
The Product Engineering Class in the Software Safety Risk Taxonomy for

Building Safety-Critical Systems

Janice Hill

NASA, KSC, Florida

Florida Institute of Technology, Melbourne,

Florida

Janice.L.Hill(djnasa.gov

Daniel Victor

Man Tech SRS, KSC, Florida

Florida Institute of Technology, Melbourne,

Florida

Daniel. C. Victor@nasa.gov

Abstract

When software safety requirements are imposed
on legacy safety-critical systems, retrospective safety
cases need to be formulated as part of recertifying the
systems for further use and risks must be documented
and managed to give confidence for reusing the
systems. The SEJ Software Development Risk
Taxonomy [4] focuses on general software
development issues. It does not, however, cover all the
safety risks. The Software Safety Risk Taxonomy [8]
was developed which provides a construct for eliciting
and categorizing software safety risks in a
straightforward manner. In this paper, we present
extended work on the taxonomy for safety that
incorporates the additional issues inherent in the
development and maintenance of safety-critical
systems with software. An instrument called a
Software Safety Risk Taxonomy Based Questionnaire
(TBQ) is generated containing questions addressing
each safety attribute in the Software Safety Risk
Taxonomy. Software safety risks are surfaced using
the new TBQ and then analyzed. In this paper we give
the definitions for the specialized Product Engineering
Class within the Software Safety Risk Taxonomy. At
the end of the paper, we present the tool known as the
'Legacy Systems Risk Database Tool' that is used to
collect and analyze the data required to show
traceability to a particular safety standard

1. Introduction

Governmental agencies and industry often require
the use of safety standards in contracted projects to
ensure that the systems produced are completed in an
ordered manner. The combination of design, analysis,
inspection, and test activities, when consistently

performed throughout the system development
lifecycle, has shown to be extremely successful, as in
the International Space Station flight computer system.

In general, safety standards and requirements are
required to be in place at the beginning of a program
or project, but this is not always the case. The NASA
Software Safety Standard is one such standard that
contains process-oriented software safety requirements
that are to be met by all NASA developed or
contracted safety-critical software, regardless of its
age. The standard states that each NASA legacy
system should be assessed for the software's
contribution to the safety of the system, and then
planning should commence for the individual legacy
system to meet or not meet the requirements of the
standard. The NASA 'software safety litmus test' is
used for the assessment of the software in the system
for safety criticality. A common approach to aid in the
determination of whether or not a safety-critical
system meets software safety requirements was not
specified in the NASA software safety standard. For
this reason the Software Safety Risk Taxonomy was
proposed as a framework to assess risk in legacy
safety-critical computer systems when attempting to
apply the software safety standard after the fact.

Gauging software safety risk [8] is an essential
part of determining the specific activities and depth of
analyses needed to meet software safety requirements.
The implementation and approach to meeting software
safety requirements will vary to reflect the system to
which they are applied. [1]

Performance of safety standards is part of what is
called making a 'safety case'. A safety case is the
documented demonstration that the system complies
with the specified safety requirements. [2] To provide
safety assurance, evidence needs to be gathered on the
integrity of the system and put forward as an argued

case, e.g., the safety case, that the system is adequately
safe. [2] A safety case is not a new concept, however
making a formal safety case has not been required for
NASA's legacy safety-critical systems. The usefulness
of safety and dependability cases is being investigated
for some new development projects within NASA for
certifying systems as safe and secure. The authors
believe that it is equally important to make safety
cases for legacy systems that may be reused in support
of new major programs and projects.

Problems occur when attempting to fulfill the
requirements of a software safety standard in a legacy
real-time safety-critical computer system. In the past,
researchers have investigated the problem of
retrospectively making a safety case for the software,
to meet new safety standards in the industry. [3] The
risk of not meeting certain software safety
requirements is a topic that needs to be addressed
when attempting to make safety cases for legacy
safety-critical computer systems. This is also a reason
for devising a new taxonomy specifically designed to
facilitate the identification of software safety risks.

This paper presents the definitions for the Product
Engineering Class and the corresponding safety
elements and attributes that belong to the Software
Safety Risk Taxonomy. The taxonomy was proposed
in a earlier paper [8] and is based on the Software
Development Risk Taxonomy created and used by the
Software Engineering Institute (SEI) [4, 5, 6], with an
additional Legacy element added to the Product
Engineering class, as in the Risk Taxonomy authored
by Batista Webster et al. [7] The SEI taxonomy was
originally chosen as the model for the Software Safety
Risk Taxonomy because it maps very well to the
structure of the NASA Software Safety Standard. The
NASA-STD-8719.13B addresses not only new
software development, but also legacy, heritage and
reused safety-critical software systems.

