons &
Scharlemann 1979; Muslimov & Tsygan 1992) this mismatch is the
reason for the appearance of the accelerating electric field.

We performed simulations with different scaling of the GJ
charge density, both in shape (linear, power law, exponential,
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22 A. N. Timokhin and J. Arons

Figure 22. Filling of computation domain with dense pair plasma in super-GJ flow with jm = 1.5jGJ. The same quantities are plotted as in Fig. 11.

decreasing/increasing with the distance) and in amplitude for all
the cases considered in the previous sections. For the space charge
limited flow with 0 < jm/jGJ < 1 and jm/jGJ < 0 we found no
qualitative difference in cascade behaviour due to variation of the
GJ charge density. Namely, for anti-GJ flows, jm/jGJ < 0, the re-
gions far from the NS became charge-depleted first and the cascade
started at the largest distance where pair formation is possible, with
the acceleration zone propagating towards the NS. Sub-GJ flows,
with 0 < jm/jGJ < 1, – if the imposed current density was less
than the local value of the GJ current density ηGJ(x) c everywhere
– remained low energetic and had two components: a moderately
relativistic beam propagating through a cloud of trapped particles.
The main properties of space charge limited flow for these cases
described in Sections 5 and 6.1 are not affected by variations of the
GJ charge density with the distance.

The flow with super-GJ current density jm/jGJ > 1, however, can
be strongly affected by variations of the GJ charge density – we
observed different flow behaviour when the absolute value of the

ηGJ/B increased with the distance from the NS. In that case the gap
can appear close to the NS surface, in contrast to all other cases
when it appeared at large distances. If such gaps can generate pairs,
the regions above such gaps, far from the NS, remain filled with
dense pair plasma at all times.

Below we describe in detail an example of such flow using simu-
lations with exaggerated charge density contrast in order to clearly
demonstrate the above mentioned effects. We assume that the GJ
charge density changes with the distance x as

η(x) = η0
GJ

[
1 + a

( x

L

)]
, (16)

where η0
GJ is the GJ charge density at the surface of the NS and a is

a positive number.
Very close to the surface (x � R∗) all the sources of inhomo-

geneity of ηGJ/B can be approximated in this manner. For example,
if variations of the GJ charge density are because of the field line
curvature (Arons & Scharlemann 1979) the parameter a in equation
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Pair cascades over pulsar polar caps 23

Figure 23. Momentum distributions of particles at three moments of time for cascade with super-GJ current density jm = 1.5jGJ. Notations are the same as in
Fig. 17. The following spatial regions were used for plotting the average distribution functions: x ∈ [0, 0.795] for t = 9.640, x ∈ [0, 1] for t = 9.880 and x ∈ [0,
1] for t = 10.100.

(16) for the dipolar magnetic field would be given by the following
expression

aAS ≈ −3

4

θ∗ cos φ∗ sin χ

cos χ − (3/2) θ∗ cos φ∗ sin χ

L

R∗
, (17)

where θ∗ and φ∗ are colatitude and azimuth of the field line at the
NS surface [cf. equation (12) in Arons & Scharlemann (1979)].
Note that for favourably curved magnetic field lines cos φ∗ < 0 and
so aAS > 0. If GJ charge density variations are due to inertial frame
dragging (Muslimov & Tsygan 1992) then

aMT ≈ 3κg cos χ
L

R∗
, (18)

κg ≡ 2GI/R3
∗c

2 ∼ 0.15 and I = NS’s moment of inertia [cf. equa-
tion (32) in Muslimov & Tsygan (1992)].

Physical parameters of our simulations are chosen in such a way
that the length of the accelerating gap is smaller than that of xB.
This setup differs from those described in Sections 6.1 and 6.2 in
that the vacuum potential drop over the domain is larger – �V =
9 × 1014 V.8 The parameter in expression (16) for the GJ charge
density is a = 0.7, so that the GJ charge density varies linearly from
−|η0

GJ| to −1.7|η0
GJ| throughout the domain.9 The imposed current

density is jm = 2j 0
GJ ≡ 2η0

GJc, so that everywhere in the domain
the imposed current density is larger than the local value of the GJ
current density, jm > ηGJ(x) c. As the variation of the GJ charge
density with the distance (after accounting for decrease in B; see
the second paragraph of Section 6) is not larger than 15 per cent
(Hibschman & Arons 2001), our setup can be considered as a toy
model for cascades in young pulsars with jm > 1.15j 0

GJ. All other
parameters of the model are the same as those of the models in
Sections 6.1 and 6.2.

8 See Footnote 5.
9 This amount of variation is huge compared to what actually occurs –

for example, if the variation is due to inertial frame dragging, for realistic
parameters a ∼ 0.01, if L ∼ rpc.

In contrast to all other cases considered in previous sections the
dense pair plasma is always present at large distances from the NS –
the intermittent temporal gaps separating periods when the domain
is full of plasma disappear. So, we illustrate our example with two
series of snapshots in Figs 24 and 25.

When the whole domain is filled with pair plasma the current
density is constant, j = jm. The number density of electrons is larger
than |ηGJ|/e and positrons (which are left from the previous burst of
pair formation) are necessary to keep the charge density equal to the
local value of the GJ charge density. The absolute value of the GJ
charge density is smaller closer to the NS surface, ηGJ is negative
and more positrons are necessary to screen the electric field there
than at larger altitudes. Positrons, on average, move towards the NS,
and, as they slam on the NS surface and leave the domain, positrons
from higher altitudes should come closer to the NS in order to keep
the electric field screened. At some altitude the required flux of
positrons towards the NS becomes larger than the positron flux that
can be extracted from an adjacent higher altitude region without
making that region charge starved – the resulting charge starvation
causes a starvation electric field to appear close to the NS (see
snapshot at t = 9.528 in Fig. 24, the gap is best visible in the phase
portraits on electrons and positrons). In the region above the gap,
there are still enough positrons to screen the electric field – less
positrons are needed here as the absolute value of the GJ charge
density is higher there and so the mismatch in charge density |jm/c
− η(x)| is smaller. At lower altitudes, after all positrons which had
been there at an earlier time, before the gap appeared, leave the
domain, the influx of positrons from above is unable to keep the
electric field screened and so the gap extends up to the NS surface
(snapshot at t = 9.636 in Fig. 24).

The upper end of the gap extends towards higher altitudes as
positrons move towards the NS, depleting higher altitude regions
of positive charge. While the gap develops, until the ignition of
the new cascade, the current density remains close to the imposed
current density – electrons are being extracted from the NS surface
and provide the required current density (see plots for j in Fig. 24).
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24 A. N. Timokhin and J. Arons

Figure 24. Ignition of pair formation in the flow with linearly varying GJ charge density and the imposed current density jm = 2jGJ. The same quantities are
plotted as in Fig. 11.

