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In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should
cool radiatively in the cluster’s lifetime1–3, leading to continuous “cooling flows” of gas sink-
ing towards the cluster center, yet no such cooling flow has been observed. The low observed
star formation rates5, 35 and cool gas masses6 for these “cool core” clusters suggest that much
of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway
cooling flow7–10. Here we report X-ray, optical, and infrared observations of the galaxy clus-
ter SPT-CLJ2344-424311 at z = 0.596. These observations reveal an exceptionally luminous
(L2−10 keV = 8.2 × 1045 erg s−1) galaxy cluster which hosts an extremely strong cooling flow
(Ṁcool = 3820 ± 530 M� yr−1). Further, the central galaxy in this cluster appears to be expe-
riencing a massive starburst (740 ± 160 M� yr−1), which suggests that the feedback source
responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully
established in SPT-CLJ2344-4243. This large star formation rate implies that a significant
fraction of the stars in the central galaxy of this cluster may form via accretion of the intr-
acluster medium, rather than the current picture of central galaxies assembling entirely via
mergers.

The galaxy cluster SPT-CLJ2344-4243 was discovered by the South Pole Telescope (here-

after SPT12) via the Sunyaev-Zel’dovich (SZ) effect, with an initial estimated mass of M200 ∼16.6

× 1014 M�11. These data were supplemented with new broadband optical g, r, i, z imaging from

the Mosaic II camera on the Blanco 4-m telescope (Figure 1), optical multi-object spectroscopy
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using GMOS on the Gemini South 8.1-m telescope, optical long-slit spectroscopy using IMACS

on the 6.5-m Magellan telescope, near-infrared long-slit spectroscopy using FIRE on the 6.5-m

Magellan telescope, mid–far infrared imaging using PACS and SPIRE on the Herschel Space Ob-

servatory, and X-ray imaging spectroscopy using the ACIS-I camera on the Chandra X-ray Obser-

vatory. Additionally, we have acquired archival near–far UV imaging from the GALEX archives,

near–mid infrared imaging from the 2MASS and WISE archives, and 843MHz radio imaging from

the SUMSS survey. Further details for these data and their processing can be found in Supplemen-

tary Information.

We estimate the mass of SPT-CLJ2344-4243 from the X-ray-measured pressure (YX ≡Mgas

× TX) of the intracluster medium (ICM), using an externally calibrated pressure-mass (YX–M )

relation. The relation was calibrated using a local sample of relaxed clusters from X-ray estimates

of the total mass that assumed hydrostatic equilibrium33. By iteratively adjusting the value of r500
(where r500 (or r200) is the radius for which the enclosed average density is 500 (200) times the

critical (average) density of the Universe) such that the YX–M500 relation is satisfied, we converge

on values of r500 = 1.3 Mpc and M500,YX
= 12.6+2.0

−1.5 ×1014 M�. At r200, this corresponds to M200,YX

∼ 25 ×1014 M�, which makes SPT-CLJ2344-4243 amongst the most massive known clusters in

the Universe14, 15. The GMOS multi-object spectroscopy of 26 galaxies exhibiting only absorption

features yielded a robust biweight estimate of the redshift (z = 0.596 ± 0.002) and velocity dis-

persion (1700+300
−200 km s−1), the latter being consistent with the picture of an extremely massive

cluster. The velocity distribution is consistent with a Gaussian distribution, but the limited number

of redshifts does not preclude velocity substructure or multimodality. The smooth X-ray isophotes

suggest that the cluster may be relaxed, and while the cluster member velocity distribution is con-

sistent with an undisturbed cluster, the velocity data lack the statistical power to robustly constrain

the cluster’s dynamical state.

The integrated rest-frame 2–10 keV X-ray luminosity, L2−10 keV = 8.2+0.1
−0.2 × 1045 erg s−1

within r500, is greater than any other known cluster in this band. The high central luminosity, which

is predominantly cooling radiation, in turn results in a high X-ray cooling rate, as defined by dM
dt

=
2Lμmp

5kT
, where μ is the mean molecular mass of the ICM. Assuming a cooling radius of 100 kpc (see

Supplementary Information), we measure an ICM cooling rate of 3820 ± 530 M� yr−1, making

this the strongest cooling flow yet discovered (see Table 1 for comparison to other clusters). The

ICM in SPT-CLJ2344-4243 exhibits a significant drop in temperature, accompanied by a rise in the

metallicity, in the central 100 kpc, reminiscent of nearby cool core clusters. Furthermore, the short

central cooling time (< 1 Gyr), along with the low central entropy (<100 keV cm2), resembles

nearby “strong” cool cores, such as the Perseus16 and PKS0745-19117 clusters. The discovery of

a strong cool core at z = 0.596 is particularly remarkable as recent X-ray and optical surveys have

found a general lack of strong cool cores at z > 0.418–20, with relatively few exceptions.