A Software Risk Evaluation (SRE) is a practice
that was developed by the SEI containing a formal
method for identifying, analyzing, communicating and
mitigating software technical risk. [5] The SEI
Software Development Risk Taxonomy is a part of
this practice. In our research we are using the Software
Safety Risk Taxonomy in addition to the SEI
Taxonomy to generate a comprehensive list of
questions for defining an inclusive set of risks for
legacy safety-critical computer systems. The Software
Safety Risk Taxonomy addresses the additional safety
related tasks and analyses that are required over and
above traditional software engineering process
activities.

A pilot study using the SEI taxonomy and the
original Taxonomy Based Questionnaire (TBQ) was
initiated using one of the NASA legacy systems at the

Kennedy Space Center (KSC) in Florida. This system
monitors and controls ground support equipment at the
launch site, facility power and the sound suppression
water system. Preliminary data was collected and risks
were captured. The next step in the pilot is to use the
new Software Safety Risk Taxonomy and its
corresponding TBQ. The Software Safety Risk TBQ
will be used to interview participants in a similar
fashion to elicit the software safety risks. Results
obtained from the interview process will be used when
following the rest of the SRE practice. Once the pilot
study is complete, the forward plan is to work with 4-6
other legacy systems at both KSC and Wallops Flight
Facility in Virginia.

2. Problems with Developing Retrospective
Safety Cases

It can be assumed that not all safety requirements
in a safety standard can be met for a legacy system and
therefore a software safety risk assessment must be
performed. The assumption that an existing system is
safe may not hold when the legacy system is used in a
new application.

There are three basic problems with developing
retrospective safety cases. The first is reliance on the
safe use of the system over the years, and the objective
evidence of the safety issues. Safety issues include
reporting and analysis of accidents, incidents and
resultant problem reports. The second problem is with
attempting to show that the design of the legacy
system is acceptable in the present, even though it was
developed to standards current at the time. In addition
to this, the legacy system may not have been designed
to any standard at all, and this will also be a
consideration when creating a safety case. The third
problem is that of missing information. Information is
lost over time; vendors go out of business or are no
longer under contract with the maintainer of the
system. [9]

With legacy systems, it can be a difficult task to
construct a safety case, because there may be few to
no artifacts available to show compliance with the
software safety requirements. Because of this, there
will be risks associated with not meeting safety
requirements in a legacy safety-critical system. These
software safety risks must be addressed by project
management to give confidence for reusing an existing
system. Risk factors in general will be different for
legacy safety-critical computer systems, and the
software within them. Knowing the risks, project
managers can then decide whether to try to recreate
missing artifacts or accept the risks of not having
certain safety documents or analyses to make the
safety case. This is another reason for a taxonomy

specifically focused on identifying software safety risk
factors.

3. The Software Safety Risk Taxonomy

The Software Safety Risk Taxonomy, like the SEI
taxonomy, maps the characteristics of safety-critical
software development, and therefore of safety-critical
software development risks. [4] The Software Safety
Risk TBQ consists of questions only related to those
additional safety activities essential to producing and
maintaining safety-critical software. Figures 1, 2 and
3 illustrate the three classes and their elements and
attributes of the safety taxonomy. [8]

A. Product Engineering

1. Safety Requirements
Identifiable
Stability
Completeness
Clarity
Validity
Feasibility
Safety requirements traceability
Safety requirements analysis

2. Safety Design
Safety Functionality
Difficulty
Safety Interfaces
Safety Performance
SafetyTestability
Hardware Constraints
Non-Developmental Software
Safety design traceability
Safety design analysis

3. Safety Code and Unit Test
Feasibility
SafetyTesting
Coding/Implementation
Safety code traceability
Safety code analysis

4. Safety Integration and Test
Safety Environment
Product Integration
Safety test traceability
Safety test analysis

5. Engineering Specialties
Safety Maintainability
Reliability
Security
Human Factors
Specifications

6. Legacy
Reverse engineering
Replacement

Figure 1. Product engineering class

The Product Engineering class in Figure 1 is the
largest class in the Software Safety Risk Taxonomy so
we will address it in this paper. It contains the
elements numbered I through 6 that cover the
development of the safety-critical system products.
Under each element are the attributes of interest for
eliciting safety risks.

