Multi-wavelength Observations of the Type IIb Supernova 2009mg

1 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT, UK; sro@mssl.ucl.ac.uk
2 Southwest Research Institute, Space Science and Engineering, Division 15, Blvd. 263, 6220 Culebra Rd., San Antonio, TX 78238
3 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
4 Department of Astronomy, The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm, Sweden
5 Carnegie Observatories, Las Campanas Observatory, La Serena, Chile
6 Department of Astronomy and Astrophysics, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802
7 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA; Hubble, Carnegie-Princeton Fellow
8 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
9 Astrophysics Science Division, Code 660.1, NASA Goddard Space Flight Centre, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
10 Centre for Research and Exploration in Space Science and Technology Code 668.8, 8800 Greenbelt Road Goddard Space Flight Centre, Greenbelt, MD 20771, USA
11 Department of Physics & Astronomy, University of Utah, 115 South 1400 East #201, Salt Lake City, UT 84112, USA
12 Department of Physics and Astronomy, University of Nevada, Las Vegas - 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
13 Departamento de Astronomía, Universidad de Chile, Santiago, Chile
14 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

ABSTRACT

We present Swift UVOT and XRT observations, and visual wavelength spectroscopy of the Type IIb supernova (SN) 2009mg, discovered in the Sb galaxy ESO 121-G26. The observational properties of SN 2009mg are compared to the prototype Type IIb SNe 1993J and 2008ax, with which we find many similarities. However, minor differences are discernible including SN 2009mg not exhibiting an initial fast decline or u-band upturn as observed in the comparison objects, and its rise to maximum is somewhat slower leading to slightly broader light curves. The late-time temporal index of SN 2009mg, determined from 40 days post-explosion, is consistent with the decay rate of SN 1993J, but inconsistent with the decay of 56Co. This suggests leakage of γ-rays out of the ejecta and a stellar mass on the small side of the mass distribution. Our XRT non-detection provides an upper limit on the mass-loss rate of the progenitor of $M < 1.5 \times 10^{-6} \, M_\odot \, yr^{-1}$. Modelling of the SN light curve indicates a kinetic energy of $0.15^{+0.02}_{-0.13} \times 10^{51} \, \text{erg}$, an ejecta mass of $0.56^{+0.10}_{-0.26} \, M_\odot$ and a ^{56}Ni mass of $0.10 \pm 0.01 \, M_\odot$.

Key words: supernovae: individual: SN 2009mg

1 INTRODUCTION

Core collapse supernovae (SNe) are the death throws of massive stars. These stellar explosions are classified into Type II and Type Ib/c sub-types depending on their spectroscopic characteristics. The spectra of SNe II contain prevalent hydrogen lines, while those of SNe Ib lack hydrogen lines, but display lines of helium. The spectra of SNe Ic, on the other hand, lack both hydrogen and helium lines (see Filippenko 1997, for further details and references). The lack of hydrogen lines in SNe Ib/c is thought to be due to the hydrogen envelope being stripped before the final pre-SNe stage is reached. In the case of SNe Ic, the helium envelope is also thought to be stripped or ^{56}Ni is not sufficiently mixed into any helium layer and thereby prevents the excitation of helium lines. The progenitors of SNe Ib/c are therefore thought to be stars in which the majority of their
hydrogen-rich envelope is stripped via stellar winds and/or transferred to a secondary star via Roche-lobe overflow (e.g., Wheeler & Levreault 1985; Woosley, Langer & Weaver 1993, 1995).

In 1987 hints appeared of a new sub-class of SNe II from the spectral evolution of the peculiar SN 1987K (Filippenko 1988). Around maximum light SN 1987K exhibited spectral characteristics reminiscent of a normal SN II event including the presence of a broad Hα absorption feature. However, nearly five months later, when the object reappeared from behind the sun, its spectrum resembled more closely that of a SN Ib. This peculiar spectral metamorphosis provided a hint that normal SNe II may be linked to the hydrogen-stripped SN Ib subclass. Similarly, the well-observed SN 1993J exhibited a clear SN II-like spectrum just after explosion, but over several weeks its spectrum evolved to resemble that of a classic SN Ib event with dominant He I features (Filippenko, Matheson & Ho 1993; Swartz et al. 1993). This led to the introduction of the Type Ib subclass (Filippenko 1988). SNe IIn progenitors are able to retain a small amount (∼0.01 M⊙) of hydrogen at the time of explosion, and this residual hydrogen shell is manifested in the optical spectrum obtained just after explosion (Podsiadlowski et al. 1993; Nomoto et al. 1993). Recently, it has been proposed that SNe IIb may be further classified into cIIb and eIIb sub-classes, dividing SNe IIb into extended or compact progenitors, respectively (Chevalier & Soderberg 2010). This sub-classification depends on the radius and mass-loss history of the progenitor star, which may be determined from X-ray and radio observations. Examples of SNe eIIb are SN1993J and 2001dg, while examples of SNe cIIb are 1996cb, 2001ig and 2008ax (Chevalier & Soderberg 2010).