The current density in the domain is super-GJ, j > GJj, and as there
are too few positrons in the gap the charge density there becomes
super-GJ, |η| > |ηGJ|; this gives rise to a strong accelerating electric
field in the gap (see the plot for E at t = 9.636 in Fig. 24). Both
electrons extracted from the NS surface and positrons flowing from
higher altitudes are being accelerated in the gap and as the gap
widens their maximum energies get higher and they become the
primary particles igniting the new discharge cycle (snapshot at t =
9.744 in Fig. 24).

Filling of the gap with pair plasma proceeds quickly, as the pairs
are injected throughout the whole length of the gap (time shots at
t = 9.780 and 9.816 in Fig. 25). This happens because both elec-
trons and positrons, moving in opposite directions, are emitting pair
creation capable photons, and their number densities are compara-
ble. The gap is filled with plasma before the particles created in the
previous burst of pair formation leave the higher altitude region,
and so, in contrast to the cases described in Sections 6.1 and 6.2 the
higher altitude regions are always filled with dense pair plasma.

Screening of the accelerating electric field during each burst of
pair formation proceeds slightly differently than in cases described
in the previous sections. Particles are injected throughout the whole
length of the gap and not at the gap’s one end. Simulations shown in
Fig. 25 have two ‘centres’ within the gap where screening starts. In
Fig. 26 we show in more detail than in Fig. 25 how the accelerating
electric field is being screened by newly created pair plasma about
the time t = 9.816. Fluctuations of charge and particle number
densities are significantly less pronounced than those in Fig. 19
because the accelerating field was due to mismatch of the charge
density |jm/c − η| < |GJη|. The region of the screened electric field
spreads from two centres towards the edges of the gap. In Fig. 26
we show spreading of the second zone with the centre around x �
0.2; the first ‘centre’ was at x � 0.1 where the screening started
earlier and the electric field is now almost completely shorted out.
This spreading occurs again in the form of an electrostatic wave
phase velocity of which is larger than c and amplitude decreases
with time.

 by guest on January 9, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



Pair cascades over pulsar polar caps 25

Figure 25. Screening of the electric field and final stages of pair formation in the flow with linearly varying GJ charge density and the imposed current density
jm = 2jGJ. The same quantities are plotted as in Fig. 11. Note that the time interval between the first two snapshots is smaller than those between the rest of
the plots.

The position where the gap appears depends on the imposed
current density and on the variation of the GJ charge density – for
higher jm and/or stronger variation of |GJη| the gap starts developing
closer to the NS. The accelerating electric field in this gap is smaller
than that in case with the constant GJ charge density from Section
6.2 because the number density of positrons is high and so not the
whole charge density jm/c is contributing to the electric field. If this
electric field is not enough to produce pairs, then the gap grows
up to high altitude until most positrons leave the domain; then a
vacuum-like gap, with the charge density of the order of jm/c, starts
developing at the outer end of the domain as in the case of constant
GJ charge density from Section 6.2.

The reason why variation of GJ charge density does not affect
space charge limited flow with sub-GJ current density is the pres-
ence of the trapped particle ‘cloud’ component which can adjust to
any charge density variation (assuming the current density remains
sub-GJ), as was mentioned in Section 5. For flow with anti-GJ

current density the accelerating electric field appears in the region
depleted of electrons, which on average move towards the NS. In
this case regions closer to the NS always have the larger number
density of particles of the same sign as ηGJ and will become charge
starved last, and so the gap develops at higher altitudes. For flows
with the super-GJ current density when the absolute value of the
GJ charge density decreases with altitude, a < 0, fewer positrons
are necessary at lower altitudes to poison the electric field than at
higher altitudes. Positrons are moving towards the NS and the low-
altitude region becomes charge starved after all the others and the
gap develops at higher altitudes as in the case of the flow with a
constant GJ charge density.

Therefore, the regions with super-GJ flow can have two qualita-
tively different behaviours depending on the value of the imposed
current density and the variation of the GJ charge density. The cas-
cade either starts close to the NS and high altitude regions are always
filled with dense pair plasma, or the cascade starts at high altitude
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Figure 26. Screening of the electric field and the formation of superluminal electrostatic wave in the flow with linearly varying GJ charge density and the
imposed current density jm = 2jGJ. The same quantities are plotted as in Fig. 19.

and between the bursts of pair formation the high altitude regions
are charge starved with vacuum-like accelerating electric field –
in the second case an additional cascade zone might appear in the
outer magnetosphere. In the first case the period between succes-
sive bursts of pair formation should be of the order the gap’s fly-by
time and can be as short as ∼rpc/c ∼ fractions of microseconds; in
the second case the repetition rate will be larger than the fly-by time
of the strong field zone, ∼R∗/c ∼ tens of microseconds. From our
toy model we cannot make quantitative prediction about the values
of the imposed current density and magnitudes of the GJ charge
density variations which separate those behaviours.

6.4 On stationary cascades

In all models previously considered in the literature, the size of the
accelerating gap was limited by the opacity of the magnetosphere to
the gamma-rays: pairs were injected when the optical depth to pair
creation reached unity and those pairs screened the electric field.
In our simulations with the constant GJ charge density, the electric
field in the gap monotonically increases with distance, and the gap
grows with time. That electric field could be screened only by the

injection of particles with the charge sign opposite to the charge
sign of primary particles, and those particles, when injected, were
accelerated in the direction opposite to the direction of motion of the
primary particles by a strong electric field. They start emitting pair
producing gamma-rays after travelling a short distance, injecting
pairs and so screening the electric field in their way. That led to the
motion of the gap as a whole or to the gap closure, if the other end
of the gap moved with subrelativistic velocity.

In the case of a flow with varying GJ charge density, described
in Section 6.3, the initial field was not a monotonic function of the
distance, but the gap was growing and, again, the only way to limit
the gap and screen the electric field was by the injection of particles
of the opposite sign. Once injected those particles ultimately de-
stroyed the gap, since their flux exceeded that of the primary beam
– stationary equilibria with counter streaming particles of the op-
posite sign exist only when the counter streaming flux is less than
the primary flux, as in the Arons & Scharlemann (1979) model.
Stationary particle acceleration and pair creation would be possible
if pairs are injected (mostly) outside the gap, so that there will not
be too many particles with charge sign opposite to that of primary
particles within the gap.
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Pair cascades over pulsar polar caps 27

For example, the stationary flow model of Arons & Scharlemann
(1979) constructs a finite length acceleration zone bounded by the
stellar surface below and the abrupt onset of pair creation above,
which screens the electric field in a thin layer [the pair formation
front (PFF)]. The space charge limited (electron) beam extracted
from the surface provides the primary particles that radiate pair cre-
ating gamma-rays. Almost all of the pair creation occurs above the
PFF. A small amount of trapping within the transitional PFF layer
sends charges of sign opposite to the primary beam (positrons) back
down towards the surface with flux small in comparison to that of
the primary beam, while extra electrons are added to the beam,
restoring the charge density to equality with the Goldreich–Julian
density. This restoration causes the screening (‘poisoning’) of the
accelerating field. In that model, E → 0 at the PFF is imposed as
a boundary condition, using the conclusion that dense pairs (n± �
|ηGJ/e|) flash into existence at a rather well-defined height – a
physically correct conclusion when curvature radiation dominates
the gamma-ray emission and one photon absorption in the magnetic
field is the major opacity source, since each primary beam particle
emits many pair creating gamma-rays and opacity is a rapidly vary-
ing exponential function of the photon energy. The application of
that boundary condition, along with the space charge limited flow
condition at the NS, has the consequence that the charge density
of the beam has a unique value ηbeam. Since j = cηbeam, this model
becomes discrepant with the magnetospheric current density jm, in
general.