Much like the central galaxies of low-z cool core clusters21–23, SPT-CLJ2344-4243 exhibits

bright, spatially-extended, optical line emission (i.e. [O II], Hβ, [O III], [O I], Hα, [N II], [S II],

etc; Figure 2). We were fortunate to intersect what appears to be an extended filament with one of
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our randomly-oriented slits, which has a length of ∼70 kpc. This is similar in extent to the most

extended optical filaments in the core of the Perseus cluster24, and orders of magnitude larger than

typical jets in cluster cores (e.g., M8725). The diagnostic line ratios [N II]/Hα, [S II]/Hα, [O I]/Hα,

[O III]/Hβ, and [O III]/[O II] show evidence for a Seyfert-like AGN in the nucleus of the central

galaxy, while at radii >2′′, the optical line ratios resemble those in the star-forming filaments of

z ∼ 0 cool core clusters45 (see Supplementary Information).

Apart from the exceptionally X-ray high luminosity and central cooling rate, what truly sets

this system apart from the majority of nearby galaxy clusters is that there is significant evidence for

a dusty starburst in the central galaxy of SPT-CLJ2344-4243. The rest-frame 0.1–500μm spectral

energy distribution (Figure 3) of the central galaxy most closely resembles that of an ultraluminous,

infrared galaxy (ULIRG), which are known for having heavily obscured starbursts (∼200–1000

M� yr−1) and central AGN. This scenario is corroborated by our observation of significant Balmer

reddening (E(B − V )global ∼ 0.3) and strong 24–160μm emission, combined with signatures of

ongoing star formation (near- and far-UV emission, bright nebular emission lines, weak 4000Å

break) and a heavily-obscured central AGN (E(B−V )nuclear ∼ 0.5, nH,X−ray ∼ 40 × 1022 cm−2).

Utilizing the full multi-wavelength dataset, which includes X-ray, near–far UV, optical, near–far

IR, and radio data, we estimate an extinction-corrected, AGN-subtracted star formation rate of 740

± 160 M� yr−1, assuming a geometric correction of 45% for the long-slit spectroscopy and an

AGN contamination fraction of ∼40-50% (see Supplementary Information for details).

The presence of extended (∼70 kpc), morphologically-complex (Figure 2) star-forming fila-

ments coincident with the central galaxy in SPT-CLJ2344-4243 is reminiscent of low-z cool core

clusters like Perseus and PKS0745-191. However, while these clusters have substantial amounts

of star formation (∼1–20 M� yr−1)5, 35, this is still orders of magnitude less than predicted by the

classical cooling estimates based on the X-ray luminosity (Table 1). This disagreement has become

known as the “cooling flow” problem, and it is generally assumed that some form of feedback is

responsible for halting the cooling ICM before it reaches the cold phase. SPT-CLJ2344-4243,

however, represents an exception to this general trend, of which there are very few27, 35, where

the high star formation rate represents a significant fraction of the massive cooling flow (Table

1). Whatever feedback mechanism is responsible for preventing runaway cooling of the ICM in

low-redshift galaxy clusters is clearly operating with a lower efficiency in this system. While the

central galaxy hosts an active galactic nucleus (AGN), as evidenced by a hard X-ray point source

and strong radio emission (see Supplementary Information), it may be that we are observing this

system during a small window in time when the AGN is rapidly feeding off of the cooling flow,

but the power output of the AGN has not yet fully coupled to the ICM, and therefore is able to halt

a smaller fraction of the total cooling than in typical low-redshift clusters (i.e., Perseus). The fact

that systems with such high cooling and star formation rates are not observed at z = 0 suggests

that either this system is entirely unique, or the mechanism which quenches cooling may have been

less effective in the early Universe. Further studies of distant, strongly-cooling galaxy clusters are

needed to differentiate between these two scenarios.
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The high star formation rates inferred from optical line emission and near–far-UV, optical,

and mid–far IR continuum emission, combined with the strong signatures of X-ray cooling, suggest

that the central galaxy in SPT-CLJ2344-4243 may form a substantial fraction of its stars through

an intense, short-lived cooling phase of the intracluster medium. Such strong cooling can not be

sustained for a significant amount of time, or both the central galaxy and its supermassive black

hole would become too massive, and the central galaxy would have stellar populations considerably

younger than those observed in giant elliptical galaxies today. This implies that episodes of strong

cooling are short-lived, in contrast to the longer episodes of strong feedback observed in nearby

clusters.
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Cluster z L2.0−10.0keV kT dM/dt SFR εcool
[1044 erg/s] [keV] [M�/yr] [M�/yr]

Perseus 0.0179 11 5.5 556 37 0.07

PKS0745-191 0.1028 29.5 6.71 1455 20 0.01

Zw 3146 0.2906 36.9 6.4 2228 79 0.04

RX J1347.5-1145 0.451 60 10.0 1900 23 0.01

SPT-CLJ2344-4243 0.596 82+1
−2 13.0+2.4

−3.4 3820 ± 530 740 ± 160 0.19 ± 0.05

Table 1: Properties of well-studied, strong cool core clusters, for comparison to SPT-CLJ2344-