B. Development Environment

7. Safety Management Process
Safety Planning
Safety Organization
Safety Management Experience
Safety Program Interfaces

8. Safety Management Methods
Safety Monitoring
Safety Personnel
Safety Assurance
Safety Configuration Management

9. Work Environment
SafetyAttitude
Cooperation
Communication
Morale

Figure 2. Development environment class

The Development Environment class in Figure 2
covers the project environment and the process used to
engineer safety-critical system products. [8] It contains
the elements numbered 7 through 9 in the taxonomy.

C. Program Constraints

10. Safety Resources
SafetySchedule
Safety Staff
Safety Budget
Safety Facilities

Figure 3. Program constraints class

The Program Constraints class in Figure 3
contains the factors that may be outside of the control
of the project responsible for the safety-critical system
development. [8] Its sole element is numbered 10 in
the taxonomy.

In section 4 we provide the descriptions of the
Product Engineering taxonomic class, elements and
attributes which are specialized for safety. In section 5
are some sample questions. The 'Legacy Systems Risk
Database Tool' that is being developed as part of this
research project, is briefly described in section 6.

4. Software Safety Risk Taxonomy
Product Engineering Class

Product engineering is defined as the technical
processes to define, design and construct or assemble a
product. [11] Product engineering for safety is defined
as the technical processes used to build a safety-
critical product. It refers to the system engineering and
software engineering activities involved in creating a
safety-critical system that satisfies specified safety
requirements and customer expectations. [4] Activities
include system hazard analysis, system and software
safety requirements analysis and specification, system
and software safety design and implementation,
integration of hardware and software components, and
software and system test for safety-critical systems.

The elements of this class cover the safety
engineering activities that are necessary to be
performed over and above traditional system and
software engineering activities.

In the Product Engineering class the software
safety risks that will most likely be generated will
relate to inadequate analysis of the system for the
technical software safety requirements. Additionally,
software safety risks can also be linked to insufficient
safety design features. Coding standards that do not
include safety considerations might also contribute to
software safety risks. [8]

Software Safety Risk Taxonomy

Caw Eng
Prod

ineetln

Element I	 ,,=_	 S55Ron

SofeyR,q,	 Sn	 5.fepnmn	 S	 ... t	 Sley
Attnbute	 wees	 PIa,n	 enf,n,,	 SOdnj	 FdIL

Figure 4. Software safety risk taxonomy

Figure 4 shows the high level schematic of the
software safety taxonomy, and the relationships
between the Product Engineering class and the
remaining classes.

4.1. Safety Requirements

A requirement is defined as a condition or
capability that must be met or possessed by a system
or system component to satisfy a contract, standard,

specification, or other formally imposed documents.
[11] Safety requirements are defined as 1) process
oriented requirements e.g., what needs to be done to
ensure software safety and 2) technical requirements
that specify what the system must include or
implement. [1] The attributes of the safety
requirements element include the quality of the safety
requirements and the complexity of the
implementation that satisfies the safety requirements.
Safety requirements may be insufficient or missing if
system hazard analyses did not include the software in
the analysis or assumed that the software works as
expected all the time.

Identifiable

Identifiable is defined as capable of being
identified. [12] The identifiable attribute refers to the
ability to identify in order to track the safety
requirements based on some unique classification or
identification scheme.

Stability

Stability is defined as having a marked tendency
to remain unchanged. [12] The stability attribute refers
to the degree to which the safety requirements are
changing and the possible effect that changing safety
requirements and external interfaces will have on the
quality, safety, functionality, schedule, design,
integration and testing of the product being built.

Completeness

Completeness is defined as having all the
necessary parts, elements or steps. [12] The
completeness attribute refers to missing or
incompletely specified safety requirements.
Requirements documents that do not include the safety
requirements, or do not adequately specify the safety
requirements, or have safety requirements that are "to
be defined", or have been inadvertently omitted, will
result in lack of budget for safety requirements.

Clarity

Clarity is defined as the quality or state of being
clear [12] e.g., absence of ambiguity. The clarity
attribute refers to ambiguously or imprecisely written
safety requirements. If the customer and provider do
not have a mutual understanding of the safety
requirements, then there may be safety requirements
rework later in the development cycle when it is more
costly to fix.