Over the past 20 years, approximately 721 (Barbon et al. 1999) SNe IIb have been discovered, but only a handful have been well observed including, amongst others, SNe 1987K (Filippenko 1988), 1993J (Schmidt et al. 1993), 1996cb (Qiu et al. 1999), 2003kg (Hamuy et al. 2009), 2008ax (Pastorello et al. 2008; Roming et al. 2009; Taubenberger et al. 2011; Chornock et al. 2011) and most recently 2011dh (Arcavi et al. 2011; Maund et al. 2011; Soderberg et al. 2011). The exact number of SNe IIb is uncertain due to the evolution of their spectra. If spectral observations of SNe IIb are not obtained early enough then we may miss SNe II-like features, such as prevalent hydrogen lines, and so misidentify SNe IIb as SNe Ib. Conversely, if late-time spectral observations are not obtained or are too poor for line identification, then the development of SN Ib-like features, such as numerous He I lines, may not be detected and so the SN could be misidentified as a SN II. Currently, little is known about the spread in mass and energy of SNe IIb, the exact manner of mass-loss, nor exactly how they relate SNe II and SNe Ib/c. It is important that an expanded sample of well-observed SNe IIb is constructed as these objects with their small hydrogen envelope may bridge the gap between normal SNe II and SNe Ib/c.

Direct information can be gathered on the progenitors of SN from pre-explosion images, but it is difficult to identify candidate progenitors without high resolution HST images. Candidate progenitor stars have been directly detected in pre-explosion images of the Type Ib SNe 1993J and 2011dh. In the case of SN 1993J, a K-type supergiant in a binary system was determined to be its progenitor (Maund et al. 2004). For SN 2011dh, a mid-F-type yellow supergiant is observed at the location of the SN (Maund et al. 2011; Van Dyk et al. 2011), but it is currently too soon to determine whether this is the star that exploded, the binary companion, or an unrelated star (Arcavi et al. 2011; Soderberg et al. 2011; Bietenholz et al. 2012). Evidently, further observations are required after SN 2011dh has faded to determine if the candidate star has disappeared or is indeed still present.

1.1 Supernova 2009mg

In this paper, we present broad-band UV and optical light curves and visual-wavelength spectroscopy of the Type Ib SN 2009mg. SN 2009mg was discovered on the 7.9 December 2009 UT (Monard 2009) in the Sb galaxy ESO 121-G26. With J2000 coordinates of RA = 6°21′44.86″ Dec = −59°44′26″, SN 2009mg was 46″ east and 4″ south from the center of the host galaxy. The redshift of the host galaxy is z = 0.0076 ± 0.0001 (Koribalski et al. 2004). The distance to the host galaxy is therefore 32.7 Mpc and the distance modulus is μ = 33.01 ± 0.48 mag, both of which were retrieved from the NASA/IPAC Extragalactic Database2.

1 http://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/asiagosn.html

2 http://ned.ipac.caltech.edu/
As commonly found for SNe IIb, the classification was continually revised as the object evolved. The initial classification was that of a SN Ia (Prieto 2009), however, soon after this it was changed to a broad-line SN Ic (Roming, Prieto & Milne 2009). Days later as the spectrum evolved it was clear this object was a SN IIb (Stritzinger 2010), as its early spectra strongly resembled that of the prototypical Type IIb SNe 1993J and 1996cb. SN 2009mg was not the first SN to be detected in ESO 121-G26. In the previous year the Type II SN 2008M was also discovered in this galaxy (Green 2008). The locations of both SNe 2009mg and 2008M are indicated in Fig. 1.

The organization of this paper is as follows. In § 2 we provide the main observations of this SN, and describe the data reduction and analysis methods used. The main results are presented in § 3, while the discussion and conclusions follow in § 4 and § 5, respectively. Unless stated all uncertainties throughout this paper are quoted at 1σ. We have adopted the Hubble parameter $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$ and density parameters $\Omega = 0.73$ and $\Omega_m = 0.27$.

2 OBSERVATIONS

2.1 Swift Imaging

X-ray and optical/UV observations were performed simultaneously with the X-Ray Telescope (XRT; Burrows et al. 2005) and the Ultra-Violet Optical Telescope (UVOT; Roming et al. 2000, 2004, 2005), the two narrow field instruments onboard Swift (Gehrels et al. 2004). Analysis of 57.5 ks of X-ray data, see Fig. 2, does not reveal a source at the position of the SN. In Section 3.4 the XRT observations are used to place limits on the mass-loss rate of the progenitor.

Optical/UV observations of both SNe 2008M and 2009mg were obtained with Swift. SN 2008M was observed over 7 epochs from 28.9 January 2008 UT until 5.3 February 2008 UT. These images were obtained from the Swift archive and used to construct deep template images, which were then used to subtract away galaxy emission at the position of SN 2009mg in each of the science images. Swift UVOT observations of SN 2009mg commenced on 10.9 December 2009 UT and concluded on 14.4 February 2010 UT. Twenty-two epochs of broad-band imaging was performed using three optical (u, b and v) and three UV (uw1, uvm2 and uvw2) filters.