4243. Previous to this work, RX J1347.5-1145 was considered both the most X-ray luminous and

strongest cooling galaxy cluster, with a luminosity of L2−10keV = 60 × 1044 erg s−1 and cooling rate

of 1900 M� yr−1. Immediately obvious from this table is the exceptionally high star formation rate

of the central galaxy in SPT-CLJ2344-4243. We quantify the efficiency of converting the cooling

flow into stars with the parameter εcool, which is simply the star formation rate normalized to the

classical cooling rate. The high star formation rate implies that SPT-CLJ2344-4243 is converting

∼20% of the cooling flow into stars, which is considerably higher than the vast majority of low-

redshift cool core clusters. X-ray properties and star formation rates of the lower-redshift clusters

are taken from the literature6, 28, 29.
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Figure 1: False-color images of the galaxies and intracluster plasma in the galaxy cluster SPT-

CLJ2344-4243. (a): This color-composite image of SPT-CLJ2344-4243 is based on an RGB com-

bination of optical r, i, z images. Galaxies which make up the galaxy cluster share a common

brown color, due to their similar star formation histories and common distance. The central galaxy,

which is both the most massive and most luminous galaxy in the cluster, is considerably bluer than

the rest of the member galaxies, suggesting significantly younger stellar populations. This is more

obvious in the zoomed-in inset. The lower right inset, which shows an ultraviolet color-composite,

reveals a bright UV source, with no accompanying emission from the surrounding member galax-

ies. Dotted lines represent the orientation of the optical and near-IR long-slit spectra. (b): This

false-color image shows the adaptively-smoothed X-ray data, with photon energies from 0.7–2.0

keV (to minimize AGN contribution), of SPT-CLJ2344-4243. This image clearly shows the lu-

minous, centrally-concentrated core, as well as the relatively smooth, relaxed morphology of the

intracluster medium. White contours represent the SZ decrement (significance levels of 5, 10, 15,

20, 25) against the cosmic microwave background. The circularity of these contours agree with the

scenario that this system is not currently undergoing a a major merger with another galaxy cluster.
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Figure 2: Optical and near-infrared emission-line spectra of the central galaxy in SPT-CLJ2344-

4243. The false-color images highlight the extended line emission ([O II] in upper two panels,

Hα+[N II] in lower), where the vertical axis is the spatial direction (along the slit) and the hori-

zontal axis is the spectral direction. These emission lines result from warm, ionized gas at ∼104

K, which is likely heated by a combination of young stars, shocks, and feedback from the central

active black hole. The fact that the [O II] emission is significantly more extended in one direction

(θ ∼ 135◦) suggests that the emission is non-axisymmetric, and is consistent with the scenario of

radial line-emitting filaments. The extent of this emission (> 50 kpc) is reminiscent of optical

filaments observed in the core of the Perseus cluster24. Beneath each color image, we show the

spectrum which is generated by summing along columns of the color image. These spectra show

the high signal-to-noise of these emission lines, leading to high-confidence estimates of the emis-

sion line luminosity. The lower panel, which shows the near-infrared spectrum (in the observed

frame, λHα = 1.05μm) shows emission from both the Hα and [N II] lines, extended over similar

radii (> 50 kpc).
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Figure 3: Spectral energy distribution of the central galaxy in SPT-CLJ2344-4243 from the far-

UV to the far-infrared. We show on the Y-axis the integrated specific flux (Fν) as a function of

wavelength in the rest frame of the galaxy cluster, along with the associated 1σ measurement

error. A typical central cluster galaxy is morphologically-classified as an “elliptical” galaxy, and

has an average spectral energy distribution shown in purple in the upper panel. In contrast, the

central galaxy in SPT-CLJ2344-4243 has a considerable excess of emission at both ultraviolet

and infrared wavelengths, indicative of strong star formation. While there is significant evidence

for strong feedback from the central, supermassive black hole in this cluster (see Supplementary

Information), this figure shows that simple models of active galactic nuclei (quasar type 1 and 2,

and Seyfert type 1.8 shown in upper panel) are unable to reproduce the spectral shape of the central

galaxy in SPT-CLJ2344-4243. However, in the lower panel we show templates30 of four different

dusty starbursts, or ultra-luminous infrared galaxies (ULIRGS), which provide a much better match

to the data. This good agreement suggests that the central galaxy in SPT-CLJ2344-4243, unlike

typical central cluster galaxies, contains a dusty starburst and heavily obscured AGN. Specifically,

the spectral shape is most similar to those of M82, a dusty starburst with a strong wind, and IRAS

20551-4250, which is a composite of a highly-obscured AGN and a vigorous, dusty starburst.
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Supplementary Information

1 Observations, Data Reduction, and Analysis

X-ray Data: Our data reduction pipeline was adapted from earlier work31, 32 and includes the

removal of flares, estimation of background from blank sky fields, and calibration using the latest

set of corrections. From the cleaned image, an X-ray spectrum was extracted over the energy range

0.5–8.0 keV within an annulus defined as 0.15r500 < r < r500, excluding point sources, with the

initial assumption that r500 = 1.0 Mpc. We fit this spectrum using a combined WABS(MEKAL)

model, which accounts for Galactic absorption in the emission spectrum of a hot, diffuse gas. This

fit yields a temperature (TX) and gas mass (Mg), which are combined to give the mass proxy YX

≡ Mg × TX . Assuming the following scaling relation33:

M500 = 5.77× 1014h1/2M� ×
(

YX

3× 1014M�keV

)0.57

E(z)−2/5 , (1)

we can then infer M500, which leads to a new value of r500 based on its definition:

r500 ≡
(

3M500

4π500ρcrit(z)

)1/3

. (2)

This process is iterated until changes in r500 are small. From the final estimate of M500, we can

extrapolate M200 (which, by convention, uses the average density of the Universe, rather than

the critical density) assuming that the dark matter halo has an NFW profile with a concentration

following the mass-concentration relation34. At this point, we measure TX within the aperture

0.15r500 < r < r500, and LX and Mg within the aperture 0 < r < r500, which are used as the final

global quantities.