Validity

Validity is defined as being well-grounded or
justifiable; logically correct. [12] The validity attribute
refers to whether or not the safety requirements in total
reflect the customer's expectation for the safety of the
delivered system. This attribute may be affected by
ambiguity in safety requirements, unwritten customer
expectations or constraints, or a specification where
not all the stakeholders had a chance to make inputs to
the safety requirements.

Feasibility

Feasibility is defined as the degree to which the
requirements, design or plans for a system or
component can be implemented under existing
constraints. [11] The feasibility attribute refers to the
difficulty of implementing a single technical safety
requirement or of meeting two or more safety
requirements that may conflict when implemented
together in the system. Additionally, feasibility means
the ability to decide on a tolerable qualification
method for demonstrating that the system satisfies the
safety requirements.

Safety Requirements Traceability

Traceability is defined as the ability to trace the
history, application or location of an entity by means
of recorded identifications. [1] Safety requirements
traceability is defined as the ability to show the source
of a particular safety requirement and the linkage from
that source, in this case the hazard report, to the safety
requirement and back to the source. The source of the
safety requirements should be known and available to
start the traceability for the rest of the safety design
and development of the system. This includes both
technical and process-oriented safety requirements.
The software development/management plans should
be reviewed for inclusion of the process-oriented
software safety requirements.

Safety Requirements Analysis

Requirements analysis is defined as the process of
studying and refining system, hardware or software
requirements. [11] Safety requirements analysis is
defined as the process of studying and refining the
safety requirements that result from system hazard
analyses. This attribute refers to the activities that
occur early in the life of the system. The concept of
'what the system shall do' is used to perform system
level preliminary hazard analysis. Hazards and the risk
associated with those hazards are identified. Fault tree

analysis is performed using the identified hazards,
which will include the contribution of the software in
the system. Safety requirements are derived and
assigned to hardware and software parts of the system.

4.2. Safety Design

Design is defined as the process of defining the
architecture, components, interfaces, and other
characteristics of a system or component, as well as
the result of this process. [11] Safety design is defined
as the features and methods e.g., inhibits failure
detection and recovery, interlocks, assertions and
partitions that are incorporated in the software design.
[I] The attributes of the safety design element include
algorithms that are designed for minimum risk or
include 'fail operational/fail safe' or 'single fault
tolerant' or 'two fault tolerant' requirements; safety
functional and performance requirements, internal and
external safety interfaces. The following attributes
characterize the safety design element.

Safety Functionality

Functionality is defined as the particular set of
functions or capabilities associated with computer
software or hardware or an electronic device. [12]
Safety functionality is defined as the functions
provided by the safety-critical software. The safety
functionality attribute covers the safety functional
requirements that may not be designed sufficiently to
meet minimum risk, fault tolerance or fail
operational/fail safe requirements. This includes the
algorithms or designs that may not meet the overall
system safety requirements.

Difficulty

Difficulty is defined as the quality or state of
being hard to do, make or carry out. [12] The
difficulty attribute here refers to safety functional or
design requirements that may be difficult to achieve.
The system architecture as designed may be difficult
to implement to meet the design for minimum risk
requirements.

Safety Interfaces

Interfaces are defined as hardware or software
components that connect two or more other
components for the purpose of passing information
from one to the other. [11] Safety interfaces are
defined as the hardware or software components
specifically designed as interfaces to safety-critical
software, or that implement safety requirements. The

safety interface attribute covers- all hardware and
safety critical software interfaces and the techniques
for defining and managing the interfaces. This
includes commercial off the shelf (COTS),
government off the shelf (GOTS), modified off the
shelf (MOTS) and legacy-heritage-reused software
and developmental hardware interfaces.

Safety Performance

Performance is defined as the degree to which a
system or component accomplishes its designated
functions within given constraints, such as speed,
accuracy, or memory usage. [11] Safety performance
is defined as the ability of a safety-critical system to
handle periodic capacity, load and timing
requirements; this is a fundamental safety property.
[10] The safety performance attribute refers to time
critical performance; real time response requirements,
performance analyses, reliability analyses, user
response requirements, 'must work' and 'must not
work' requirements, failure detection, isolation and
recovery requirements.

Safety Testability

Testability is defined as the degree to which a
system or component facilitates the establishment of
test criteria and the performance of tests to determine
whether those criteria have been met. [11] Safety
testability is defined as the ability of a safety design to
be tested to meet safety criteria. It refers to the design
of the safety features to facilitate testing and the
inclusion of safety personnel in the design process to
facilitate the development and performance of safety
tests.