Photometry of SN 2009mg was computed following the method described in Brown et al. (2009). The SN+galaxy photometry was extracted using a 3″ radius source region and a background region positioned away from the galaxy in a source free location. The galaxy count rate was determined from the summed exposures of SN 2008M, using the same background and source regions. This value was then subtracted from the SN+galaxy photometry determined from the images of SN 2009mg. The SN photometry was then aperture corrected to 5″ in order to be compatible with UVOT calibration. The analysis pipeline used software HEADAS 6.10 and UVOT calibration 20111031. Count rates were converted into magnitudes using the UVOT zero points presented by Breeveld et al. (2011). The resulting light curves are presented in Fig. 3 and the photometry is provided in Table 1. For some of the UV data points, several epochs have been coadded to provide detections or deep upper limits.

2.2 Optical Spectroscopy

Nine epochs of low-resolution and one epoch of high-resolution optical spectroscopy were obtained with facilities located at the Las Campanas Observatory and the Gemini-South telescope. A journal of the spectroscopic observations is provided in Table 2. Our spectroscopic series covers the flux evolution from -1.2 to +91.6 days relative to B-band maximum. All spectra were reduced in the standard manner using IRAF scripts\(^1\), and in most cases, telluric corrections were not performed.

3 ANALYSIS

3.1 Reddening

According to the Schlegel, Finkbeiner & Davis (1998) IR dust maps, the Galactic reddening component in the direct-
MIKE spectrum obtained on 24.3 December 2009 UT to estimate the colour excess attributed to dust in the host galaxy. From this we measure an equivalent width (EW) for λ for reddening.

First, from close examination of our high-resolution UVOT magnitudes and 3

Figure 3. Upper Panel: Observed UV and optical light curves of SN 2009mg. Middle Panel: (b − v) and (u − b) colour curves, corrected for reddening. Lower Panel: K correction evolution for the UVOT v filter during the course of UVOT observations.

Table 1. Observed UVOT magnitudes and 3σ upper limits, peak times (t_{peak}), peak magnitudes (m_{peak}), and absolute peak magnitudes (M_{peak}). For some of the UV data points, several epochs have been coadded to provide detections and deeper upper limits. The resulting summed exposures are indicated with an * in the time column. Absolute peak magnitudes include extinction and K corrections.

tion of SN 2009mg is E(B − V)_{MW} = 0.045 mag. In order to estimate the colour excess attributed to dust in the host galaxy of SN 2009mg we turn to two methods.

First, from close examination of our high-resolution MIKE spectrum obtained on 24.3 December 2009 UT (55189.24 MJD) we identify Na I D1 5893.19 and Na I D2 5897.9, shown in Fig. 4, at the redshift of the host galaxy. From this we measure an equivalent width (EW) for Na I D1 of 0.21 Å. Following the Munari & Zwitter (1997) relation between E(B − V) and EW of Na I D1 implies a host galaxy colour excess of E(B − V)_{host} = 0.07±0.02 mag.

We have also estimated the host galaxy colour excess by determining the offset of the b − v colour curve of SN 2009mg with respect to a template colour curve (Drout et al. 2011; Stritzinger et al., in preparation). This template colour curve was constructed from a sample of six unreddened SNe Ib/c
3.2 Photometric Evolution

3.2.1 Results

Our broad-band photometric observations of SN 2009mg, which began 3 days after discovery, are plotted in Fig. 3, and extend over a duration of 47 days. There are detections in all bands, but there are fewer detections in the three UV bands compared to the three optical bands. The uvm2 band has only one detection from summed observations. The particular brightness of the uvw2 band, relative to the uvm2 band, is likely to be due to red leak in the former (Brown et al. 2010). Comparing the peak colours of this SN, which are derived below, with the colours of a number of sources (Brown et al. 2010, see their Table 12), we find most similarity with a 4000 K blackbody source. This blackbody source required red-leak corrections of ~ -2.25 mag for uvw2 and ~ -0.55 mag for uvw1.

Observations of the SN light curve began 11 days prior to B-band maximum. The rise to maximum is best observed in the uvw-band light curves, which show a tendency for the SN to rise faster and peak earlier in the bluest filters. After reaching maximum, the light curves decay at different rates depending on wavelength with the quickest decays observed in the bluest filters. This is consistent with both the observations of most SNe Ib/c and SNe IIb, including SNe 1993J and 2008ax (Schmidt et al. 1993; Lewis et al. 1994; Richmond et al. 1994; Pastorello et al. 2008; Roming et al. 2009; Taubenberger et al. 2011), and with theoretical predictions (Arnett 1982).