To determine an inner characteristic radius, we compute the hard (2.0–8.0 keV) and soft

(0.7–2.0 keV) X-ray surface brightness profiles, as shown in Figure S.1. From this plot, it is clear

that the central ∼10 kpc is dominated by a hard X-ray point source, likely an AGN, and then the

hardness ratio reaches a minimum over the range 10–100 kpc, before settling to a roughly constant

value from 100–1300 kpc. This inner region with excess soft X-ray emission defines the cool core,

with a cooling radius of ∼100 kpc. Further, the right panel of Figure S.1 shows that the classical

cooling rate does not increase substantially by including emission from r > 100 kpc, suggesting

that the cool core is confined to r < 100kpc.

We extracted spectra in the logarithmically-spaced annuli 0 < r < 100 kpc (cool core), 100

kpc < r < 450 kpc, and 450 kpc < r < 1300 kpc in order to determine the gas temperature (TX),

electron density (ne), and metallicity (Z) as a function of radius. In the central bin, we masked the

inner 1.5′′ in order to remove contributions to the spectrum from the AGN. These spectra were fit

with a model combining Galactic absorption (WABS) and hot, diffuse gas (MEKAL). The specific

12



Figure S.1: Left: X-ray emission measure as a function of radius for SPT-CLJ2344-4243. The red

and blue lines show the contributions to the total (black) from soft (0.7–2.0 keV) and hard (2.0–8.0

keV) emission in the observed frame, respectively. The lower panel shows the hardness ratio, HR

= H−S
H+S

as a function of radius. The spectrally hard, spatially unresolved AGN emission dominates

at r < 10 kpc, while the emission from 10 kpc < r < 100 kpc has a soft X-ray excess, which we

interpret as a cool core. Note that the error bars are smaller than the point size in this radial range.

Right: Classical cooling rate as a function of enclosed radius. This plot shows that the cooling

rate rises rapidly out to ∼100kpc, at which point it changes little out to >200kpc, due to the fact

that gas at large radii has a much longer cooling time. This plot further motivates our choice of a

100kpc cooling radius.

entropy (K = TX × n
−2/3
e ) and cooling time (tcool = 108

(
K3/2

10

)(
TX

5

)−1
Gyr) were also inferred

from the model fit to the spectrum in each annulus.

The projected temperature and metallicity profiles show a rise in metallicity accompanied

by a dip in temperature in the central 100 kpc, as seen in cool core clusters at z ∼ 0. Despite the

fact that these data have not been corrected for projection, which means that a significant amount

of emission from hot gas at large radius is contributing to the spectrum extracted from the central

aperture, the cooling time in the inner 100 kpc is < 1 Gyr. This short central cooling time, along

with the low (<100 keV cm2) central entropy, resembles nearby strong cool cores, such as the

Perseus and PKS0745-191 clusters.

The classical cooling rate was estimated from the equation, dM
dt

=
2Lμmp

5kT
, using the total X-

ray luminosity and temperature within the central 100 kpc35. As shown in Figure S.1, this estimate

is relatively insensitive to the choice of radius for r ≥ 100 kpc. We find dM/dtclassical = 3820 ±

13



Figure S.2: Temperature, metallicity, specific entropy, and cooling time profiles for SPT-CLJ2344-

4243. The outer radius (1300 kpc) corresponds to r500 for this system, while the inner radius (100

kpc) corresponds to the size of the cool core. The dip in temperature and peak in metallicity in the

central bin is reminiscent of z ∼ 0 cool core clusters. In the central 100 kpc, we find that, without

correcting for projection, the cooling time is < 1 Gyr, suggesting a strong cooling flow.
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530 M� yr−1. The available X-ray spectra are of insufficient depth to estimate the cooling rate

spectroscopically and thus we are unable to measure the “instantaneous” cooling rate. However,

the classical, steady-state, cooling rate is still valuable for comparison to low-z clusters and as an

upper limit to the “true” cooling rate.

Infrared Imaging Snapshot Herschel PACS images were obtained at 70 and 160μm with a total

exposure time of <30 minutes as part of a Director’s Discretionary Time project (PI: M. Bayliss).

In these short exposures, the central galaxy was detected at flux levels of 432 ± 21 mJy and 364 ±
18 mJy, at 70 and 160μm, respectively.