Hardware Constraints

Hardware constraint is defined as the requirement
for, or restriction or limitation to using specific
hardware in a system. In a safety context, it refers to
the system and processor architecture required to meet
the system and software safety requirements. The
constraints may include memory size, throughput,
real-time response capability, database access or
capacity limitations, computer hardware type such as
firmware, Programmable Logic Controller (PLC),
Field Programmable Gate Array (FPGA), or personal
computer usage versus 'big iron' mainframe usage.

Non-Developmental Software

Non-developmental software is defined as
software that is 1) developed in-house such as

government-off-the-shelf, 2) not developed in-house
such as off-the-shelf, 3) software developed for a
different project other than the current project it is
being used for, such as reused software. [10] The Non-
Developmental Software - NDS (COTS, GOTS, and
MOTS, legacy-heritage-reused) attribute refers to the
risks with system requirements that may not quite
meet the system and software safety requirements. The
customer may not accept vendor development, test, or
reliability data that would demonstrate satisfaction of
system and software safety requirements for the NDS.
It may be difficult to show the 'pedigree' of the NDS
when safety certification of the system is required.

Safety Design Traceability

Safety design traceability is defined as the ability
to show the source of a safety design feature and the
linkage from that source, in this case, the safety
requirements, and back to the source. Since the source
of the safety design is the safety requirements, this
constitutes a continuation of the traceability that was
started in the requirements phase. The process
documents, such as software design documents, are
reviewed for the inclusion of process-oriented
software safety requirements.

Safety Design Analysis

Design analysis is defined as the process of
studying and refining system, hardware or software
designs. Safety design analysis is defined as the
process of studying and refining the safety design
features and methods. It refers to the activities that
occur during the software design phase such as
criticality analysis, risk assessments, and
independence analysis. The software design is
analyzed for areas or conditions that may lead to
further hazards being created. The fault tree that was
started in the requirements phase is updated as a result
of the software design activities.

4.3. Safety Code and Unit Test

Code is defined as computer instructions and data
definitions expressed in a form suitable for input into a
compiler or translator. [11] Safety code and unit test is
defined as the safety-critical software in a system and
the test process that is performed on the individual
safety-critical code units. It refers the safety-critical
software implementation e.g., safety-critical code,
safety interface specifications and constraints.

Feasibility

Feasibility is defined as the degree to which the
requirements, design, or plans for a system or
component can be implemented under existing
constraints. [11] The feasibility attribute for safety of
the code and unit test element refers to problems that
may be created as a result of poor safety design.

Safety Testing

Unit test is defined as testing of individual
hardware or software units or groups of related units.
[11] Safety testing is defined as test activities for
safety-critical units to verify functional software safety
requirements. [l]lt refers to the planning for unit test
for safety-critical functions and the resources and time
for the test activities. Planned test cases especially
designed for safety-critical units, code units that have
been peer reviewed, safety simulations and hardware
necessary to accomplish the test plan are required.

Coding/Implementation

The coding/implementation attribute with regards
to safety covers language constraints, coding
standards, development and target hardware
constraints specific to safety-critical systems.

Safety Code Traceability

Safety code traceability is defined as the ability to
show the source of a safety feature in the code and the
linkage from that source, in this case the safety design,
and back to the source. Since the source of the safety
feature in the code is the safety design, this constitutes
a continuation of the traceability that was started in the
requirements phase and continued in the design phase.
The process documents, such as coding standards, are
reviewed for the inclusion of process-oriented
software safety requirements.

Safety Code Analysis

Code analysis or inspection is defined as a static
analysis technique that relies on visual examination of
development products to detect errors, violations of
development standards, and other problems. [11]
Safety code analysis is defined as the process of
reviewing safety-critical code for errors or defects. It
refers to the activities that occur during the software
coding/implementation phase. Computer software
units designated as safety-critical are reviewed for
correct and complete safety requirements
implementation. The code is also reviewed for

contributions to hazards. The fault tree that was
updated in the design phase is further refined as a
result of the software coding/implementation
activities.

4.4. Safety Integration and Test

Integration is defined as the process of combining
software components, hardware components, or both
into an overall system. [11] Test is defined as an
activity in which a system or component is executed
under specified conditions, the results are observed or
recorded, and an evaluation is made of some aspect of
the system or component. [11] Safety integration and
test is defined as the integration of the safety-critical
software and hardware and the test process that is
performed on the integrated system. It refers to the
integration and test planning, execution and facilities
required for the safety-critical development products
and the safety-critical system.