We tried to find an Arons–Scharlemann like solution with the
acceleration gap limited by the PFF. For the linearly varying GJ
charge density given by equation (16) and model parameters from
Section 6.3 we explored the parameter space by running differ-
ent simulations for different values of the imposed current density
starting from jm = 2j 0

GJ and decreasing it up to jm � j 0
GJ when pair

production ceased. In each subsequent simulation with smaller jm

the position of the first pair injection moved further from the NS
because the accelerating electric field was also smaller. In all cases
when pair injection occurred inside the gap the gap boundary starts
moving – we never saw a stationary PFF (nor did we see a stationary
PFF in any other simulations). So, the conclusion implied by the
simulations is that the time asymptotic state is not a steady flow
similar to Arons & Scharlemann’s. Even though acceleration in the
charge starved gaps is limited by pair creation with thin boundaries
between pairs and quasi-vacuum, reminiscent of Arons & Scharle-
mann’s PFFs, the gaps move, either up into the magnetosphere
or down towards the star – there is no truly stationary state, and
fully developed limit cycles appear to be the answer, at least in one
dimension.

We now exhibit a novel steady flow model, which takes advantage
of the properties of non-neutral beam flow when ηGJ/B is non-
uniform, that does not require poisoning by the pairs to produce
E = 0 at the gap’s top. This model exploits the variation of the
charge density with distance, in the case when the current density
is larger than the local GJ current density only up to some height
hs, then at distances larger than hs – where the non-neutral flow
becomes sub-GJ – the electric field will be screened on the scale of
the local Debye length, as discussed in Section 5. In such a situation
the accelerating electric field exists only up to the distance hs, above
which it is shorted out by a mixture of trapped electrons – those
with two turning points in their orbits – and free pairs.

We assume the GJ charge density varies linearly with the distance,
equation (16), as discussed in Section 6.3. By hypothesis, the flow
is steady and the current density is equal to the imposed current
density jm = ξj 0

GJ, ξ > 1 (see equation 12). If ξ − 1 < a, at

some point the non-neutral beam flow becomes sub-GJ. From the
Poisson equation for the electric field (6), in the absence of pairs
we have

Es = 4πη0
GJL

[
(ξ − 1)

x

L
− a

2

( x

L

)2
]

. (19)

At the distance

hs = 2
ξ − 1

a
L, (20)

Es changes sign as the flow becomes sub-GJ. Identifying hs with
the gap height yields the gap’s potential drop to be

�Vs, gap = 8

3
πη0

GJL
2 (ξ − 1)3

a2
, (21)

increasing in proportion to the imposed current density. If the re-
sulting potential drop in the gap is large enough for particles to
inject pairs within the gap with a number large enough to form a
positron back flux larger than the primary electron flux, the flow
will be non-stationary, like that described in Section 6.3. But if the
potential drop is such that copious pairs will be injected at distances
larger than hs, positrons will be subjected only to a fluctuating, rel-
atively small electric field, which sustain the cloud component at
altitudes higher than hs, where the flow is sub-GJ. Only a fraction
of the positrons will be advected into the gap, and, if this fraction
will be much smaller than the GJ charge density the flow in the gap
will be not disturbed enough to make it non-stationary.

As an example of a flow with E(hs) = 0 in the non-neutral current
flow, pair creation and non-neutral trapping, we show snapshots
in Fig. 27 of the flow with the same parameters as in Section 6.3,
except with a carefully chosen current density which was set large
enough to allow pair formation within the domain (at x < xB), but
small enough so that the particle back flux does not destroy the gap.
The imposed current density in this model is jm = 1.059j 0

GJ. Above
the altitude x = hs ≈ 0.17L the flow is sub-GJ and clearly has beam-
cloud structure qualitatively similar to that in sub-GJ flows from
Section 5 (see phase portraits for electrons). The charged cloud
of trapped electrons screens the electric field at x > hs. Primary
electrons, when accelerated up to high energies, emit gamma-rays
which decay into electron–positron pairs above the gap.

Both secondary electrons and positrons mix with the cloud com-
ponent and some positrons are advected towards the gap. The gap
shrinks a bit and the resulting potential becomes smaller than a
critical value necessary to sustain pair production. When the num-
ber density of positrons drops, the gap gets bigger and the pair
formation starts again. The gap, however, never disappears and the
cascade is close to a stationary configuration. This configuration is
quite sensitive to the imposed current density; large gap fluctuations
appear at imposed current densities only a few per cent larger than
jm = 1.059j 0

GJ. Our model, however, has an exaggerated charge
density gradient and a very high voltage, and we expect that the
mixing of positrons and their advection for real pulsar parameters
would be less efficient and, hence, there might be a larger parameter
range (i.e. an interval of the imposed current densities) where this
gap plasma flow can sustain quasi-stationary cascades.

Such stationary configurations require the imposed current den-
sity to be larger that the local GJ current density at the NS surface
but then becoming less than the local GJ current density at some
distance from the NS. Variations of the GJ charge density (after
accounting for the decreasing magnetic field) would not be larger
than �15 per cent (Muslimov & Tsygan 1992; Hibschman & Arons
2001) and, hence, the imposed current densities for stationary cas-
cades are within the range |jm − j 0

GJ| � 0.15, jm/jGJ > 1. Taking
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28 A. N. Timokhin and J. Arons

Figure 27. Plasma flow with quasi-stationary cascade. The imposed current density is jm = 1.059jGJ; it is ‘fine-tuned’ in such way that the accelerating electric
gap near the NS surface does not disappear. All other physical parameters are the same as in the case shown in Figs 20 and 21. The same quantities are plotted
as in Fig. 11. Note that the time intervals between snapshots are not equal.

into account that the resulting gap should not be very large to prevent
pair injection within the gap, that range is even smaller.