For each filter, the observed peak magnitude (m_{peak}) and peak time (t_{peak}), listed in Table 1, were determined using an average of 10^5 Monte Carlo simulations of a cubic spline fit to the light curves. The errors for these parameters were taken to be the standard deviation of the simulated distributions. The Monte Carlo simulations were performed on each filter using the first 12 observations; upper limits were not used. Since uvm2 has only a single detection, we are not able to use a cubic spline fit to determine t_{peak} and m_{peak} and we therefore do not provide values of these parameters for this filter. To verify our estimates of t_{peak} and m_{peak} for the other filters, we repeated the fitting using a simple polynomial and compared the results to those values derived using the Monte Carlo cubic spline fitting. The values of m_{peak} estimated from the polynomial fits are consistent with cubic spline fits to within 1σ for the optical bandpasses and 2σ for the UV bandpasses. For values of t_{peak} the polynomial fits are consistent with the cubic spline fits, in all filters, to within 1σ. The determination of the peak times of the separate bands (see Table 1) confirms our earlier observation that the bluest filters peak the earliest.

For each filter, we also calculated the absolute peak magnitude (M_{peak}) using the observed peak magnitude for each filter and the distance modulus. The resulting values are given in Table 1 and have been corrected for extinction and K corrected. To determine the K corrections and extinction corrections, we de-reddened and redshifted to the

<table>
<thead>
<tr>
<th>Date of Observation (UT)</th>
<th>Epocha (MJD-55000+)</th>
<th>Telescope</th>
<th>Instrument</th>
<th>Spectral Range (Å)</th>
<th>Resolution (Å)</th>
<th>Exposure Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2 Dec 2009</td>
<td>186.2</td>
<td>CLAY</td>
<td>LDSS3</td>
<td>3900-9300</td>
<td>7</td>
<td>2×300</td>
</tr>
<tr>
<td>24.3 Dec 2009</td>
<td>189.3</td>
<td>CLAY</td>
<td>LDSS3</td>
<td>3900-9300</td>
<td>7</td>
<td>2×300</td>
</tr>
<tr>
<td>24.3 Dec 2009</td>
<td>189.3</td>
<td>CLAY</td>
<td>MIKE</td>
<td>3330-9150</td>
<td>0.15</td>
<td>1800</td>
</tr>
<tr>
<td>28.2 Dec 2009</td>
<td>193.2</td>
<td>BAADE</td>
<td>IMACS</td>
<td>3976-6362,6489-10051</td>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>06.3 Jan 2010</td>
<td>202.3</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4201-8429</td>
<td>8</td>
<td>1600</td>
</tr>
<tr>
<td>07.2 Jan 2010</td>
<td>203.2</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4199-8426</td>
<td>8</td>
<td>1800</td>
</tr>
<tr>
<td>08.2 Jan 2010</td>
<td>204.2</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>3632-9156</td>
<td>7</td>
<td>600</td>
</tr>
<tr>
<td>18.1 Jan 2010</td>
<td>214.1</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4201-8428</td>
<td>8</td>
<td>1800</td>
</tr>
<tr>
<td>02.1 Feb 2010</td>
<td>229.1</td>
<td>BAADE</td>
<td>IMACS</td>
<td>3976-6357,6485-10053</td>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>24.0 Mar 2010</td>
<td>279.0</td>
<td>DU PONT</td>
<td>WFCCD</td>
<td>3700-9500</td>
<td>7</td>
<td>900</td>
</tr>
</tbody>
</table>

a Days relative to B-band maximum.

Table 2. Journal of spectroscopic observations

Figure 4. The high resolution CLAY-MIKE spectrum displaying the Na I D1 λ5931.9 and Na I D2 λ5937.9 lines.

and SNe IIb which were observed by the Carnegie Supernova Project (Stritzinger et al., in preparation). From this method we estimate an $E(B - V)_{\text{host}} = 0.18 \pm 0.04$ mag. This estimate is about a factor of 2 higher than obtained from the Na I D1 lines.

In what follows we adopt the weighted mean of our two host colour excesses estimates, corresponding to an $E(B - V)_{\text{host}} = 0.09 \pm 0.02$ mag. When combined with the Galactic colour excess, we obtain a total colour excesses of $E(B - V)_{\text{tot}} = 0.14 \pm 0.02$ mag. For an $R_V = 3.1$ this corresponds to an $A_V = 0.43$ mag.