Herschel SPIRE maps at 250, 350 and 500μm were observed as part of the “Herschel Lens-

ing Survey” (HLS; PI: E. Egami) snapshot program covering 148 SPT clusters. The SPIRE data

consists of a single repetition map, with coverage complete to a cluster-centric radius of 5 arcmin.

The maps were produced via the standard reduction pipeline HIPE v9.0, the SPIRE Photometer In-

teractive Analysis (SPIA) package v1.7, and the calibration product v8.1, with improved treatment

of the baseline removal (also known as ‘de-striping’).

To characterize the far-IR SED, we fit a blackbody law, modified with a spectral emissivity

that varies physically such that the dust opacity reaches unity at frequency νc
36:

fν ∝ [1− exp(−(ν/νc)
β)]Bν(Td) (3)

Here, Bν(Td) is the Planck function. We fix the spectral index of the emissivity to β = 2.0, and

the critical frequency to νc = 1.5 THz. The dust temperature Td and the amplitude are left as free

parameters. We exclude photometric data at wavelengths shorter than rest wavelength ∼ 40μm
(including 70, 160, 250, 350, 500 μm data from Herschel PACS and SPIRE) so we can fit only to

the cold dust component, which should be more free of AGN contamination and better trace the

dust heated by star formation. Our best fit gives Td = 87± 3 K and LIR = (9.5± 1.1)× 1012 L�,

with rχ2 = 0.13.

Optical Spectroscopy: Long-slit optical spectra at two different orientations (104◦ and 135◦) with

a 1.2′′ slit width were obtained using the IMACS spectrograph on the Baade 6.5m telescope, using

the 200 lines/mm grism, which provides 2.0Å/pixel spectral resolution over the wavelength range

3900Å–10000Å. The seeing during these observations was ∼0.7′′. These spectra were reduced us-

ing standard IRAF tasks to remove the bias and overscan, flat field, remove sky lines, and perform

wavelength calibration based on arc lamp spectra. The LA Cosmic software37 was used to mask

cosmic rays before combining exposures. Flux calibration was performed by measuring the g, r, i,
z flux within a 1.2′′×1.2′′ box centered on the central galaxy nucleus from the broadband imaging,

and forcing the spectrum, extracted from a boxcar with the same spatial and spectral dimensions,

to pass through these points. The final reduced spectrum in a 1.2′′×1.2′′ extraction region is shown

in Figure S.3.

The velocity dispersion for SPT-CLJ2344-4243 is estimated from cluster member galaxy
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Figure S.3: IMACS spectrum of the central galaxy in SPT-CLJ2344-4243. This spectrum demon-

strates the strength of the nebular emission lines ([O II], Hβ, [O III]), as well as the relative flatness

of the continuum spectrum around the 4000Å break, indicating a relatively young population of

stars. The red circles represent broadband fluxes, extracted in the same region is the spectrum,

which were used to flux-calibrate the spectra.

recession velocities that were measured using the Gemini Multi-Object Spectrograph (GMOS) as

a part of a large NOAO survey program (PI: C. Stubbs) to measure velocity dispersions for 100 SPT

galaxy clusters. Galaxies were prioritized for MOS slits based on proximity to the red-sequence

and magnitude. The raw spectra were bias-subtracted, flat-fielded, wavelength calibrated, and

mapped to a common mosaic grid using the gemini.gmos IRAF package. The reduced 2D spectral

exposures were sky-subtracted, extracted, stacked, and flux calibrated relative to LTT 1788 using

custom IDL routines that make use of the XIDL package1. Velocity measurements were made

using the RVSAO38 package with the fabtemp97 template. The final histogram of velocities, along

with the biweight estimate of the redshift and velocity dispersion, are shown in Figure S.4.

Near-Infrared Spectroscopy A near-infrared spectrum of SPT-CLJ2344-4243 was obtained with

the Folded-port Infrared Echellette (FIRE) spectrograph at the Magellan Baade telescope in late

January, 2012. FIRE delivers R = 6000 spectra between 0.82 − 2.5 microns in a single-object,

1http://www.ucolick.org/˜xavier/IDL/
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Figure S.4: Radial velocities of 26 galaxies in SPT-CLJ2344-4243, relative to the mean cluster

redshift of < z > = 0.596. The best-fit Gaussian is shown as a solid line. There is some evi-

dence for substructure at negative velocities, but the limited number of redshifts do not allow for a

statistically significant result.

cross-dispersed setup39. A 10-minute on-target exposure with ∼0.9′′ seeing produced the data

presented in Figure S.5.

For the extraction of point sources, FIRE’s reduction pipeline (FIREHOSE) nominally cre-

ates a 2-dimensional sky model derived from the portions of the slit that are not illuminated by the

source. This way, the sky flux is measured simultaneously with the object flux. Since the spatial

extent of SPT-CLJ2344-4243 fills FIRE’s 6′′-long echelle slit, a separate 10-minute sky exposure

had to be obtained and subtracted from the object frame prior to extraction of the spectrum. The

variability in the sky over the fifteen minutes between the object and sky exposures can introduce

uncertainties into the extracted object spectrum, particularly near hydroxyl (OH) lines. Fortunately,

the OH lines subtract with few residuals in the vicinity of the Hα emission.