Fig. 1 makes clear that in the force-free theory, the current density
does not mostly fall in this narrow range, lending support to the
conclusion that limit cycle and trapping behaviour are the generic
physics for polar flow, with and without pairs.

7 D ISCUSSION

These calculations, and those reported in Timokhin (2010), were
designed to investigate the theoretical issue of how the pulsar mag-
netosphere with current flow determined by the magnetosphere’s
global dynamics couples to the NS through the polar cap beam
acceleration and pair creation zone. This problem was investigated
30–40 years ago, primarily using the order of magnitude estimates
and analytical, steady flow models of charge-separated beams; the

accelerator was modelled as having voltage fixed by pair creation
and geometry. That led to a determination of the charge density
in the accelerator with the current then simply being charge den-
sity times the speed of light.10 No effort was made to show that
the current density estimated actually matched that required by the
global structure – the models yielded currents with the correct or-
der of magnitude, and in the absence of actual solutions for the
global structure of the magnetosphere, that answer was regarded as
good enough, although scepticism was expressed that operating the
accelerator model as having fixed voltage could actually produce
the correct answer (see Mestel 1999 and references therein). The
calculations reported here show that indeed when the accelerator is

10 In differing degrees, the charge density was made up of counter streaming
relativistic beams, leading to current density lying between ηGJc and 2ηGJc.
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Pair cascades over pulsar polar caps 29

operated with current fixed rather than voltage, the polar cap accel-
erator does work, and works in a fully time-dependent manner, as
first conjectured by Goldreich & Julian (1969) and Sturrock (1971),
but with behaviour different from previously published models.11

Our results show that when the acceleration and cascades are one
dimensional, acceleration and pair creation exhibit limit cycle be-
haviour, with cycle time somewhat larger than the relativistic fly-by
time over the length of the accelerator. When the 1D approxima-
tion is realistic (very young pulsars), the length of the accelerator
is less than the polar cap diameter rpc ≈ 144P−1/2 m, suggesting
quasi-periodicity in the acceleration and pair creation on time-scales
� 10−6P−1/2 s. As was suggested long ago, such variations, if re-
flected in the radio emission, might be the origin of the microstruc-
ture in the radio emission (Ruderman & Sutherland 1975). If limit
cycle behaviour is robust with respect to multi-dimensional con-
siderations, this dynamical behaviour might turn out to be a useful
model for microstructure (in contrast to non-linear optical phenom-
ena in the transfer of radio waves through the pair plasma, for
example).

When charges are fully bound to the surface (solid surface with
high binding energy and no atmosphere; Medin & Lai 2010), cur-
rent flow always adjusts to the magnetospheric load through pair
creation discharges, as was shown in Timokhin (2010). The lowest
energy particles in the pair discharge exhibit transient trapping in the
fluctuating electric field. Those reversals of particle momenta allow
both current and charge densities to adjust to the presumed force-
free conditions, for any value of the magnetospherically imposed
current density.

At long periods/weak B, pair creation becomes impossible,
the magnetosphere is a vacuum with no conduction current flow
and spin down occurs through the generation of strong vacuum
waves (Pacini 1967). Pulsars enter this regime by crossing the
pair creation ‘death valley’, theoretically expected for magne-
tospheric voltages �m = √

WR/c ≈ 1013 (Ṗ /10−15)1/2P −3/2 V �
1012 ≡ �death V [a restatement of the death line based on cur-
vature gamma-ray emission and one photon magnetic conversion
estimated by Sturrock (1971)]. The fact that this death line describes
the disappearance boundary of radio pulsars in the P , Ṗ diagram
reasonably well (see e.g. fig. 15.1 in Arons 2009) provides a strong
hint that low-altitude, polar cap pair creation with high-energy beam
acceleration and one-photon magnetic conversion of the curvature
γ -rays has something to do with the pulsar activity.

A warm, quasi-neutral atmosphere plasma atmosphere overlying
the magnetized ocean and solid crust, with no restrictions on charged
particle motion along B, is the likely surface state of most pulsars,
either because of the residual heat of the NS or because of polar cap
heating by precipitating particles from the magnetosphere (from
local pair discharges or from the return current flow). The upper
atmosphere can then freely supply charge, in a manner very similar
to a space charge limited current flow from the cathode of a classical
vacuum tube. Our simulation results on space charge limited flow
with (and without) pair creation reveal a variety of noteworthy new
features.

We have made the first determination of the polar accelerator’s
behaviour under conditions where the current density, not the volt-

11 Following Shibata (1991), when the pulsar is not near ‘death valley’
in P − Ṗ space, the load inserted into the magnetospheric circuit by the
pair creation discharges creates a small perturbation of the magnetospheric
current jm, thus justifying our treatment of jm as an external parameter in
the description of the discharges.

age, is held fixed. We found that space charge limited flow is not
always high-energy. Emission of pair creating gamma-rays does
not occur on all polar field lines, even when �m > �death. The
force-free model of the magnetosphere suggests the polar current
flow includes sub-GJ flow regions with 0 < j/jGJ < 1, where the
low energy current flows (with the Lorentz factor γ beam � 3) with
no (curvature) gamma-ray emission and no pair creation (inverse
Compton gamma-ray emission and γ –γ conversion to pairs are both
negligible), with adjustment of the current density and charge den-
sity to the force-free values through formation of a trapped particle,
non-neutral hanging charge cloud. This kind of quasi-stationary
flow occupies most of the polar flux tube for the aligned and al-
most aligned rotator, but progressively disappears as the obliquity
increases. The force-free model also requires regions of distributed
return current flow, j/jGJ < 0, and, as the obliquity increases, regions
of super-GJ current flow, j/jGJ > 1, occupying most of the polar flux
tube as the obliquity approaches 90◦. Both the return current and
super-GJ regimes exhibit unsteady, high-energy current flow (an
unsteady beam), driving discharges copiously creating pairs whose
character is similar to that encountered when the atmosphere is ab-
sent and the surface is a strongly bound solid. These regions, as
projected on to the polar cap, are shown in Fig. 1. In the special
case of jm/j 0

GJ being slightly larger than unity, the plasma flow can
sustain quasi-stationary cascades, and a new class of such models
was described in Section 6.4. But generally speaking, such station-
ary regimes represent a singular case, rarely if ever achievable by
magnetospheres described by the force-free model.

The only previous quantitative study of time-dependent cascades
in space charge limited flow is that of Levinson et al. (2005). They
used a two-fluid model and concluded that chaotic pair formation
takes place throughout the whole zone where pair formation is pos-
sible. Our simulations do not support their conclusions. Particle
trapping plays a significant role in adjusting of the plasma flow to
the required current density and, hence, the plasma cannot be ade-
quately represented as two fluids (electrons and positrons) each with
its own unidirectional velocity. These two-fluid representations in-
troduced additional rigidity into the system and this, in our opinion,
led to the formation of a strong chaotic electric field everywhere in
the domain.