Safety Environment

A test bed is defined as an environment
containing the hardware, instrumentation, simulators,
software tools, and other support elements needed to
conduct a test. [11] The safety environment is defined
as the integration and test environment that is
equipped to represent the safety capabilities of the
operational environment.

Product Integration

The product integration attribute with regards to
safety refers to the integration of the safety-critical
software components and the hardware, and
subsequent testing of the integrated system. Safety
interfaces, testability of safety requirements, adequacy
of test plans for safety, regression testing for changes,
and ample time and resources for integration and test
are factors to consider.

Safety Test Traceability

Safety test traceability is defined as the ability to
show the source of a safety testing requirement and the
linkage from that source, in this case, the safety
critical code, and back to the source. Since the source
of the safety testing is the safety-critical code, this
constitutes a continuation of the traceability that was
started in the requirements phase and continued in the
coding/implementation phase. The process documents,
such as test plans and procedures, are reviewed for the
inclusion of process-oriented software safety
requirements.

Safety Test Analysis

Test analysis is defined as analyses performed
before the fact to ensure validity of the tests, and
analyses of the test results. [10] Safety test analysis is
defined as reviewing the methods and results of testing
and documenting and reporting any improperly
implemented safety features. [1] It refers to the
activities that occur during the software
integration/test phase. Problem reports, safety
verification matrices and test reports are reviewed.
The fault tree that was updated in the
code/implementation phase is further refined as a
result of the integration and testing activities.

4.5. Engineering Specialties

The engineering specialties are defined as other
quality attributes that complement the safety attributes.

Safety Maintainability

Maintainability is defined as the ease with which
a software system or component can be modified to
correct faults, improve performance or other attributes,
or adapt to a changed environment. [11] Safety
maintainability is defined as how well the safety-
critical system was planned and executed to meet the
technical and process-oriented safety requirements and
how difficult it is to make changes. Safety
maintainability may be weakened by not following
safety standards or safety processes.

Reliability

Reliability is defined as the ability of a system or
component to perform its required functions under
stated conditions for a specified period of time. [11]
NASA defines software reliability as the discipline of
software assurance that (1) defines the requirements
for software controlled system fault/failure detection,
isolation, and recovery; (2) reviews the software
development processes and products for software error
prevention and/or reduced functionality states; and (3)
defines the process for measuring and analyzing
defects and defines/derives the reliability and
maintainability factors. [1] The reliability attribute as
it relates to a safety critical system involves the degree
of control, complexity and timing criticality of the
software part of the system. These characteristics have
a strong influence on the development of safe and
reliable software. [10]

Security

Security is defined as a discipline focusing on
preventing unauthorized access to classified
information and preventing malicious activities. [13]
The security attribute as it relates to a safety-critical
system is the ability for unauthorized access into
software part of the system.

Human Factors

Human factors, is defined as an applied science
concerned with designing and arranging things people
use so that the people and things interact most
efficiently and safely. [12] The human factors attribute
as it relates to a safety-critical system involves
analyzing the potential human errors in the system,
tasks that should be done by the system and those
performed by humans, and the policies and
management that should be in place to develop the
system safely.

Specifications

A specification is defined as a document that
specifies, in a complete, precise, verifiable manner, the
requirements, design, behavior, or other characteristics
of a system or component, and, often, the procedures
for determining whether these provisions have been
satisfied. [11] This attribute addresses the safety
specifications for the system. These specifications may
be formal specifications, functional or at the program
level. Safety specifications will convey the technical
safety requirements, commonly referred to as
computer based control system requirements and
should be well documented and controlled.

4.6. Legacy

Legacy as it relates to legacy systems is defined
as an old computer system or application program that
continues to be used because the user (typically and
organization) does not to replace or redesign it. [14]
The attributes of the legacy element address the
activities required to determine the safety
requirements that were implemented and safety
processes employed in the legacy system.

Reverse Engineering

Reverse engineering is defined as to disassemble
and examine or analyze in detail (as a product or
device) to discover the concepts involved in
manufacture usually in order to produce something
similar. [12] The reverse engineering attribute refers to

the various methods and tools used to produce
documentation required by safety standards and safety
requirements. This attribute addresses the difficulty of
implementing safety standards after the fact if these
standards are imposed on legacy safety-critical
systems.

Replacement

Replacement is defined as one that replaces
another especially in a job or function. [12] The
replacement attribute refers to the activity of replacing
all or part of a legacy safety-critical system.
Replacement can result in risks of finding equivalent
safety-critical systems.

