Water Walls: Highly Reliable, Massively Redundant Life Support Architectures

Michael Flynn
NASA Ames Research Center

Renée L. Matossian and Marc M. Cohen.
Astrotecture™

Sherwin Gormly
Desert Toad LLC.

Rocco L. Mancinelli
Bay Area Environmental Research Institute (BAERI)
Motivation

- The cost of human space flight today is prohibitive.
- Cost is a major impediment to the frequency and duration of future exploration missions.
- What is needed is to reduce the cost of human spaceflight by an order of magnitude.
- We need a new approach to sustaining humans in space.
Habitat Water Walls Architecture

- Our approach integrates life support, thermal, structural, and radiation protection functions into the walls of the spacecraft.

- We achieve a mass savings by combining the mass and function of all subsystems within the mass allocation of a radiation protection water wall.
The Need for Radiation Protection Calculated for an ISS Aluminum Module

![Graph showing cumulative dose (mSv) over days for different radiation types (GCR, SPE, Trapped ions, Total) and the dose limit.](image-url)
Water Walls Applied to a TransHab-type Inflatable Module
Radiation Protection

Providing “parasitic” radiation protection is prohibitively massive and expensive.

- For a 240 day deep space mission with 150 mSv career dose limit and an ISS derived cylindrical habitat 130,000 Kg will be required.
- For the same mission where solar radiation protection is all that is required a 20 cm thick water wall in an ISS sized element will require more than 25,000 Kgs of water.

But do we need to provide this water from Earth?

- A 6 person crew producing 15 l/person-day of wastewater with a 80% recovery ratio will produce 6500 Kg/year of wastewater.
- It would require 4 years of operation to accumulate enough water to provide a solar water wall for a single ISS element.
Equivalent System Mass and Metric Values for a Range of Missions and Technologies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Near-Term Exploration Mission:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crew Exploration Vehicle</td>
<td>19,973</td>
<td>13,553</td>
<td>1.47</td>
</tr>
<tr>
<td>Lunar Surface Access Module</td>
<td>3,316</td>
<td>2,258</td>
<td>1.47</td>
</tr>
<tr>
<td>Lunar Outpost</td>
<td>2,323</td>
<td>1,982</td>
<td>1.17</td>
</tr>
<tr>
<td>Independent Exploration Mission:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars Transit Vehicle</td>
<td>14,334</td>
<td>9,313</td>
<td>1.54</td>
</tr>
<tr>
<td>Mars Descent / Ascent Lander</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Habitat Lander</td>
<td>52,996</td>
<td>29,208</td>
<td>1.81</td>
</tr>
<tr>
<td>Mars Transit Vehicle</td>
<td>16,643</td>
<td>10,890</td>
<td>1.53</td>
</tr>
<tr>
<td>Mars Descent / Ascent Lander</td>
<td>4,894</td>
<td>3,039</td>
<td>1.61</td>
</tr>
<tr>
<td>Surface Habitat Lander</td>
<td>31,459</td>
<td>15,279</td>
<td>2.06</td>
</tr>
</tbody>
</table>
Reliability for Long Duration Missions

<table>
<thead>
<tr>
<th>Mars Mission</th>
<th>Transit Days</th>
<th>Mission Days</th>
<th>Surface Days</th>
<th>Stay Time Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunction</td>
<td>400 (Min)</td>
<td>500 (Max)</td>
<td>500 (Min)</td>
<td>600 (Max)</td>
</tr>
<tr>
<td>Opposition</td>
<td>570 (Min)</td>
<td>700 (Max)</td>
<td>30 (Min)</td>
<td>90 (Max)</td>
</tr>
<tr>
<td>Flyby</td>
<td>500 (Min)</td>
<td>650 (Max)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experience from operation of the life support system on Mir and ISS has demonstrated significant reliability issues for conventional systems.

The Water Walls concept uses a more passive approach than the mechanical systems used on ISS.
Reliability – A More Passive Approach to Life Support is Better than all Mechanical

Nature uses no compressors, evaporators, lithium hydroxide canisters, oxygen candles, or urine processors to revitalize our atmosphere, clean our water, process our wastes, and grow our food.

Conventional NASA approach is to use electro-mechanical systems which tend to be failure prone.

In comparison, Nature’s passive systems do not depend upon machines and provide sufficient redundancies so that failure is not a problem.