The most recent analytical treatment of the problem was pre-
sented in Beloborodov (2008). Our results support Beloborodov’s
(2008) general conjecture about the character of plasma flow in
the force-free regime, that the sub-GJ flow is low-energetic and
pair formation is possible only in super-GJ or anti-GJ current flow.
The simulations differ from his qualitative picture of what would
happen in several respects: (a) the low energy flow with trapped
particles does not retain the spatial oscillations of the cold flow,
replacing those by the two-component beam/cloud structure – the
warm beam has non-oscillatory velocity, while the trapped parti-
cles, not included in his picture, are those with two turning points
in their orbits; (b) bursts of pair cascades repeat after longer time
than h/c, h being the gap height; and (c) in most cases the gap is
not destroyed but moves as a whole, usually relativistically.

The discharges were given a novel treatment. After the sem-
inal efforts of Ruderman & Sutherland (1975) but prior to our
work, models universally incorporated their assumption that when
pair creation is copious (many convertible gamma-rays per primary
high-energy particle, as is the case in the curvature radiation cas-
cades typical of young, high voltage pulsars), at and above the
height where pairs start appearing, E‖ drops to zero and stays that
way at all greater altitudes. Arons & Scharlemann (1979) formal-
ized this into the dynamics of a PFF, showing that when pair creation
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is copious, the transition between a charged starved region where
E‖ �= 0 and the pair-dominated region where E‖ can be set equal
to zero is thin – that structure necessarily involves one sided parti-
cle trapping, under pulsar conditions, thus causing the formation of
counter streaming components in the current flow. Our solutions ex-
hibit this transition between the dense plasma and the quasi-vacuum
regions outside. But, since E‖ was obtained from a dynamical field
equation, we nowhere assumed E‖ had to be zero everywhere out-
side (above or below) a pair discharge. Instead, the pair creation
itself creates the polarizable plasma that dynamically resets E‖ to
zero inside the discharge, while outside the electric field was al-
lowed to float to whatever is dynamically required. The resulting
models thus exhibit macroscopic intermittency – a pair discharge
shorts out E‖, and then as the cloud of pair plasma moves out into
the magnetosphere or towards the surface, a gap reforms in which
residual particles accelerate, radiate gamma-rays and form a new
discharge. The fact that pair creation opacity declines with distance
from the NS was modelled by setting the magnetic field equal to
zero in the upper part (typically the upper 30 per cent) of the sim-
ulation domain. That Ansatz forces the one photon pair creation
opacity to be zero in the upper part of the domain.

It must be said, however, that the resulting model of the in-
termittency is very simplified – probably oversimplified. The rep-
resentation of the ‘magnetosphere’ as a region of negligible pair
creation optical depth to gamma-rays emitted from just above the
polar cap is the right general idea, but the 1D character of our simu-
lations almost certainly leads to an overemphasis on the coherence
of the intermittent discharges – they form coherent slabs of pair
plasma, separated by coherent slabs of quasi-vacuum. In reality, the
low opacity region where discharges must end appears at heights
∼R∗ � rpc = polar cap and polar flux tube transverse radius. Then,
the acceleration zone left behind a discharge created plasma cloud
is long and skinny, with the narrow ‘wave-guide’ geometry (and the
physics of the polar flux tube’s boundary) playing an essential role
in the nature of the quasi-vacuum field. Under these circumstances,
it is unclear and unknown whether the discharges would preserve
anything like the coherence exhibited in the results reported here –
the formation of multiple ‘lightning bolts’ is perhaps more likely,
simultaneously coexisting within the polar flux tube, the electric
fields of the discharges affecting the dynamics of their neighbours,
causing the discharges to influence each other – a complex dynam-
ical system quite likely to be chaotic.

In addition, the extent of the gaps formed between discharges
requires consideration of all the sources of pair conversion opacity,
not only one photon conversion in the B field. Even when magnetic
conversion drops to zero, γ –γ conversion with gamma-rays collid-
ing with soft photons from the atmosphere (either heated polar cap
or overall warm surface, if the star is young enough) can provide
discharge initiating pairs within quasi-vacuum gaps, limiting the
extent of such gaps to less than what occurs when the opacity is set
equal to zero. These issues require multi-dimensional modelling of
the accelerator and the photon transfer, as well as extending the ra-
diation transfer model, improvements required before the possible
direct consequences of low-altitude discharges for observations can
be addressed. Those consequences are the pair multiplicity of the
outflow, the heating of the polar caps by the discharge components
that move towards the NS, and the possible direct collective emis-
sion of photons by the time-dependent currents in the discharges.

The multiplicity (κ± ≡ npair/nGJ) within individual pair creation
bursts show the traditional results – when a discharge occurs, κ±
≈ γ beamm±c2/εcurvature ∼ 103 (εcurvature = energy of pair producing
curvature photons), somewhat enhanced by the conversion of the

synchrotron photons in the cascade – thus, multiplicities within in-
dividual bursts up to ∼104 are observed. Intermittency reduces the
overall multiplicity of the outflow – the magnitude of this reduction
is hard to judge without a multi-dimensional model. The intermit-
tency reduction is offset by continued pair creation as the plasma
clouds and their high energy leading edges drift out to heights of the
order of the stellar radius and more, emphasizing again the need for
a multi-dimensional treatment. However, the multiplicity is unlikely
to be as high as is inferred from PWNe (Bucciantini et al. 2011),
so long as the simple, star centred dipole B field model is retained.
More general B fields, with smaller radii of curvature of photon
orbits with respect to B, can lead to enhanced pair creating opacity
and pair yield – the offset dipole model (Arons 1998; Harding &
Muslimov 2011) is the most plausible magnetic anomaly model that
can be consistent with the dipolar character of the polar flux tube
revealed by radio observations (Rankin 1990; Kramer et al. 1998).
Whether sufficiently large multiplicities can be obtained within the
geometric constraints obtained from the radio polarimetry is under
investigation.

Polar cap heating and consequent soft X-ray emission provide an-
other possible observable that can constrain the model. In common
with all discharge models, roughly half the energy in each discharge
is deposited in the crust below the atmosphere and ocean. If intermit-
tency is neglected, existing observations provide strong challenges
to all polar cap discharge models, including ours. Intermittency
reduces the average energy flux. Whether that effect allows this
polar discharge model to survive confrontation with observations
(or, better, prove useful in modelling such observations) remains
to be studied. Simulating the particle back flux from a discharge is
a particular challenge, requiring resolving the Debye length in the
pairs, which rapidly decreases as the pair density grows.