Table 2. Journal of spectroscopic observations

<table>
<thead>
<tr>
<th>Date of Observation (UT)</th>
<th>Epoch (MJD-55000+) (Days)</th>
<th>Telescope</th>
<th>Instrument</th>
<th>Spectral Range (Å)</th>
<th>Resolution (Å)</th>
<th>Exposure Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.2 Dec 2009</td>
<td>186.2</td>
<td>CLAY</td>
<td>LDSS3</td>
<td>3900-9300</td>
<td>7</td>
<td>2×300</td>
</tr>
<tr>
<td>24.3 Dec 2009</td>
<td>189.3</td>
<td>CLAY</td>
<td>LDSS3</td>
<td>3900-9300</td>
<td>7</td>
<td>2×300</td>
</tr>
<tr>
<td>24.3 Dec 2009</td>
<td>189.3</td>
<td>CLAY</td>
<td>MIKE</td>
<td>3330-9150</td>
<td>0.15</td>
<td>1800</td>
</tr>
<tr>
<td>28.2 Dec 2009</td>
<td>193.2</td>
<td>BAADE</td>
<td>IMACS</td>
<td>3976-6362,6489-10051</td>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>06.3 Jan 2010</td>
<td>202.3</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4201-8429</td>
<td>8</td>
<td>1600</td>
</tr>
<tr>
<td>07.2 Jan 2010</td>
<td>203.2</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4199-8426</td>
<td>8</td>
<td>1800</td>
</tr>
<tr>
<td>08.2 Jan 2010</td>
<td>204.2</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>3632-9156</td>
<td>7</td>
<td>600</td>
</tr>
<tr>
<td>18.1 Jan 2010</td>
<td>214.1</td>
<td>GEMINI-S</td>
<td>GMOS</td>
<td>4201-8428</td>
<td>8</td>
<td>1800</td>
</tr>
<tr>
<td>02.1 Feb 2010</td>
<td>229.1</td>
<td>BAADE</td>
<td>IMACS</td>
<td>3976-6357,6485-10053</td>
<td>9</td>
<td>600</td>
</tr>
<tr>
<td>24.0 Mar 2010</td>
<td>279.0</td>
<td>DU PONT</td>
<td>WFCCD</td>
<td>3700-9500</td>
<td>7</td>
<td>900</td>
</tr>
</tbody>
</table>

a Days relative to B-band maximum.

Table 2. Journal of spectroscopic observations

restframe a template spectrum from a similar Type IIb SN (SN 1993J; Jeffery et al. 1994). The template spectrum of the Type IIb SN, 1993J, was used because the spectral range covers the full bandpass of the UVOT (i.e 1600Å- 8000Å). To the spectral template we applied the $E(B - V)$ values corresponding to the Galactic and host extinction using the Milky Way and Small Magellanic Cloud extinction (SMC) laws (Cardelli, Clayton & Mathis 1989; Pei 1992), respectively. The extinction corrections were computed via the subtraction of synthetic magnitudes of an unreddened and reddened template spectrum in the observed frame. The K corrections were computed through the subtraction of synthetic magnitudes from the unreddened template spectrum in the rest and observed frames. The resulting extinction and K correction factors are provided in Table 3. Correcting for extinction and K correcting gives a value for the absolute peak v magnitude of SN 2009mg of -17.68 ± 0.48, which is consistent with other SNe IIb (Richardson, Branch & Baron 2006; Drout et al. 2011), including SN 1993J (-17.57 ± 0.24) and SN 2008ax (-17.61 ± 0.43) (Taubenberger et al. 2011).

Plotted in the middle panel of Fig. 3 are the ($u - b$) and ($b - v$) colour curves. From the start of observations, with ($u - b$) ~ 0.84 mag and ($b - v$) ~ 0.37 mag, the colour curves are observed to evolve from the red to the blue until the time of photometric maximum, at which point they reach minimum values of 0.52 mag and 0.14 mag for ($u - b$) and ($b - v$), respectively. After photometric maximum both colour curves evolve towards the red, reaching ~ 1 mag, and then cease evolving.

The spectra for SN 2009mg have spectral range covering the UVOT v bandpass, we were therefore able to compute optical v-band K corrections. The results are plotted in the lower panel of Fig. 3 at epochs corresponding to when spectroscopic observations were obtained. The evolution of the K correction for the v filter tends to follow the $b - v$ colour curve evolution. Interestingly, this behaviour mimics what is observed in thermonuclear SNe (Nugent, Kim & Perlmutter 2002).

3.2.2 Comparison with other SNe IIb

The brightening to maximum and the subsequent evolution of SN 2009mg’s optical light curves follows the classic behavior of a normal SN IIb. In the top panel of Fig. 5 we compare the v-band light curve of SN 2009mg to those of SNe 1993J (Lewis et al. 1994) and 2008ax (Roming et al. 2009). Note no extinction corrections have been applied to the photometry and cosmological corrections are ignored since the redshift of each object is low. Here the light curves of SNe 1993J and 2008ax have been scaled to the peak brightness of SN 2009mg. Since the time post-explosion is uncertain for SN 2009mg, the time for this SN has been scaled to the well-constrained explosion date of SN 2008ax. Scaling the time axis of SN 2009mg to that of SN 2008ax allows us to estimate the explosion epoch to be 22 ± 2 days prior to v-band maximum, which corresponds to 3 December 2009.

Figure 5 reveals that the v-band light curve of each SN is strikingly similar, particularly from maximum light and onwards. Prior to maximum, the v-band light curve of SN 2009mg appears to be slightly broader than the comparison objects. The broader rise for SN 2009mg may be an indication that the ejecta mass of SN 2009mg is greater than for SNe 1993J and 2008ax, or the ejecta velocity of SN 2009mg is lower than the comparison objects.

The largest difference between the three objects is observed at the earliest epochs. In SN 1993J there is an initial drop in luminosity, which is related to a cooling phase that follows shock breakout, while for SN 2008ax there is a marginal detection of such a decline in the u band (Roming et al. 2009). No post-shock breakout cooling phase is documented in the v light curve of SN 2009mg, nor at bluer wavelengths (see Fig. 3). This is a strong indication that the observations of SN 2009mg did not commence early enough to catch the initial upturn in luminosity and may also be an indication that the explosion date for SN 2009mg is earlier than the 22 days estimated from comparison with the light curve of SN 2008ax.