Flux calibration was performed by obtaining the spectrum of an A0V star with an airmass,

angular position, and observing time as close to the target as possible. Telluric absorption was

corrected40 via the xtellcor procedure released with the spextool pipeline41.
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Figure S.5: IMACS optical (blue) and FIRE infrared (red) spectra of the central galaxy in SPT-

CLJ2344-4243. The IMACS spectrum has been scaled down to account for the significantly shorter

and narrower FIRE slit.

Since FIRE operates in quasi-Littrow mode, the spectral orders are significantly curved and

tilted with respect to the detector’s pixel basis. Hence, producing a spatial by spectral image of

SPT-CLJ2344-4243 required a separate boxcar extraction of the object spectrum for each spatial

position. A boxcar width of 0.2′′ was selected to match the spatial scale of IMACS. Each of the

spectral strips produced from these extractions were telluric-corrected with the observation of an

AOV standard.

2 Optical Line Ratios

In order to understand the origin of the bright emission lines observed in SPT-CLJ2344-4243, we

appeal to a variety of optical emission line ratios which are traditionally used to separate HII re-

gions from AGN of different types42–44. In particular, we can differentiate using line ratios between

those typically observed in Seyfert galaxies and low-ionization nuclear emission-line regions (LIN-

ERs). In the upper panels of Figure S.6 we show the [O III] λ5007/Hβ ratio as a function of [N

II] λ6583/Hα, [S II] λλ6716,6731/Hα, and [O I] λ6300/Hα for the inner 3′′. We are limited to

small radii in these panels due to the small width (∼6′′) of the FIRE echelle slit. These line ratios
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confirm that there is a strong AGN in the central region of SPT-CLJ2344-4243, consistent with

the hard X-ray and strong radio emission. However, the [O III]/Hβ ratio declines quickly with

radius, such that at a distance of 3′′ (20 kpc) from the nucleus of SPT-CLJ2344-4243, the optical

line ratios are similar to those measured in the cool filaments of z∼0 cool core clusters45. In the

local Universe, these filaments appear to be ionized by a combination of young stars and shocks,

producing LINER-like line ratios45. In the lower left panel of Figure S.6, we plot [O III] λ5007/[O

II] λλ3726,3729 versus [O I] λ6300/Hα, following Kewley et al. (2006). Again, we find that

the nucleus has Seyfert-like line ratios, while the extended emission is LINER-like. At all radii,

the [O III]/[O II] ratio is below the range quoted in Ho et al. (2005) for AGN (0.1-0.3), further

demonstrating that the ionization in the central region comes from a mix of AGN and starburst.

We note that the near-IR spectra have a much smaller slit width (0.6′′ than the optical spectra

(1.2′′), which will result in a slight bias to Figure S.6. Since the “nuclear” points from the optical

spectra will be sampling large radii than those from the near-IR spectra, we expect the [O III]/Hβ
ratio to be biased low at small radii. Using a narrow slit may yield an [O III]/[O II] more consistent

with pure AGN (lower left panel of Figure S.6. We stress that the overall trend, with line ratios

resembling AGN at small radii and low-z emission-line nebulae in cool cores at large radii, would

not be caused by the difference in slit widths.

3 Estimating the Star Formation Rate

The broad wavelength coverage of the central galaxy in SPT-CLJ2344-4243 allows for a careful

estimate of the star formation rate (SFR) using a variety of different techniques. In order to properly

constrain the SFR, we must estimate i) the intrinsic reddening, ii) the contribution to the UV

continuum and emission line flux from the central AGN, and iii) the amount of line emission

missed by the narrow slit. As an initial estimate, we consider the lower limit case which involves

masking the central PSF (removing both the AGN and the central starburst component in the central

1′′), assuming zero intrinsic reddening, and assuming that the slit contains 100% of the extended

emission-line flux. Under these assumptions, we calculate a lower limit on the star formation rate

from the [O II] line of SFR[OII] > 116 M� yr−1. We note that, despite being a lower limit, this is

still higher than any of the lower-redshift, strongly-cooling clusters from Table 1.

In order to estimate the amount of intrinsic reddening, we use the relative fluxes of the Hβ,

Hγ, and Hδ lines. Assuming case B recombination, we estimate average intrinsic reddening values

of E(B-V)γ,β = 0.35 and E(B-V)δ,β = 0.33. Averaging these two values yields our final estimate

of the intrinsic reddening of E(B-V) = 0.34. We correct all of our measured line fluxes for this

amount of reddening assuming a dust screen model. If, instead, we assumed a mixed dust/emission

scenario, the result would imply a larger extinction correction and, thus, a larger inferred star

formation rate. Since the emission line gas may be tracing the youngest, most massive stars (e.g.,

in low-z starburst galaxies), we expect them to be the most highly enshrouded in dust. However,

the stars which are producing the strong UV and optical continuum are slightly older and more
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Figure S.6: Optical line ratio diagnostic plots for the central galaxy in SPT-CLJ2344-4243. The

upper panels show [N II] λ6583/Hα, [S II] λλ6716,6731/Hα, and [O I] λ6300/Hα as a function

of [O III] λ5007/Hβ for a variety of radial bins (in both positive and negative directions along the

slit). While the nucleus of this galaxy shows signatures of a strong AGN, the line ratios at large

radii resemble more closely the LINER-like spectra of star-forming filaments in z∼0 cool core

clusters45. In the lower left panel, the [O III] λ5007/[O II] λλ3726,3729 ratio is compared to the

[O I] λ6300/Hα ratio. Even in the central bin, the [O III]/[O II] ratio is less than expected for

AGN46, suggesting the presence of an additional starburst component.