Our results imply that discharges occur on some of the polar
field lines for all inclinations. These discharges incorporate time-
dependent, quasi-coherent currents on microsecond and shorter
time-scales. It has not escaped our attention that such fluctuations
might be a direct source of radio emission from the low-altitude
polar flux tube, a region strongly suggested as the site of the radio
emission by the radio astronomical phenomenology. Although the
electric fields in our one-dimensional model are wholly electro-
static, therefore cannot leave the plasma, in a more general multi-
dimensional setting which has substantial spatial inhomogeneity
transverse to B, the field components parallel to B have accompany-
ing components E⊥ perpendicular to B which make the fluctuations
fully electromagnetic. Therefore, these electrostatic spectra may be
representative of electromagnetic fluctuations which can leave the
plasma, and the pulsar. From the point of view of simulations, a
multi-dimensional, electromagnetic treatment is required in order
to investigate this possibility.12

In the frame of our model we can provide only estimates of the
energy available for such directly excited waves. If the electrostatic
oscillations could form an electromagnetic wave which leaves the
plasma then the energy carried by the wave would be of the order
of

Wr ∼ 〈E2〉
8π

cπr2
pc . (22)

12 Fawley (1978) used a linear response analysis to study this possibility in
an analytic model of discharges when strong surface binding suppresses fee
emission. The work described in this paper is the first to study fully non-
linear discharges in the free emission regime. Whether this idea for radio
emission will lead to a useful model remains to be studied.
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Figure 28. Estimated energy flux W̃ in plasma waves for sub-GJ flows as
a function of ξ = jm/jGJ. W̃ is normalized to WmdB

−1
12 P 2.

Both kinds of flow, with or without pair formation, cause fluctuating
electric field. Fluctuating electric field in the sub-GJ flow turns out
to be too low to provide the energy even for the radio emission.
The electric field for the sub-GJ flow shown in Fig. 8 is normalized
to E0 = |ηGJ|πλD, GJ; in this normalization the estimates for Wr is
given by

Wr ∼ 4.8 × 10−9 〈Ẽ2〉WmdB
−1
12 P 2 , (23)

where Ẽ is the normalized electric field and Wmd is magnetodipolar
energy losses

Wmd = B2
0 R6

∗�
4

4c3
. (24)

In Fig. 28, we plot the estimated values of W̃r = Wr/B
−1
12 P 2Wmd as

a function of ξ = jm/jGJ. It is evident that even for the Crab pul-
sar, known for its very low radio efficiency in terms of spin down
energy losses ∼10−8, the energy in electrostatic oscillations of the
cold flow cannot power the radio emission. For plasma flows with
pair formation, screening of the electric field proceeds similarly to
cascades in the Ruderman–Sutherland model studied in Timokhin
(2010). We observed the formation of superluminal plasma waves
during discharges in space charge limited flows, similar to what was
found for strongly bound surfaces. The range of plasma oscillation
wavelengths was rather broad, similar to what was observed in dis-
charges discussed in Timokhin (2010). The electric field for plasma
flows with pair formation discussed in Section 6 is normalized to
E0 = |ηGJ|πrpc; in this normalization the estimates for Wr are given
by

Wr ∼ 1

4
〈Ẽ2〉Wmd . (25)

The amplitude of the (normalized) oscillating electric field during
the screening phase of cascade development shown in Figs 19 and
26 is ∼0.1–0.01 and the energy in such oscillations is more than
enough to power the radio emission. So, from the energetics point
of view, it seems that the plasma flows with pair formation studied
here are candidates for powering the pulsar radio emission through
direct radiation by the discharge currents.

Finally, our work may have implications for the formation of the
particle accelerators in the outer magnetosphere required to account
for the gamma-ray pulsars. Low voltage, sub-GJ current flow may
have a Holloway (1973) ‘problem’; in that the non-neutral cloud
and low energy, non-neutral current-carrying beam cannot cross the
null surface where � · B = 0 – in contrast, field lines populated

with dense plasma from discharges have no difficulty with plasma
flowing across the null surface, the pair plasma clouds are quasi-
neutral and easily adjust to the locally required charge density. Field
lines passing from the low-altitude trapped cloud to the outer mag-
netosphere that go through the null surface might form a physically
self-consistent gap reminiscent of the earliest proposals for ‘outer
gaps’, with the potential for outer magnetosphere discharges that
could provide a model for the observed gamma-ray emission. This
issue also requires multi-dimensional modelling. The caustic for-
mation exhibited by models for gamma-ray pulses suggests that if
such gaps can form, they are localized (by pair creation?) to regions
close to the flux bundles where return currents flow.

Another possibility for particle accelerators in the outer magne-
tosphere exists in the regions carrying the return current. At some
time between the bursts of pair formation in the polar cap the elec-
tric field at large latitudes cannot be screened by pairs created in
the polar cap. This field can accelerate particles and give rise to
pair creation via γ –γ process. As we pointed out at the end of Sec-
tion 6.1, an outer magnetosphere cascade zone might exist along
the magnetic field lines carrying the return current. This might be
a very intriguing possibility in view of the observational evidence
that the spectrum of pulsar gamma-ray emission does not have a
super-exponential cut-off, which should be present if there were ab-
sorption of gamma-rays in the magnetic field. Moreover, modelling
of pulsar gamma-ray light curves suggests that the gamma-ray emis-
sion originates from the regions close to the boundary between the
open and closed magnetic filed lines (e.g. Bai & Spitkovsky 2010).
The return current regions for a broad range of pulsar inclination
angles are close to that boundary or/and are within it, e.g. in Fig. 1
the return current is flowing in and around the current sheet for
pulsar inclination angles α � 30◦.

8 C O N C L U S I O N S

Our principal conclusion is simple – pair creation can occur at
pulsar polar caps, but (almost) always in the form of fully time-
dependent current flow (microsecond time-scales for the variabil-
ity). That time dependence with pair creation allows the current
to adjust to any magnetospheric load, while simultaneously allow-
ing the charge density to adjust to the requirements of the force-
free magnetosphere. We have also shown that a substantial fraction
of the open field lines (fraction decreasing with increasing obliq-
uity) solve the current flow problem with a low-energy, non-neutral
beam carrying the current co-existing with a non-neutral, electri-
cally trapped particle cloud. This is an essentially time-independent
local solution. Exploring the consequences of these new results for
global theory and observations requires extending the calculations
to multi-dimensional, electromagnetic models for the accelerating
electric field, and perhaps to background magnetic field models
more general that the star centred dipole geometry (used here in the
choice of the magnetic radius of curvature that enters into the pair
conversion opacity).
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APPENDIX A: ON E - D IME N SIONA L
E L E C T RO DY NA M I C S O F T H E P O L A R C A P

Let us decompose the magnetic field in the acceleration zone into
two terms B = B0 + δB, where B0 is the global time-averaged
field (the ‘external’ field for our local problem; = Bmagnetosphere) and
δB is the fluctuating magnetic field due to local currents in the
system caused by charge motion in the acceleration zone.