From ~ 10 days post-explosion, the light curves of all three objects exhibit a similar overall behaviour, a rise to a peak, followed by an exponential decay, which then flattens to a shallower linear decay from ~ 40 days. After the peak, they all appear to decay at the same rate. Given the comparison objects are nearly identical to SN 2009mg from maximum light onwards we attempt to quantify their similarities by measuring the Δm_{15} diagnostic for the b- and v-band light curves. Here Δm_{15} is taken to be the magnitude difference between the peak SN brightness and its brightness measured 15 days post-peak (Phillips 1993).

For the v light curves we obtain $\Delta m_{15}(v)$ values of 0.94 ± 0.004 mag, 1.19 ± 0.07 mag and 1.17 ± 0.08 mag for SNe 1993J, 2008ax and 2009mg, respectively. These values of $\Delta m_{15}(v)$ are consistent with, but towards the steeper end, of the range of values determined for a sample of SNe Ib/c V-band light curves (Drout et al. 2011), where the mean $\Delta m_{15}(V)$ for their sample is 0.87 ± 0.25 mag. However, $\Delta m_{15}(v)$ for SN 2008ax is slightly faster than the V-band decline rate found by Taubenberger et al. (2011) and Drout et al. (2011). For the b-band light curve, $\Delta m_{15}(b)$ for the three objects is: 1.67 ± 0.01 mag (SN 1993J), 1.57 ± 0.06 mag (SN 2008ax) and 1.46 ± 0.09 mag (SN 2009mg). Note the value of $\Delta m_{15}(b)$ for SN 2008ax is consistent with the value of $\Delta m_{15}(B)$ obtained by Taubenberger et al. (2011). SN 2009mg declines more slowly in both the v and b bands in comparison to 1993J, while it is more consistent with the evolution of SN 2008ax.

The lower panel of Fig. 5 displays the ($b - v$) evolution for SNe 1993J, 2008ax and 2009mg. We have applied extinction corrections, with values of $A_v = 0.94$ and $A_b = 1.24$ for SN 2008ax (Roming et al. 2009), and, $A_V = 0.58$ and $A_b = 0.78$ for SN 1993J (Lewis et al. 1994). Although we have not corrected for any systematic offset between the colour curves of each object due to the different photometric systems, these differences are expected to be minimal with $(B - V) \sim (b - v) \sim 0.01$ mag (Poole et al. 2008). From 20 days post-explosion, the ($b - v$) colour curves exhibit a similar evolution for all three SNe IIb. During the initial

<table>
<thead>
<tr>
<th>UVOT Filter</th>
<th>v</th>
<th>b</th>
<th>u</th>
<th>$uvw1$</th>
<th>$uvw2$</th>
<th>$uvw3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction</td>
<td>-0.42</td>
<td>-0.56</td>
<td>-0.67</td>
<td>-0.81</td>
<td>-1.09</td>
<td>-0.99</td>
</tr>
<tr>
<td>K correction</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.05</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

Table 3. Total extinction and K correction factors for the six UVOT bandpasses in magnitudes.
20 days post explosion, the colour evolution of SN 2009mg is most similar to SN 2008ax. Observations of SN 2009mg commenced at 7 days post-explosion at which \((b-v)\) for SN 2009mg and SN 2008ax is 0.83 and 0.56, respectively. From this point the colour curves of SNe 2009mg and 2008ax are observed to dip towards the blue, reaching minimum values of \((b-v)\) of \(\sim 0.52\) and \(\sim 0.28\). The colour curves then evolve back towards the red, finally leveling off at \((b-v)\) \(\sim 1\) before observations ceased. The behaviour of \((b-v)\) colour curve for SNe 2008ax and 2009mg appear to be a common feature for Type Ib/c and Type IIb SNe (e.g. Roming et al. 2009; Stritzinger et al. 2009; Drout et al. 2011).

To constrain and compare the late-time temporal behaviour, we computed the decay rate during the shallow decline phase, from 40 days, for the \(u\), \(b\) and \(v\) light curves of SN 2009mg, and for the \(V\)-band light curve of 1993J. The decay rate was computed using a linear least squares fit. As the observations of SN 2009mg ceased at \(\sim 70\) days post explosion, we fit the linear function to the \(u\), \(b\) and \(v\) light curves from 40 days post explosion to the end of observations at \(\sim 70\) days. This resulted in decay rates of \(-0.004 \pm 0.011\) mag day\(^{-1}\), \(0.022 \pm 0.004\) mag day\(^{-1}\) and \(0.025 \pm 0.003\) mag day\(^{-1}\) for the \(u\), \(b\) and \(v\) light curves, respectively. The decay rate of SN 1993J in the \(V\) band during the same period is \(0.0213 \pm 0.0002\) mag day\(^{-1}\), which is consistent with the decay rate of the \(v\) filter of SN 2009mg. The \(v\) decay rate of SN 2009mg is inconsistent, at \(3\sigma\) confidence, with the decay rate of \(^{56}\)Co to \(^{56}\)Fe, which is \(0.0097\) mag day\(^{-1}\). The \(u\) band light curve of SN 2009mg appears to cease decaying at late times, with the decay rate consistent with being constant. Similar behaviour is also observed in the \(u\)-band light curves of the Type Ib/Ib SNe 2007Y and 2008aq, which are observed not to decay at late times, but to increase in brightness between \(\sim 20\) and \(\sim 90\) days post-peak (Stritzinger et al. 2009). The \(u\) light curve of SN 2008aq is observed to decrease in brightness again after \(\sim 90\) days. The \(U\)-band light curve of SN 1993J was also reported to remain almost constant from \(\sim 50\) to \(\sim 125\) days post maximum (Lewis et al. 1994).