5. Software Safety Risk Taxonomy Based
Questionnaire (TBQ)

Figure 5 below outlines some sample questions
from the Software Safety Risk Taxonomy Based
Questionnaire. These are representative of the
questions used to formulate software safety risks in the
Product Engineering class, safety requirements
element, and safety requirements analysis attribute.

A. Product Engineering

1. Safety Requirements

!. Safety requirements analysis

(Are amtyrequirefloeno analyzed using a epelonasimethodetofty?)

(I I Was Preliminary Hazard Analysis (P144) performed for the system?

(Yes) Is the P144 available for rest em?
(hen) Is Software Included ass part of the PHA?

121 Was a System Safety Analysis (SSA) performed for this system?
(Yen) Is the SSA unstable for review?
(Yes) Is software Included as part of the SSA?

1 3 1 Wa the system and software safety reqsiremants analysed for properfists
dov.e frOs, the system tenet requirements?
(No) Who is responsible for Wing the safety analyses?

1 4 1 What types of safety analyses are performed?
a. Requirements Criticality Analysis
S. Software Fault Ire. Analysis
c. Software Safety Requirements fl—down Analysis
d. 1n4r9. ThrSfJghfslt and Sling Analysis
a. Peer Reviews and Inspections of safety requirements
f. Traceability Analysis
ft. Control Flow Analysis
ft. Irdonnatbe flow Analysis

151 Are safety analyses doojm.ntad?
(Yen) Am One documented analyses merits unde r configuration control?

Figure 5. Sample taxonomy based
questions

6. The Legacy Systems Risk Database Tool

In addition to the development of the Software
Safety Risk Taxonomy, this research project includes
the design and construction of a database tool. The
Legacy Systems Risk Database Tool is used to 1) load
safety standard requirements into the database, 2)
automate the collection of data, which includes both

the software development and software safety risks, 2)
provide a reporting capability, including software
safety risk metrics reports, 3) provide a decision
making mechanism for project management, and 4)
create and show traceability links from the risks to the
selected safety standard requirements.

Figure 6 below shows a subset of the data model
for the database tool. The diagram portrays the
relationships between the Software Safety Risk
Taxonomy, the TBQ, the software safety
requirements, the answers to the questions, and the
software safety risks, for each project.

Figure 6. Legacy systems risk database
architecture

Figure 7 shows a screenshot of the prototype TBQ
data entry user interface. There will be several more
user interfaces developed once all of the safety related
questions are developed based on the new safety
taxonomy.

Taxonomy Based Questionnaire

rtmw n,t.

-o -

n.m

-- -- --

______ In ii' Ins..	 onnwwx..	 noun,.	 nwno.*.

Dv.. o
l41au,..xoun.mu,00vn.,00uan.n na

no,u[T
In..11tnlinrx.un.xxn sun.,. In..ltnn.u.n..xonsrnom I

D	 r amorroC
p4

0	 0 0	 0
II.,) Inyrro.x,.n,snson.u.,..so..o.n,,

lrOnwn	 ommn,.mwe,	 -- -

0v	 Dxs[J

Figure 7. Legacy systems risk database
prototype user interface

7. Summary

This paper describes the Product Engineering
Class for the Software Safety Risk Taxonomy that will
enable a retrospective safety case to be made for
legacy safety-critical computer systems being
considered for reuse. In another follow-on paper we
will describe the Development Environment and
Program Constraints classes to complete the Software
Safety Risk Taxonomy. Subsequently, the Software
Safety Risk Taxonomy Based Questionnaire (TBQ)
will be constructed that contains the safety related
questions to elicit software safety risks. The Legacy
Systems Risk Database Tool that is currently in
development will serve as a tracking, control and
communication mechanism for the software safety
risks that are uncovered by the Software Safety Risk
TBQ.

8. Acknowledgement

This research is part of a project funded by the
NASA Headquarters Office of Safety and Mission
Assurance and the NASA IV&V Facility to investigate
'Assurance and Recertification of Safety-Critical
Software in Legacy Systems". A three year research
proposal was submitted in July 2006 to the NASA
Headquarters Office of Safety and Mission Assurance
(OSMA) to address assurance problems for the safety
of legacy systems and to identify practical software
safety techniques.

9. References

[1] NASA Office of Safety and Mission Assurance, NASA-
STD-8719.13B Software Safety Standard w/Change 1, 2004.