In our 1D approximation the characteristic size of the acceleration
zone in longitudinal direction, along magnetic field lines, l is much
smaller than its characteristic width w (the latter being of the order of
rpc). The characteristic time-scale of electromagnetic field variations
due to relativistic charge motion is τ ∼ l/c, as charges move along
magnetic field lines. The characteristic scale of the global magnetic
field variation in longitudinal direction lmag is much larger than both
l and w. The relation between these scales is l � w � lmag.

Electromagnetic field can be determined from Ampere’s and
Faraday’s laws

∇ × B0 + ∇ × δB = 4π

c
j + 1

c

∂E
∂t

(A1)

∇ × E = −1

c

∂ δB
∂t

. (A2)

Combining Ampere’s (A1) and Faraday’s (A2) laws by eliminating
the electric field we get an equation for the magnetic field δB:

1

c2

∂2 δB
∂t2

− ∇2δB = 4π

c
∇ × j + ∇2 B0 . (A3)

Only the perpendicular components of the magnetic field B0,⊥, δB⊥
affect the accelerating electric field E‖. Now using the perpendicular
component of equation (A3) we estimate δB⊥.

The estimates of each of the terms in equation (A3) are as follows.
For terms with δB⊥ we have(∇2δB

)
⊥ ∼ δB⊥

l2
+ δB⊥

w2
∼ δB⊥

l2
(A4)

and(
1

c2

∂2 δB
∂t2

)
⊥

∼ δB⊥
(cτ )2

∼ δB⊥
l2

. (A5)

The perpendicular component of the global magnetic field changes
in the longitudinal direction on the scale lmag, in the lateral direction
it changes on the scale w and, hence,

(∇2 B0

)
⊥ ∼ B0,⊥

l2
mag

+ B0,⊥
w2

∼ B0,⊥
w2

. (A6)

Current flows along magnetic field lines and its perpendicular com-
ponent is of the order of (B0, ⊥/B0)j ∼ (l/ρc)j, and as the radius of
curvature of magnetic field lines ρc is much larger than any of the
scales in our problem we have

(∇ × j )⊥ ∼ j

w
− j⊥

l
∼ j

w
− l

ρc

j

l
∼ j

w
. (A7)

Combining estimates (A4)–(A7) from equation (A3) we have

δB⊥
w

∼
(

l

w

)2 (
4π

c
j + B0,⊥

w

)
. (A8)

The order-of-magnitude version of Ampere’s law (A1) is

B0,⊥
w

+ δB⊥
w

∼ 4π

c
j + E‖

cτ
, (A9)

and from equation (A8) it follows that the fluctuating magnetic field
due to charge motion introduces only a second order term in l/w
and it can be neglected. So, the Ampere law in one dimension has
the form

∂E‖
∂t

= −4π
(
j − c

4π
(∇ × B0)‖

)
≡ −4π(j − jm) . (A10)

The same expression for the accelerating electric field through the
current density as in equation (A10) can be obtained from the Gauss
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law and charge conservation [see e.g. Timokhin (2010), Appendix
A]; in that case jm emerges as an integration constant corresponding
to the time-average current density flowing trough the system. In
one dimension the system is essentially electrostatic; charges cre-
ate only electric field, and naturally both Ampere’s law and Gauss’
law reduce to the same equation. The magnetic field perpendicu-
lar to the background stellar B field is negligible, both due to the
background magnetospheric current and due to the rapidly variable
currents within the acceleration zone considered in this study –
in particular, to the lowest order in (l/ρc)2, the particle orbits are
determined by the stellar field B0 and consideration of the full elec-
tromagnetism of the discharges is not required to characterize the
discharge dynamics.

APPENDIX B: S TAT IONA RY
O N E - D I M E N S I O NA L S PAC E C H A R G E
LIMITED FLOW

B1 General equations

Let us consider a stationary one-dimensional beam of equal particles
with mass m and charge q having the same sign as the GJ charge
density ηGJ flowing from the surface of the NS at x = 0 into the
magnetosphere at x > 0. The current density of the beam is a fraction
ξ of the GJ charge density,

j = ξjGJ . (B1)

For the energy of particles in the beam we have

mc2γ + qφ = mc2γ0 + qφ0 , (B2)

where γ = (1 − v2/c2)−1/2 is particle’s Lorentz factor, v is particle’s
velocity, φ is the electric potential; quantities with the subscript 0
refer to their values at NS surface, at x = 0. The electric potential φ

is given by the Gauss law

d2φ

dx2
= −4π(η − ηGJ) , (B3)

where η = j/v is the charge density of the beam. We consider the
case when v, γ , η and φ are functions of distance x, while ηGJ is
constant.

Expressing φ through γ from equation (B2) and η through j =
vη we get an equation for the beam’s Lorentz factor

d2γ

dx2
= 4πηGJq

mc2

(
ξ

γ√
γ 2 − 1

− 1

)
. (B4)

The plasma frequency for a mildly relativistic plasma with the GJ
charge density consisting of particles with charge q and mass m is

ωp,GJ =
(

4πηGJq

m

)1/2

, (B5)

and the Debye length (also the skin depth, since the characteristic
velocity is c) of such a plasma is

λD,GJ = c

ωp,GJ
. (B6)

Introducing normalized distance s ≡ x/λD, GJ equation (B4) be-
comes

d2γ

ds2
= ξ

γ√
γ 2 − 1

− 1 . (B7)

The first integral of this equation is easily obtained by multiplying
both part by dγ /ds(

dγ

ds

)2

= 2

[
ξ

(√
γ 2 − 1 −

√
γ 2

0 − 1

)

− (γ − γ0)

]
+

(
dγ

ds

)2

0

. (B8)

Under the conventional assumptions the space charge limited flow
starts at the surface with zero velocity and the electric field is com-
pletely screened, so γ 0 = 1 and (dγ /ds)0 = 0; with these assump-
tions equation (B8) becomes(

dγ

ds

)2

= 2
(
ξ
√

γ 2 − 1 − γ + 1
)

. (B9)

It is more convenient to analyse the properties of the flow in
terms of the spatial component of the four-velocity (the normalized
momentum p ≡ γ v/c). In terms of p equation (B9) becomes(

dp

ds

)2

= 2
p2 + 1

p2

(
1 + ξp −

√
p2 + 1

)
. (B10)

The right-hand site of equation (B10) is positive if either ξ ≥ 1 or
0 ≤ ξ < 1 and p < pmax , where

pmax = 2ξ

1 − ξ 2
. (B11)

So, for ξ ≥ 1 flow will accelerate monotonically, while for 0 ≤ ξ <

1 the momentum will oscillate in the range [0, pmax ].
According to equation (B10) dp/ds does not depend explicitly

on the distance s and so its absolute value is the same for the same
value of p; therefore for 0 ≤ ξ < 1 the function p(s) is symmetric
around its maxima and minima and is periodic.