3.3 Optical Spectroscopy

The spectroscopic sequence of SN 2009mg, shown in Fig. 6, reveals the typical evolution of a SN IIb. At early phases \(H\alpha\), and absorption features associated with Fe II and Ca II dominate the spectrum. In addition, during the earliest observed epochs features attributed to He I and Na I are also discernible, and over time, grow in strength. As is common for SNe IIb, the strength of the He I lines compared to \(H\alpha\) increased as the SN evolved. In the case of SN 2009mg, the relative strength does not appear to grow as quickly as in SN 2008ax. For SN 2008ax, \(H\alpha\) and He I \(\lambda 5876\) were of comparable strength \(\sim 30\) days after the explosion, while the \(H\alpha\) absorption was negligible by \(+56\) days post explosion (Pastorello et al. 2008). For SN 2009mg, assuming an explosion date of 3 December 2009, the signal to noise ratio of these two features is comparable in strength by day 45 post explosion. Our series of spectra do not allow us to place confirm constraints on the epoch in which \(H\alpha\) completely disappears, however, \(H\alpha\) is still strong 60 days after the explosion, and is absent in our next spectrum taken on 110 days post-explosion.

In Fig. 7 we plot the time evolution of the blueshifts of the absorption features due to \(H\alpha\), Fe II \(\lambda 5169\) and He I \(\lambda 7065\). Included in this figure are also the time evolution of these lines determined from the spectroscopic sequence of SN 1993J.
SN 1993J (Pastorello et al. 2008). These measurements were determined from the minima of the P-Cygni features. The evolution of the He I line is similar in both objects, while for Hα, the velocity is similar at the start of observations, but unlike SN 1993J, the strength of this feature in SN 2009mg does not drop steeply after day 25, but remains consistently higher. The Fe II line velocity of SN 1993J is found to be higher at the start of observations in comparison to SN 2009mg, but declines at a faster rate. It is interesting to compare Fig. 7 with the equivalent figure for SN 2008ax in Pastorello et al. (2008, see their Fig. 6). The evolution of the line velocities of Hα, He I λ7065, and Fe II λ5169 for both SNe 2008ax and SN 2009mg behave very similarly, although the Hα line in SN 2008ax remains at a slightly higher velocity at late times compared to SN 2009mg and Fe II λ5169 drops off at slightly a faster rate for SN 2008ax. This may suggest that the H envelope mass and the blast-wave evolution are similar for the two SN.

3.4 X-ray observations and mass-loss rate

Analysis of the X-ray observations show no significant detection for SN 2009mg. Using a standard ten-pixel radius (24′′) source region and extracting the background from a local, source-free region to account for sky background and for diffuse emission from the host galaxy, the 3σ upper limit to the XRT net count rate is 5.3×10^{-4} cts s$^{-1}$. This corresponds to an unabsorbed (0.2 – 10 keV band) X-ray flux of $<2.5 \times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$, and a luminosity of $<5.0 \times 10^{39}$ erg s$^{-1}$ for an adopted thermal plasma spectrum with a temperature of kT = 10 keV, a Galactic foreground column density of $N_H = 3.5 \times 10^{20}$ cm$^{-2}$ (Dickey & Lockman 1990), and a distance of 33 Mpc. The upper limit derived for the luminosity is consistent with values determined for other stripped core-collapse SNe including SN 2008ax (Immler et al. 2006, 2007; Roming et al. 2009).