The Water Wall concept takes an analogous approach that is biologically and chemically passive and massively redundant.
Water Walls Modular Construction
Water Walls
Initial Functional Flow Diagram
Water Walls Process Block Integration Diagram
TABLE 1. Water Walls Life Support Functions and Systemic Redundancies

<table>
<thead>
<tr>
<th>WW Primary Functions (Based on Inputs and Outputs)</th>
<th>Algae Growth Bag</th>
<th>Blackwater/ Solids Bag</th>
<th>PEM Fuel Cell</th>
<th>Urine/ H20 Bag</th>
<th>Humidity & Thermal Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2 Revitalization</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 Removal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denitrification/Liberation of N2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Clean Water Production</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Urine & Graywater Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Semi-Volatile Removal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackwater Processing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity & Thermal Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Nutritional Supplement Production</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Power Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Development Approach

1. Fabricate and test functions, processes and units at the bench scale.
2. Scale up to a sub-scale functional prototype such as a Forward Osmosis bag.
3. Test Functional Prototypes in a controlled (e.g. closed chamber) and field environments.
4. Microgravity Flight Testing on ISS, and
5. Integrated System Test in the Bigelow Inflatable Module.
Core Air Revitalization Process: CO₂ Sequestration & O₂ Production

Testing using OptiCells™ Cyanobacteria and *Synechococcus*

- Cyanobacteria 53.6 mg CO₂ fixed L⁻¹ hr⁻¹,
- *Synechococcus* 250 mg CO₂ fixed L⁻¹ hr⁻¹.

Future tests will use green alga *Chlorella*, and the edible cyanobacterium *Spirulina*. As well as determining O₂ production.

Algae/cyanobacteria needs to offset 1Kg CO₂/person-day
Forward Osmosis: A Natural Process -- X-Pack™ forward osmosis bag
Example of Water Walls Research: Reduction in flux as a function of the number of times a bag has been reused.

Data was taken after 4 hours of operation for each data point. Error bars are 11%.
STS 135 Forward Osmosis Bag Flight Test
2013 New Design for Forward Osmosis Cargo Transfer Bag (CTB) that Accommodates Flight Demonstrations of Functional Cell Elements
Cargo Transfer Bag Placement in an ISS Module for Functional Process Use and Radiation Shielding
FO – CTB Field Tests at Desert-RATS

D-RATS 2011

D-RATS 2012
Results of D-Rats Field Tests Measured Recycling Ability for Hygiene Water

<table>
<thead>
<tr>
<th>Product at Feed at</th>
<th>Feed at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>End, 5 h</td>
</tr>
<tr>
<td>Na</td>
<td>12737.0</td>
</tr>
<tr>
<td>NH4</td>
<td>nd</td>
</tr>
<tr>
<td>K</td>
<td>nd</td>
</tr>
<tr>
<td>Mg</td>
<td>nd</td>
</tr>
<tr>
<td>Ca</td>
<td>nd</td>
</tr>
<tr>
<td>Cl</td>
<td>21555.0</td>
</tr>
<tr>
<td>PO4</td>
<td>nd</td>
</tr>
<tr>
<td>SO4</td>
<td>nd</td>
</tr>
<tr>
<td>TOC</td>
<td>0.6</td>
</tr>
<tr>
<td>TIC</td>
<td><0.5</td>
</tr>
<tr>
<td>TN</td>
<td><0.5</td>
</tr>
<tr>
<td>pH</td>
<td>5.6</td>
</tr>
<tr>
<td>Cond.</td>
<td>54.4 mS</td>
</tr>
</tbody>
</table>
In the News: Inspiration Mars Fly-By 2018

New Scientist – 26 FEB 2013 - Taber McCallum told *New Scientist* that solid and liquid human waste products would get put into bags and used as a radiation shield...“which is an idea already under consideration by the agency's Innovative Advanced Concepts programme, ... called Water Walls, which combines life-support and waste-processing systems with radiation shielding. “

VIRAL all the way to the **Colbert Report**, etc....
Water Walls-Related Projects When We Proposed to NIAC

Funded

Humidity Control
JPL & Ames Air Team
Gamechanging Darrell Jan
TRL-4

Volatile Organic Destruction
NASA Ames+ UC Santa Cruz
NASA STTR & Ames Center
Innovation Fund
Bin Chen
TRL-3