B2 Ultra-relativistic flow

For p � 1 we can neglect terms of the order O(1/p) and higher.
Then equation (B10) takes the form(

dp

ds

)2

= 2 [1 + p (ξ − 1)] ; (B12)

the solution of equation (B12) is (cf. equation B3 in Fawley et al.
1977)

p =
√

2s + ξ − 1

2
s2 . (B13)

If ξ ≥ 1 the flow is continuously accelerating and its momentum
at large s will grow as

p = ξ − 1

2
s2 . (B14)

For ξ < 1 the flow is oscillatory and its momentum periodically
reaches pmax (see equation B11). If 1 − ξ � 1 and pmax � 1
the flow is relativistic almost everywhere. The wavelength of such
spatial oscillations is twice the distance between the points where
p = 0 and p reaches its maximum value. From equation (B13) the
distance where p reaches it maximum is

√
2(1 − ξ )−1 and so the

period of spatial oscillation is (Beloborodov 2008)

s0 = 2
√

2(1 − ξ )−1 . (B15)
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B3 Non-relativistic flow

Stationary space charge limited flow is non-relativistic at the be-
ginning, close to the NS surface; it can remain non-relativistic if
ξ � 1 (see equation B11).

For p � 1 we can neglect terms of the order O(p3) and higher
and equation (B10) becomes the Cycloid equation(

dp

ds

)2

= 2ξ − p

p
. (B16)

The solution of this equation in parametric form is (Beloborodov
2008)

p = ξ (1 − cos ωp,GJt) (B17)

s = ξ (ωp,GJt − sin ωp,GJt) , (B18)

where the time t is measured in seconds. The period of spatial
oscillations is then

s0 = 2πξ . (B19)

For small ξ the flow is always non-relativistic and equations (B17)
and (B18) describe it accurately everywhere. For large ξ equations
(B17) and (B18) are good approximation near the starting point of
the flow for all ξ and for ξ < 1 also near periodically repeating
stagnation points, with small values of p.

For small s, near the flow’s starting point, the time t can be
eliminated from (B17) and (B18) and we get (cf. equation 13 in
Fawley et al. 1977)

p �
(

9

2

)1/3

ξ 1/3s2/3. (B20)

A P P E N D I X C : B O U N DA RY C O N D I T I O N S
F O R M O D E L L I N G O F S PAC E C H A R G E
LIMITED FLOW

For modelling of the space charge limited flow in the polar cap one
needs to make an adequate numerical model for an infinitely large
pool of particles available at the NS surface in order to correctly
simulate the space charge limitation condition. This is not a trivial
task. We found the following procedure works well.

The calculation domain of the length L is divided in Mx equal
numerical cells (a typical value of Mx in our simulations is ∼ a few
thousand). The electric field E and current j are set at cell bound-
aries i = 0, . . . , Mx. For the calculation of the current density we
use a 1D version of the charge conservative algorithm proposed by
Villasenor & Buneman (1992), when charged particles are repre-
sented by uniformly charged sheets with the width equal to the cell
size �x and the position of a particle is the position of the sheet’s
centre. The fraction of the sheet passed through the cell boundary
i during a time-step determines the contribution of the particle into
the current ji at that point.

At each end of the calculation domain we have one ‘ghost’ cell.
The outside boundaries of the ghost shells are ‘ghost’ points with
indexes i = −1 and i = Mx + 1. Equation (12) for the electric
field is solved for points 0 . . . Mx. Particles can move into the ghost
cells but when their positions are outside of the domain [−�x/2;
L + �x/2] and they are moving outwards they do not contribute to
the current density in the domain anymore and such particles are
deleted at the end of each time-step.

Figure C1. Numerical implementation of boundary conditions for space
charge limited flow. Injection of one numerical particle is shown; particle’s
centre is marked by a cross. See text for explanations.

The electric field at the ghost points is set to zero. We solve
a 1D initial value problem – the electric field in the domain is
calculated from the values of the electric field at the same points
at the previous time-step and is not coupled to the electric field
at the ‘ghost’ points. The electric field inside the ghost cells, at
the particles’ position, is obtained by quadratic interpolation using
values E−1, E0, E1 (and EMx−1, EMx

, EMx+1) and, therefore, setting
E at the ghost point to zero (E−1 = EMx+1 = 0) smoothly reduces
the electric field inside ‘ghost’ cells towards their outer ends. Setting
the electric field at ghost points at each time-step to the values
obtained as extrapolation of electric field values near the domain
boundaries (e.g. using quadratic extrapolation from points 0, 1, 2
and Mx − 2, Mx − 1, Mx) or to some non-zero values resulted only
in higher numerical noise and did not change the system behaviour.

At the beginning of each time-step we inject certain amount of
electrons Ninj and equal number of heavy positive charged particles
(‘ions’) in the first ‘ghost’ cell of our computation domain at the
position slightly outside the centre of the fist cell xinj = −(�x/2
+ δ) (see Fig. C1). The momentum of each injected particle is
sampled from a uniform distribution in the interval [−pinj, pinj]. In
this way, we can model finite temperature of the particles on one
hand and populate the domain with particles more uniformly on
the other hand, as each injected particle after the first time-step will
have a slightly different position. If during this time-step the electric
field inside the ‘ghost’ cell cannot move particles into the interval
[−�x/2; L + �x/2], they do not contribute to the current density
and will be deleted at the end of the time-step. Depending on the
value of the electric field either positive or negative particles will
be ‘sucked’ into the domain.

We experimented with different values for Ninj and found that usu-
ally after Ninj exceeds the critical value N cr

inj ≡ 2(jm/Qc)(c�t/�x)
by ∼20–30 per cent computational results stop depending on Ninj;
further increase in Ninj results in higher numerical noise. N cr

inj is
twice the number density of particles with relativistic velocities
which must be injected at every time-step in order to provide the
required current density jm; Q is the charge of a numerical particle
and c is the speed of light. The factor of 2 accounts for injected
particles having negative initial momentum – most of them do not
reach computational domain and are deleted. Having some injected
particles with negative momenta results in slightly lower numerical
noise as well as more realistically represents the finite temperature
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of the NS atmosphere (the equivalent of the warm cathode in the
analogous vacuum tube and high current beam technologies). The
computational overhead caused by such particles is negligible, as
Ninj is orders of magnitude less than the total number of particles.
We also experimented with different values for the time-step and
found that values of �t such that �x/c�t ∼ 5 results in relatively
low level of numerical noise due to discrete events of particle injec-

tion; smaller �t leads to larger numerical overhead, as the stability
of the leapfrog scheme requires only that �t < 0.5�x/c.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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