In core-collapse SNe the likely cause of X-ray emission is the interaction of the SN blast wave with circumstellar material (Chevalier 1982; Immler, Aschenbach & Wang 2001; Immler et al. 2007). We use the X-ray non-detection to place an upper limit on the mass-loss rate of the progenitor. Following the methodology described in Immler et al. (2007), we derive a mass-loss rate of $<1.5 \times 10^{-5} M_{\odot}$ yr$^{-1}$($v_{w}/10$ km s$^{-1}$), assuming the speed of the blast wave as $v_s = 10,000$ km s$^{-1}$ and scaled for a stellar wind speed of $v_{w} = 10$ km s$^{-1}$. The velocity of the Fe II λ5169 feature is representative of the velocity of the photosphere (Dessart & Hillier 2005). Therefore, we are able to assume a value of 10,000 km s$^{-1}$ for the blast wave velocity, since the peak velocity of Fe II λ5169 feature is approximately 10,000 km s$^{-1}$ at maximum light. The blast wave velocity is proportional to the mass-loss rate and so assuming a blast wave velocity of 10,000 km s$^{-1}$, rather than using an average value from across the duration of the XRT observations, gives us a conservative upper limit to the mass-loss rate. The resulting 3σ upper limit lies within the range of the mass-loss rate determined for SN 1993J ($10^{-5} – 10^{-4}$; Immler et al. 2007), and is also consistent with SN 2008ax ($9 \pm 3 \times 10^{-6}$; Roming et al. 2009) and Type IIP SNe ($10^{-6} – 10^{-5}$; Chevalier, Fransson & Nymark 2006;
result by repeating the simulation, fixing the time at which
the simulation transfers from the Arnett to the Jeffery
model to be 50 days post explosion. The resulting values for
E_k, M_{ej} and M_{Ni} are consistent with the values determined
with the transfer at 31 days post explosion.

The favoured progenitors, of Type SNe IIb, are massive
stars in binary systems (Smith et al. 2011; Claeys et al.
2011, see references within). Models of stripped helium stars
in binary systems, are provided by Shigeyama et al. (1990)
and Podsialkowski et al. (1993). Shigeyama et al. (1990)
conclude that smaller helium stars undergo more extensive
mixing and eject smaller masses than larger helium stars
and so form light curves with steeper tails. This is because
the ejecta is more transparent when the ejecta mass is small
and mixed (Shigeyama et al. 1990; Iwamoto et al. 1997)
and thus allows more γ-rays to escape before they can be
thermalized. When γ-rays are fully trapped the light curves
decay slowly at a rate consistent with the decay rate of 56Co.

Therefore, one indication of the degree of mixing in the
progenitor is the decay rate of the tail of the light curve.
The decay rate of the tail of SN 2009mg in the v band is
0.025 \pm 0.003 mag day$^{-1}$, which is steeper, at 3σ
confidence, than the decay rate of 56Fe to 56Co, which
decays at a rate of 0.0097 mag day$^{-1}$ (see Fig. 5). This suggests that there
is leakage of γ-rays and hence some degree of mixing of the
progenitor (Shigeyama et al. 1990). This would indicate that
the progenitor is likely to be on the small side of the mass
distribution. This is consistent with the light curve modeling,
which suggests values of E_k, M_{ej} and M_{Ni} similar to,
but lower than those of 1993J and 1996cb.

5 CONCLUSIONS

SN 2009mg appears to be a normal SN IIb and exhibits
properties similar to other normal, well-observed SNe IIb.
Modelling the v-band light curve, we find best fit parameters
for kinetic energy (E_k) of $0.15^{+0.02}_{-0.13} \times 10^{51}$ erg, an ejecta
mass (M_{ej}) of $0.56^{+0.10}_{-0.26} M_\odot$, and a nickel mass ($M_{Ni}$) of
$0.10 \pm 0.01 M_\odot$.

The decline rate of the light curve tail starting from
40 days past B-band maximum is inconsistent, at 3σ
confidence, with the decline rate of 56Co. This indicates that
there is leakage of γ-rays out of the ejecta and suggests the
progenitor star was on the lower end of the stellar mass
distribution.

6 ACKNOWLEDGMENTS

We thank the referee for their useful comments. We also
thank N. Morrell for performing spectroscopic observations.
This research has made use of data obtained from the
High Energy Astrophysics Science Archive Research Center
(HEASARC) and the Leicester Database and Archive Service
(LEDAS), provided by NASA’s Goddard Space Flight
Center and the Department of Physics and Astronomy,
Leicester University, UK, respectively. S.R.O., A.A.B. and
N.P.M.K. acknowledge the support of the UK Space Agency.
J.L.P. acknowledges support from NASA through Hubble
Fellowship Grant HF-51261.01-A awarded by STScI, which
is operated by AURA, Inc. for NASA, under contract NAS
Oates et al.

5-2655. M.H. acknowledges support by the Millennium Center for Supernova Science (P10-064-F).

REFERENCES

Arcavi I. et al., 2011, ApJL, 742, L18
Brown P. J. et al., 2009, AJ, 137, 4517
Burrows D. N. et al., 2005, SSRv, 120, 165
—, 1997, ARAA, 35, 309
Green D. W. E., 2008, Central Bureau Electronic Telegrams, 1227, 3
Koribalski B. S. et al., 2004, AJ, 128, 16
Monard L. A. G., 2009, Central Bureau Electronic Telegrams, 2071, 1
Prieto J., 2009, Central Bureau Electronic Telegrams, 2087, 1
Richardson D., Branch D., Baron E., 2006, AJ, 131, 2233
—, 2005, Space Science Reviews, 120, 95
Schmidt B. P. et al., 1993, NATURE, 364, 600
Stritzinger M., 2010, Central Bureau Electronic Telegrams, 2158, 1

5-2655. M.H. acknowledges support by the Millennium Center for Supernova Science (P10-064-F).