20



dispersed than this very young population. This leads to roughly a factor of 50% less extinction

in the stellar continuum at Hα than in the emission line itself47. Thus, we correct all broadband

optical and UV fluxes assuming a more conservative intrinsic reddening of E(B-V) = 0.17.

Table S.1 lists the SFRs inferred from extinction-corrected Hα, Hβ, and [O II] emission

lines and far-UV, near-UV, optical, and mid–far IR continuum. We assume a Salpeter IMF48 for

all estimates, using the conversions MCha = 0.55×MSalp and MKrou = 0.62×MSalp. Due to the

smaller slit used for the near-IR spectrum, the Hα-determined SFR is ∼50% less than the SFR

estimated from the [O II] and Hβ emission lines. Excluding this low estimate, we find that <
SFR >emission line ∼ 730 M� yr−1, and < SFR >continuum ∼ 1120 M� yr−1. This implies that the

slit contains ∼65% of the total flux from star-forming regions. We find remarkable correspondence

between the star formation rates inferred from the rest-frame far-UV (GALEX near-UV), near-UV

(IMACS g-band), 4000Å break, and WISE 24μm emission, suggesting that calibration errors are

negligible.

To properly remove the contribution from the central AGN to the inferred SFR, we apply

four distinct corrections. The first correction, which is the most conservative, involves masking the

central ∼1′′ of the IMACS spectrum. This correction removes both the central AGN and starburst

contribution to the total [O II] flux. The second correction, from Ho et al. (2005), assumes that [O

II]/[O III]AGN = 0.2 ± 0.1 (see Figure S.6), and that any additional [O II] emission is from ongoing

star formation. Our third correction assumes a constant X-ray–UV ratio for the AGN, from Elvis

et al. (1994). We model the X-ray spectrum from the central 1.5′′ with a combined plasma and

absorbed powerlaw model, allowing an estimate of the unabsorbed X-ray flux from the central

AGN, which is then converted to an estimated contribution to the total UV flux. Finally, the last

correction employs a scaling relation between the hard X-ray and the total IR luminosity of AGN,

from Mullaney et al. (2011), which provides an estimate of AGN contamination in the measured

IR luminosity. The results of these four independent methods (Table S.1) yield a range of AGN

contamination from ∼40-50% over a broad range in wavelength.

Combining the above estimates of the intrinsic reddening, the filling-factor of the slit, and

the amount of contamination from the central AGN, we find an average SFR of 739 ± 160 M�
yr−1. The uncertainty quoted here is a combination of measurement error, along with uncertainty

in the amount of intrinsic extinction and the amount of AGN contamination. The relatively small

scatter in the SFR estimates from a variety of different methods and wavelengths suggests that this

result is robust. However, there are several uncertainties which could conspire to bias this number

high. While we expect shocks to contribute to the emission-line spectrum45, the fact that the IR-

and UV-derived SFRs are higher than those from emission line suggests that this contribution is

smaller than our uncertainty in the extinction correction. We have assumed case B recombination

in estimating the amount of reddening, which may not reflect the true nature of this system. We

note, however, that this correction would only change by ∼2-3% if the reality is closer to case

A. Our extinction correction most strongly effects the far-UV data, resulting in a factor of ∼3.6

correction to the far-UV luminosity. However, we stress that this significant extinction correction

21



Method SFR Estimate fAGN Coverage Reference Notes

[M� yr−1]

Hα 426 ± 20 0% Slit K98 Small aperture

Hβ 606 ± 40 0% Slit K98

[O II] 841 ± 75 0% Slit K04

FUV 1401 ± 468 0% Total RG02 Implicit Extinction

FUV 1126 ± 105 0% Total K98,C94 50% Hγ/Hβ Extinction

NUV 1132 ± 105 0% Total K98,C94 50% Hγ/Hβ Extinction

D4000 1960 ± 726 0% Total B04 M∗,z = 3×1012 M�
24μm 1655 ± 711 0% Total R09

Far IR 1642 ± 190 0% Total K98

Extended [O II] 771 ± 262 40 ± 20% Total∗ K04 Inner ∼1′′ masked

[O II] + [O III] 799 ± 232 37 ± 18% Total∗ K04, H05 [O II]/[O III]AGN = 0.2 ± 0.1

FUV + X-ray 612 ± 207 45 ± 17% Total K98, C94, E94 αUV−X = 1.325 ± 0.075

FIR + X-ray 774 ± 493 51 ± 30% Total K98, M11

Average: 739 ± 160 ∼40-50% Total∗ ∗: Assumes that slit contains ∼65% of total emission