[2] S. Gardiner (ed.) "Testing Safety-Related Software, A
Practical Handbook ", Springer-Verlag, London, 1999.

[3] T.M. Bull, E.J. Younger, K.H. Bennett, Z. Luo,
"Bylands: Reverse Engineering Safety-Critical Systems",
IEEE, 1995.

[4] M. J.Carr, S. L. Konda, 1. Monarch, F. C. Ulrich, C. F.
Walker, "Taxonomy-Based Risk Identification", Software
Engineering Institute Technical Report, CMU/SEI-93-TR-6,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
1993.

[5] G.J. Pandelios, S.G. Behrens, R. L. Murphy, R.C.
Williams, and W.R. Wilson, "Software Risk Evaluation
(SRE) Team Member's Notebook (Version 2.0), Software
Engineering institute Technical Report, CMU/SE1-99-TR-
029, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1999.

[6] R. P. Higuera, Y. Y. Haimes, "Software Risk
Management" Software Engineering Institute Technical
Report, CMU/SEI-96-TR-012, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 1996.

[7] K. P. Batista Webster, K. M. de Oliveira, N. Anquetil
"A Risk Taxonomy Proposal for Software Maintenance",
Proceedings of the 21' IEEE International Conference on
Software Maintenance, (ICSM '05), IEEE Computer
Society, 2005.

[8] J. Hill "A Software Safety Risk Taxonomy for Use in
Retrospective Safety Cases", Proceedings of the 31 Annual
IEEE/NASA Software Engineering Workshop, (SEW '07),
IEEE Computer Society, 2007.

[9] A.J. Shears, and T. Cockram, "An e-Safety Case
Approach to Assuring Safety in UK Legacy Air Launched
Munitions", Retrieved January 8, 2007 from,
httv://www. praxis-
cs.com/eSafetyCase/downloads/parari paperv2.pdf

[10] NASA Office of Safety and Mission Assurance, NASA-
GB-8719.13 NASA Software Safety Guidebook, 2004.

[11] Standards Coordinating Committee of the Computer
Society of the IEEE, IEEE Std. 610.12-1990 IEEE Standard
Glossary of Software Engineering Terminology,The Institute
of Electrical and Electronics Engineers, New York, 1990

[12] htto://www.m-w.com/dictionary, Retrieved January 8,
2007 from, Merriam-Webster, Incorporated, 2007-2008

[1 3]N.G.Leveson,"Safeware System Safety and Computers
Addison-Wesley, Boston, 1995, pp. 183.

[14] http ://en.wikipedia.orWwiki , Retrieved January 8, 2007
from, Wikipedia, The Free Encyclopedia, Wikimedia
Foundation, Inc., 2007

ASWEC Special Sessions

Issues in ICT Education

This session is concerned with ICT education from the holistic perspective of preparation in high
schools, the university experience, transition to the workforce, and the contribution by industry,
government, and professional bodies.

Consultations to date with various stakeholders have revealed numerous concerns that include: the
dispersed nature of the ICT sector; erroneous perceptions of ICT disciplines; decline in enrolments;
gender imbalance; lack of industry involvement; and balancing knowledge with generic skills
acquisition.

This forum will involve the project team and invited participants to report on findings from
consultations and research. Attendees will be invited to respond and to contribute their issues and
challenges that are of particular concern to the software engineering community.

Professor Joe Chicharo
	

Professor Faze! Naghdy
	

Dr Tony Koppi

Project Director	 Project Director	 Project Manager

Aerospace and Real Time Issues

This special session addresses crucial issues in a variety of applications particularly in
the aerospace industries and real time control systems, risk assessment, software
reliability, software safety, error protection, reuse for reliability and safety, as well as
issues in software development. These issues are of importance to a large number of
other industries such as Offshore Oil and Gas Platforms and remote Resource
Industry sites. We have put together a selection of papers that address different
parts of these themes. The session will take the form of a lead presentation of 30
minutes by the session chair followed by 10 minute position paper presentations of
each of their concerns followed by a 40 minute open panel discussion with audience
participation and panel participation.

This Special session is organized and chaired by research scientists from the National
Aeronautics and Space Administration, NASA, Kennedy Space Center, Florida, USA.
NASA's mission is to pioneer the future of space exploration, scientific discovery, and
aeronautics research. The Chairs are Computer Engineers performing research
focusing on Safety of Computer Based Control Systems.

Janice Hill	 Daniel Victor

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