Proposed

Complementary Funding

Forward Osmosis Cargo Transfer Bag
Logistics to Living
Advanced Exploration Systems
Sherwin Gormly
Michael Flynn, ARC
Scott Howe, JPL
Joe Chambliss, JSC
TRL-4

Past Funding

Forward Osmosis Bag
Flight Experiment for Simulated Urine
Exploration (Joshi)
Sherwin Gormly
Dan Schultz, KSC
Monica Solar, KSC
TRL-7
Current Water Walls-Related Technology Development

Funded

- Water Walls Architecture
 - 2012 NIAC to NASA Ames
 - Michael Flynn + Astrotecture™
 - Marc Cohen
 - Renée Matossian

- Humidity Control
 - JPL & Ames
 - Air Team Gamechanging
 - Darrell Jan
 - Michael Flynn
 - TRL-4

- Volatile Organic Destruction
 - NASA Ames + UC Santa Cruz
 - NASA STTR & Ames Center Innovation Fund
 - Bin Chen
 - TRL-3

- CO₂ Sequestration/O₂ Production
 - NASA Ames
 - Director’s Matching Grant to Sherwin Gormly
 - Rocco Mancinelli
 - BAERI
 - TRL-3

- Forward Osmosis Secondary Treatment (FOST)
 - Urine/Graywater Processing
 - Gamechanging
 - Michael Flynn
 - TRL-4

- Microbial Organic Fuel Cell
 - 2012 NASA Synthetic Biology
 - John Hogan
 - Michael Flynn
 - TRL-3

Proposed

Complementary Funding

- Forward Osmosis Cargo Transfer Bag
 - Logistics to Living
 - Advanced Exploration Systems
 - Sherwin Gormly
 - Michael Flynn, ARC
 - Scott Howe, JPL
 - Joe Chambliss, JSC
 - TRL-3

- Past Funding

 - Forward Osmosis Bag Flight Experiment for Simulated Urine
 - Exploration (Joshi)
 - Sherwin Gormly
 - Dan Schultz, KSC
 - Monica Solor, KSC
 - TRL-7
Current and Proposed Water Walls-Related Technology Development

Funded

- Water Walls Architecture
 2012 NIAC to NASA Ames
 Michael Flynn + Astrotecture™
 Marc Cohen
 Renée Matossian

- Humidity Control
 JPL & Ames
 Air Team
 Gamechangers
 Darrell Jan
 TRL-4

Proposed

- Nitrogen Economy/Module Sizing
 Astrotecture™ + BAERI
 NASA SBIR Proposal
 Rocco Mancinelli
 Marc Cohen
 Renée Matossian
 TRL-2

- CO₂ Sequestration/O₂ Production
 NASA Ames
 Director's Matching Grant to Sherwin Gormly
 BAERI
 Rocco Mancinelli
 TRL-3

- 3D Food Printing from Algae & Spirulina
 Astrotecture™
 2013 NIAC Step A
 Michelle Terfelsky
 Marc Cohen
 Rocco Mancinelli
 TRL-2

Complementary Funding

- Forward Osmosis Cargo Transfer Bag
 Logistics to Living
 Advanced Exploration Systems
 Sherwin Gormly
 Michael Flynn, ARC
 Scott Howe, JPL
 Joe Chambliss, JSC
 TRL-3

- Past Funding

- Forward Osmosis Bag Flight Experiment for Simulated Urine
 Exploration (Joshi)
 Sherwin Gormly
 Dan Schultz, KSC
 Monica Solor, KSC
 TRL-7

- Microbial Organic Fuel Cell
 2012 NASA Synthetic Biology
 John Hogan
 Michael Flynn
 TRL-3

- Secondary Effluent Treatment proposal to the Calif. Energy Commission
 Environmental/Energy R&D
 Astrotecture™
 Sherwin Gormly
 Marc Cohen
 Rocco Mancinelli
 TRL-2

- Volatile Organic Destruction
 NASA Ames + UC Santa Cruz
 NASA STTR & Ames Center Innovation Fund
 Bin Chen
 TRL-3

- Forward Osmosis Secondary Treatment (FOST)
 Urine/Graywater Processing
 Gamechangers
 Michael Flynn
 TRL-4