Table S.1: Star formation rate estimates for the central galaxy in SPT-CLJ2344-4243 from a va-

riety of methods spanning a large range in wavelength. The average SFR is based on the bottom

four estimates, which are corrected for intrinsic extinction, covering fraction, and have had the

contribution from the central AGN removed. Uncertainty estimates include contributions from

measurement error (typically negligible, with the exception of the far-IR), as well as uncertainty in

the intrinsic reddening and the AGN fraction, the latter being the dominant source of error. Refer-

ences are: B04 = Brinchmann et al. (2004), C94 = Calzetti et al. (1994), E94 = Elvis et al. (1994),

H05 = Ho et al. (2005), K98 = Kennicut (1998), K04 = Kewley et al. (2004), M11 = Mullaney

et al. (2011), R09 = Rieke et al. (2009), RG02 = Rosa-González (2002).
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is physically motivated, based on the Hγ/Hβ and Hδ/Hβ ratios, the slope of the UV-optical SED,

the strong extinction measured in the X-ray, and the strong mid-IR flux. Further, the fact that

the empirical SFR estimate from Rosa-Gonzalez et al. (2002) over estimates the SFR compared

to our reddening-corrected estimates suggests that our assumption of E(B-V) = 0.17 in the stellar

continuum is below average for systems with similar UV luminosity. In order to improve upon

the accuracy of this estimate, we require high spatial resolution UV imaging, which is the least

sensitive to shocks and would allow us to spatially model and subtract the nuclear component.

The flux in the SPT 1.4 mm data at the position of the BCG is consistent with zero, and a

3 sigma upper limit can be placed at 20.4 mJy. By fitting a range of SEDs to the available data

(Figure 3), we estimate the median 1.4 mm flux to be 0.5 mJy, with a 68% confidence interval

of 0.2–1.4 mJy, and the median 2.0 mm flux to be 0.1 mJy with a 68% confidence interval of

0.05–0.38 mJy. This level of flux contribution at 2.0 mm would have a negligible effect on SZ flux

estimate. We also estimate the contribution to the total X-ray luminosity from the starburst based

on scaling relations56 and find that a starburst of ∼800 M� yr−1 should have an X-ray luminosity

of L2−10keV = 4×1042 erg s−1, which is less than 0.05% of the total luminosity presented in Table

1. This suggests that the starburst is contributing a negligible fraction of the total X-ray luminosity

in the galaxy cluster core.

4 Properties of the Central AGN

The central galaxy in SPT-CLJ2344-4243 appears to host both a strong AGN and a vigorous star-

burst, both heavily obscured by dust. We summarize the properties of the central AGN in Table

S.2. As was mentioned previously, the central point source has high [O III]/Hβ and [O III]/[O II],

suggesting a strong Seyfert-like AGN. Consistent with low-redshift cool core clusters, the central

galaxy is radio loud (νLν = 1042 erg s−1)57, with a radio luminosity that is similar to those of BCGs

in low-z cool cores (e.g., Abell0780, Abell2052), despite orders of magnitude more cooling. This

relatively low radio luminosity compared to the cooling luminosity may explain why this cluster

appears to be forming stars at such a large fraction of the classical cooling rate. The hard X-ray

luminosity of the AGN (L2−10keV ) suggests an accretion rate of dM
dt

= Lbol

ηc2
= 58 M� yr−1, assuming

a black hole accretion efficiency of η = 0.1 and a bolometric correction factor (Lbol/L2−10keV) of

11058. This accretion rate represents a small fraction (<2%) of the total cooling rate, suggesting

that either feedback is preventing the cooling flow from efficiently accreting onto the central black

hole, or the bulk of the cool material is in some unobserved phase (e.g., cold molecular gas).

Based on scaling relations59 between the total spheroid stellar mass (M∗, assuming the

spheroid luminosity is equal to the total luminosity) and black hole mass (MBH), we naively es-

timate the supermassive black hole in the central galaxy to have a mass of MBH ∼ 1.8+2.5
−1.2 ×1010

M�, which is at the high end of masses seen in the cores of massive galaxy clusters. This high

mass would imply that the aforementioned accretion rate of 58 M� yr−1 is ∼15% of the Eddington

rate.
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νLν,radio 1042 erg s−1 (843MHz SUMMS survey)

L2−10keV 3×1045 erg s−1 (unobscured X-ray luminosity)

LIR ∼1.5×1046 erg s−1 (assume AGN is ∼40% of total IR flux)

Ṁacc 58 M� yr−1 (assume Lbol/LX = 110†, ηacc = 0.1)

AV,AGN 1.5 mag (Balmer extinction)

nH,AGN 39×1022 cm−2 (X-ray absorption)
†: Marconi et al. (2004)

Table S.2: Properties of the central AGN in SPT-CLJ2344-4243.

We stress that both the accretion rate and the black hole mass are highly uncertain, due to

the order of magnitude uncertainty in the bolometric correction60 and black hole mass59. The bolo-

metric correction factor of Fbol/F2−10keV is likely an upper limit, suggesting that Ṁacc < 0.02Ṁcool.
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